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We study three new techniques that will speed up the branch-and-bound algorithm for the
MAX-2-SAT problem: The first technique is a group of new lower bound functions for the
algorithm and we show that these functions are admissible and consistently better than other
known lower bound functions. The other two techniques are based on the strongly connected
components of the implication graph of a 2CNF formula: One uses the graph to simplify the
formula and the other uses the graph to design a new variable ordering. The experiments
show that the simplification can reduce the size of the input substantially no matter what is
the clause-to-variable ratio and that the new variable ordering performs much better when the
clause-to-variable ratio is less than 2. A direct outcome of this research is a high-performance
implementation of an exact algorithm for MAX-2-SAT which outperforms any implementa-
tion we know about in the same category. We also show that our implementation is a feasible
and effective tool to solve large instances of the Max-Cut problem in graph theory.
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1. Introduction

In recent years, there has been considerable interest in the maximum satisfiability
problem (MAX-SAT) of propositional logic. Given a set of propositional clauses, MAX-
SAT asks to find a truth assignment that satisfies the maximum number of clauses. The
decision version of MAX-SAT is NP-complete, even if the clauses have at most two
literals (so called the MAX-2-SAT problem). Because the MAX-SAT problem is funda-
mental to many practical problems in computer science [14] and computer engineering
[23], efficient methods that can solve a large set of instances of MAX-SAT are eagerly
sought. One important application of MAX-2-SAT is that NP-complete graph problems
such as maximum cut and independent set, can be reduced to special instances of MAX-
2-SAT [7,17]. Many of the proposed methods for MAX-SAT are based on approximation
algorithms [8]; some of them are based on branch-and-bound methods [4,5,11–16,18];
and some of them are based on transforming MAX-SAT into SAT [23].

To the best of our knowledge, there are six implementations of exact algorithms
for MAX-SAT that are variants of the well known Davis–Putnam–Logemann–Loveland
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(DPLL) procedure [9]. One is due to Wallace and Freuder (implemented in Lisp) [22];
one is due to Gramm [11]; one is due to Borchers and Furman [5] (implemented in C
and publicly available); the next two are made available in 2003 by Alsinet et al. [1]
(a substantial improvement over Borchers and Furman’s implementation) and Zhang
et al. [24], respectively; the last one is provided by Zhao and Zhang in 2004 [25].

In this paper we will discuss three novel techniques intended to improve the per-
formance of the branch-and-bound algorithm proposed in [24]. It is well known that the
tighter the bound the smaller the search tree in a typical branch-and-bound algorithm. It
is not a surprise to see that Alsinet et al.’s implementation is better than Borchers and
Furman’s implementation because a better lower bound function is used in [1]. After
studying these lower bound functions, we introduce a group of new lower bound func-
tions which can reduce the search tree substantially and improve the performance of
the branch-and-bound algorithm for MAX-2-SAT. We show that these new lower bound
functions are admissible and provide tighter bounds than any known lower bound func-
tions.

The other techniques are based on the use of the strongly connected components
(SCC) in the implication graph of a 2CNF instance. It is well known that the satisfiability
of 2CNF formula can be decided in linear time by computing SCC [3]. For MAX-2-SAT,
we found that computing SCC can help us to (a) simplify the input greatly, and (b) design
a new variable ordering for the algorithm in [24] to solve MAX-2-SAT.

In order to evaluate the new techniques, we present experimental results on thou-
sands of MAX-2-SAT instances. We show that the improved algorithm is consistently
and substantially better than all the known algorithms [1,5,24,25]. We also show the
performance of the algorithm on a large set of random MAX-CUT problems.

2. Preliminaries

Let F be a formula in CNF with n variables V = {x1, . . . , xn} and m clauses.
An assignment is a mapping from V to {0, 1} and may be represented by a vector �X ∈
{0, 1}n, where 0 means false and 1 means true. Let S( �X, F) be the number of clauses
satisfied by �X and K(F) be the minimal number of false clauses under any assignment.
That is,

K(F) = m − max
{
S
( �X, F

) | �X ∈ {0, 1}n}.
If we use the right-hand side of the above equation for computing K(F), we obtain a
naive enumeration algorithm for MAX-SAT. K(F) can also be computed by a simple
recursive function as follows:

K(F) = min
(
K(Fx), K(Fx̄)

)

where Fx is the formula obtained from F by replacing x by 1 and x̄ by 0. The algo-
rithm based on the above equation is also called Davis–Putanm–Logemann–Loveland
procedure [9].
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For every literal x, we use variable(x) to denote the variable appearing in x. That
is, variable(x) = x for positive literal x and variable(x̄) = x for negative literal x̄. If y

is a literal, we use ȳ to denote x if y = x̄. A literal x in a set F of clauses is said to be
pure in F if its complement does not appear in F .

A partial (complete) assignment can be represented by a set of literals in which
each variable appears at most (exactly) once and each literal is meant to be true in the
assignment. If variable(x) does not appear in a partial assignment A, then we say lit-
erals x and x̄ are unassigned in A. For an unassigned literal x, µ(x) is the number of
unit clauses for literal x in the current clause set, including those generated during the
search. Initially, µ(x) is the number of unit clauses for literal x in the input.

The algorithm that we will use throughout the paper is presented in figure 1. This
algorithm uses a fixed ordering, i.e., from x1 to xn, to assign truth value to variables
(assuming xi < xj if i < j ). In the algorithm, B(x) = {y | (x ∨ y) ∈ F, variable(x) <

variable(y)} for each literal x. By abuse of notations, we assume xi is represented by
i and x̄i is represented by ī, where 1 � i � n. Hence, we have µ(i) = µ(xi) and
B(i) = B(xi).

The following result is provided in [24].

Theorem 2.1. Suppose F is a set of binary clauses on n variables. Then
max_2_sat(F, n, g0) returns true if and only if there exists an assignment under which at
most g0 clauses in F are false. The time complexity of max_2_sat(F, n, g0) is O(n2n)

and the space complexity is L/2 + O(n), where L is the size of the input.

3. Lower bounds

It is well known that the tighter the bound the smaller the search tree in a typical
branch-and-bound algorithm. In line 2 of dec_max_2_sat in figure 1, popular lower
bound functions can be used to improve its performance. The following two lower bound
functions are used in [1,2,24]:

– LB1 = the number of conflicting (or empty) clauses by the current partial assignment;

– LB2 = LB1 + ∑n
j=i min(µ(j̄ ), µ(j)),

where µ(x) is the number of unit clauses for literal x under the current partial as-
signment. Using LB2 instead LB1 contributes greatly to the improved performance of
Alsinet, Manyà and Planes’ implementation over Borchers and Furman’s. It is easy to
see that LB1 � LB2 � K(F). In general, a lower bound LB is said to be admissible if
LB � K(F). In other words, both LB1 and LB2 are admissible.

Lemma 3.1. If there is a clause x ∨ y in F such that µ(x) < µ(x̄) and µ(y) < µ(ȳ),
then LB2 + 1 � K(F).

Proof. Note that LB2 = LB1+∑n
j=i min(µ(j̄ ), µ(j)). If the assignments of xj , where

i � j � n, do not create any new unit clauses, then K(F) = LB2. For a clause x ∨ y,
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function max_2_sat ( F : clause set, n, g0: integer) return Boolean
// initiation
for i := 1 to n do

compute B(i) and B(ī) from F ;
µ(i) := µ(ī) := 0; // assuming no unit clauses in F

end for
return dec_max_2_sat(1, g0);

end function

function dec_max_2_sat( i, g: integer ) return Boolean
1 if (i > n) return true; // end of the search tree
2 if (lower_bound(i) > g) return false
3 // decide if we want to set variable i to true
4 if (µ(ī) � g) ∧ (µ(ī) < µ(i) + |B(i)|) then
5 record_unit_clauses(ī);
6 if (dec_max_2_sat(i + 1, g − µ(ī))) return true;
7 undo_record_unit_clauses(ī);
8 end if
9 // decide if we want to set variable i to false
10 if (µ(i) � g) ∧ (µ(i) � µ(ī) + |B(ī)|) then
11 record_unit_clauses(i);
12 if (dec_max_2_sat(i + 1, g − µ(i))) return true;
13 undo_record_unit_clauses(i);
14 end if
15 return false;
end function

procedure record_unit_clauses ( x: literal )
for y ∈ B(x) do µ(y) := µ(y) + 1 end for;

end procedure

procedure undo_record_unit_clauses ( x: literal )
for y ∈ B(x) do µ(y) := µ(y) − 1 end for;

end procedure

Figure 1. A decision algorithm for MAX-2-SAT.

if we assign 0 to x, µ(y) will be increased by 1. So min(µ(y), µ(ȳ)) will be increased
by 1. If we assign 1 to x, then we create µ(x̄) instead of µ(x) empty clauses, where
µ(x) < µ(x̄). So the number of empty clauses is greater than LB2. The same reason
applies to y, too. �
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function lower_bound3 ( i: integer) return integer
1 LB3 = LB2;
2 for every clause (x ∨ y) ∈ S(i) do
3 if (c(x) > 0) ∧ (c(y) > 0) then
4 LB3 = LB3 + 1; c(x) = c(x) − 1; c(y) = c(y) − 1;
5 end if
6 end for
12 return LB3
end function

function lower_bound4 ( i: integer) return integer
1 LB4 = LB1;
2 while (i � n) do
3 LB4 = LB4 + min(µ(ī), µ(i));
4 t = |µ(ī) − µ(i)|;
5 if µ(ī) > µ(i) then Y = B(i) else Y = B(ī)

6 for y ∈ Y if (t > 0) do
7 t = t − 1;
8 µ(y) = µ(y) + 1;
9 end for
10 i = i + 1
11 end while
12 return LB4
end function

Figure 2. The procedures for computing LB3 and LB4.

3.1. Lower bound LB3

The above lemma allows us to design an enhanced lower bound function as follows.
For any literal x, let c(x) = µ(x̄) − µ(x) and S(i) be the current set of clauses of which
both literals are unassigned under the current assignment for variables x1 to xi−1. Then
the new lower bound can be computed by the procedure lower_bound3 in figure 2.

It is easy to prove the following result.

Lemma 3.2. The worst-case time complexity of lower_bound3(i) is O((n − i) +∑n
j=i (|B(j)| + |B(j̄ )|)).

Theorem 3.3. LB2 � LB3 � K(F).

Proof. It is trivial to see LB2 � LB3. To prove that LB3 is admissible, we may ap-
ply lemma 3.1 for each execution of line 4. This is because c(x) > 0 and c(y) > 0
imply µ(x̄) > µ(x) and µ(ȳ) > µ(y) and the conditions of lemma 3.1 hold for each
execution. �
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Note that to use lower_bound3 in dec_max_2_sat of figure 1, we need to replace the
function lower_bound(i) in line 2 by lower_bound3(i) − LB1. This has to be done for
other lower bound functions in this section as well, including LB2. We will see that LB3
improves the performance of the algorithm more than 10 times faster on average than
LB2 on random MAX-2-SAT problems of 50 and 100 variables (see figures 4 and 5).

3.2. Lower bound LB4

While we are satisfied with the performance of LB3, we want to design an-
other lower bound, lower_bound4 in figure 2, to fully explore the property revealed
by lemma 3.1.

It is easy to prove the following result.

Lemma 3.4. The worst-case time complexity of lower_bound4(i) is O((n − i) +∑n
j=i max(|B(j)|, |B(j̄ )|)).

Before we prove formally that LB4 is admissible, let us look at a simple example.

Example 3.5. Suppose a 2CNF formula F is represented by µ and S, where µ(a) =
µ(b) = µ(c) = µ(c̄) = 0, µ(ā) = µ(b̄) = 1 and S = {a ∨ c, b ∨ c̄}. It is easy to see
K(F) = 1. LB3 = 0 because there exists no clause x ∨ y in F such that µ(x̄) > µ(x)

and µ(ȳ) > µ(y).
Suppose a < b < c, then LB4 = 1 because a ∨ c will increase µ(c) by 1 and b ∨ c̄

will increase µ(c̄) by 1, making min(µ(c̄), µ(c)) = 1.

Let F(i) be the remaining nontrivial (neither empty nor tautology) clauses when
dec_max_2_sat(i, g) in figure 1 is called. Recall that for any unassigned literal x, µ(x)

is the number of the unit clauses for literal x. Let u(x) be the multiset of µ(x) copies of
the unit clause x and xB(x) denote the set {(x ∨ y) | y ∈ B(x)}. Then we have

F(i) = u(xi) ∪ u(x̄i) ∪ xiB(i) ∪ x̄iB
(
ī
) ∪ F(i + 1)

where F(i + 1) is the subset of F(i) not containing the variable xi (assuming
F(n + 1) = ∅).

Let F be F(i) and x be xi in

K(F) = min
(
K(Fx), K(Fx̄)

)
,

we then have

K
(
F(i)xi

) = µ
(
ī
) + K

(
B

(
ī
) ∪ F(i + 1)

)
, (1)

K
(
F(i)x̄i

) = µ(i) + K
(
B(i) ∪ F(i + 1)

)
, (2)

K
(
F(i)

) = min
(
K

(
F(i)xi

)
, K

(
F(i)x̄i

))
. (3)

Since K(F(i + 1)) � K(Y ∪F(i + 1)) for any clause set Y , we have min(µ(ī), µ(i))+
K(F(i + 1)) � K(F(i)), by discarding B(i) and B(ī) from (1) and (2), respectively.
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This relation shows why LB2 is an admissible lower bound. To show that LB4 is admis-
sible, we need the following lemma.

Lemma 3.6. For any subset X ⊆ B(i), if |X| � µ(ī) − µ(i), then

min
(
µ

(
ī
)
, µ(i)

) + K
(
X ∪ F(i + 1)

)
� K

(
F(i)

)
. (4)

Proof. If |X| = 0, then (4) is trivially true. If |X| > 0, then µ(ī) > µ(i) and (4)
becomes

µ(i) + K
(
X ∪ F(i + 1)

)
� K

(
F(i)

)
. (5)

According to (3), there are two cases:
Case 1: K(F(i)xi

) < K(F(i)x̄i
). So K(F(i)) = K(F(i)xi

) = µ(ī) + K(B(ī) ∪
F(i + 1)) by (1). Because µ(ī) � µ(i) + |X| and K(B(ī) ∪ F(i + 1)) � K(F(i + 1))

� K(X ∪ F(i + 1)) − |X|, we have K(F(i)) � µ(i) + |X| + K(X ∪ F(i + 1)) − |X|,
or (5).

Case 2: K(F(i)xi
) � K(F(i)x̄i

). So K(F(i)) = K(F(i)x̄i
) = µ(i) + K(B(i) ∪

F(i + 1)) by (2). Since X ⊆ B(i), K(B(i) ∪ F(i + 1)) � K(X ∪ F(i + 1)). So (5)
holds. �

A mirror of the above lemma can be obtained by switching i and ī.

Theorem 3.7. LB4 � K(F).

Proof. We will use lemma 3.6 (or its mirror) at each iteration of i in the procedure
lower_bound4. If i = n, then LB4 = LB3 = LB2 = min(µ(i), µ(ī)). If i < n, suppose
LB4′ is the value computed inside lower_bound4 for X ∪ F(i + 1), where

F(i) = u(xi) ∪ u(x̄i) ∪ xiB(i) ∪ x̄iB
(
ī
) ∪ F(i + 1).

As an inductive hypothesis, we assume

LB4′ � K
(
X ∪ F(i + 1)

)
.

If µ(ī) > µ(i) then Y = B(i) and a subset X of Y is added at lines 6–9, where |X| � t

as computed at line 4. Since LB4 = min(µ(ī), µ(i)) + LB4′, by induction hypothesis
and lemma 3.6,

LB4 � min
(
µ

(
ī
)
, µ(i)

) + K
(
X ∪ F(i + 1)

)
� K

(
F(i)

)
.

The case when µ(ī) � µ(i) is similar. In both cases, LB4 � K(F(i)). �

3.3. Comparison of LB3 and LB4

Since LB3 and LB4 have the same worst-case time complexity, we wish that LB4
is never smaller than LB3, as example 3.5 already showed that LB4 can be greater than
LB3.
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Let us look at example 3.5 again. We saw that LB4 = 1 when a < b < c. The
same result can be obtained when b < a < c, a < c < b, or b < c < a. However,
if c < a < b (or c < b < a), then LB4 = 0 because neither µ(a) nor µ(b) can be
increased by the two binary clauses.

This simple example shows that the value of LB4 depends on how the propositional
variables are ordered in the implementation. In contrast, the value of LB3 does not
depend on variable ordering. Variable ordering is an important performance issue of the
algorithm in figure 1. In the next section, we will compare two orderings, including an
ordering based on the implication graph of F , and see their impact to the performance.

The next example shows that the ordering for choosing clauses in the computation
of LB3 and LB4 also affect their values.

Example 3.8. Let F be represented by µ and S, where µ(a) = µ(b) = µ(c) =
µ(d) = 0, µ(ā) = µ(b̄) = µ(c̄) = µ(d) = 1, and S = {a ∨ b, b ∨ c, c ∨ d}. Ob-
viously, K(F) = 2. If b ∨ c is chosen first at line 2 of lower_bound3, then LB3 = 1;
otherwise, LB3 = 2. Similarly, for computing LB4, if b ∨ c is chosen first at line 6
of lower_bound4 (either b or c must be the smallest in the variable ordering), then
LB4 = 1; otherwise LB4 = 2.

This example shows that LB3 may be 2 while LB4 may be 1. Thus LB3 and
LB4 are different in general. Now we have the following question: If the same clause
ordering is used for computing both LB3 and LB4, is it true that LB3 � LB4? The
answer is unfortunately no, as illustrated by the following example.

Example 3.9. Suppose F is represented by µ and S, where µ(a) = µ(b) = µ(c) =
µ(c̄) = 0, µ(ā) = µ(b̄) = 1 and S = {a ∨ c, a ∨ b}. Then K(F) = 1 and LB3 = 1
because of a ∨ b. However, if the clauses are chosen in the given order, then LB4 = 0
because t = 1 for a is used on c when a ∨ c is chosen.

To avoid the problem illustrated in the above example, at line 6 of lower_bound4,
we may prefer those clauses in Y that will increase the value of LB4. This idea is
implemented as function lower_bound4a in figure 3. Those literals in Y that will not
increase the value of LB4 immediately are stored in S ⊆ Y and processed later at
lines 12–14.

However, we do not have a proof that LB4 computed by lower_bound4a is
always not less than LB3. To make sure LB4 � LB3, let us say a clause ordering <c

is LB3-compatible if for any two clauses (a ∨ b) and (c ∨ d), if (a ∨ b) satisfies
(c(a) > 0) ∧ (c(b) > 0) but (c ∨ d) does not, then (a ∨ b) <c (c ∨ d).

Theorem 3.10. If we select clauses from Y at line 6 of lower_bound4(i) using a LB3-
compatible clause ordering (from small to big), then LB3 � LB4.
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function lower_bound4a ( i: integer ) return integer
1 LB4 = LB1;
2 while (i � n) do
3 LB4 = LB4 + min(µ(ī), µ(i));
4 t = |µ(ī) − µ(i)|;
5 if µ(ī) > µ(i) then Y = B(i) else Y = B(ī)

6 S = ∅
7 for j ∈ Y if (t > 0) do
8 if (µ(j) � µ(j̄)) then S = S ∪ {j } else
9 t = t − 1; µ(j) = µ(j) + 1;
10 end if
11 end for
12 for j ∈ S if (t > 0) do
13 t = t − 1; µ(j) = µ(j) + 1;
14 end for
15 i = i + 1
16 end while
17 return LB4
end function

Figure 3. The procedure for computing LB4a.

Proof. Under the given condition, whenever line 4 of lower_bound3 is executed (LB3
is increased by one), lines 7, 8 of lower_bound4 will be executed, too, to increase LB4
by one. �

In example 3.9, any LB3-compatible ordering will place a ∨ b before a ∨ c. Using
this ordering for computing LB4, we have LB3 = LB4 = 1.

The only extra cost for using a LB3-compatible clause ordering in lower_bound4
is that we have to execute lines 6–9 twice. The first time for those y ∈ Y , c(y) > 0,
and the second time for those such that c(y) � 0. In other words, using this ordering
will not compromise the worst-case time complexity of lower_bound4. However, our
implementation of LB4 using a LB3-compatible clause ordering is slightly slower than
lower_bound4a because of this second visit to Y .

4. Using SCC

Preprocessing is a procedure used before running the MAX-2-SAT algorithm. Our
preprocessing is based on strongly connected component (SCC) of implication graph.
Given a 2CNF formula F , the implication graph, GF , of F is a directed graph where the
vertices are the set of the literals whose variables appear in F and there is an edge from
x to y iff either x̄ ∨ y ∈ F or x = ȳ and y is a unit clause in F . It is proved in [3] that
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F is unsatisfiable iff GF has a SCC which contains both x and x̄ for some literal x. For
MAX-2-SAT, we may use SCC to simplify the original problem:

– If a SCC does not contain any conflicting literals, delete the literals in this SCC from
the original 2CNF formula.

– If there are more than one SCC, divide the original 2CNF formula according to the
SCCs and run the MAX-2-SAT algorithm against each component separately.

The idea of “divide-and-conquer” is not new in SAT. For instance, Bayardo and
Pehoushek [6] have used this idea for counting models of SAT. However, it is new to use
this idea based on SCC for MAX-2-SAT. While this idea is appealing, in the study of
random MAX-2-SAT, we tested thousands of instances but found that very few of them
contain more than one SCC with conflict (i.e., with conflicting literals). This should not
be a surprise because in the study of random graphs, Erdös and Rnyi [10] showed that for
a simple graph with n nodes, when the number m of edges grows from 0 to n(n − 1)/2,
the first cycle appears when εn < m < (1/2 − ε)n and then the graph consists of trees
and a few unicyclic components until m ≈ n/2. When m = (1 + ε)n/2, there is a
unique giant component and all other components are trees or unicyclic; after that, all
other components will merge into the giant component. The application of this result to
MAX-2-SAT implication graphs is that only the giant component can contain conflicting
literals. That is, it is not likely there is more than one SCC with conflict.

4.1. Preprocessing of clauses

Despite of the fact that we have only one SCC with conflict in most cases, we
can combine the above idea with some known pre-processing methods [4,5,13–16,18]
to simplify a 2CNF formula before running the decision algorithm. We found that the
following sequence of operations is very effective for most 2CNF formulas:

– Unit rule. If F = {x ∨ y} ∧ {x ∨ y} ∧ F ′, first let F = F ′, µ(x) = µ(x) + 1
and d = min(µ(x), µ(x̄)), we then let K(F) = K(F ′) + d, µ(x) = µ(x) − d,
µ(x̄) = µ(x̄) − d.

– Create the implication graph GF from F and locate SCCs in GF . If a SCC does not
contain conflicting literals, we delete this component.

– Resolution Rule: If F = (x ∨ y) ∧ (x̄ ∨ z) ∧ F ′ and F ′ does not contain x and x̄,
K(F) = K(F ′ ∧ (y ∨ z)).

– Export each SCC as a new 2CNF formula: For each edge (x → y) and variable(x) <

variable(y) in the component, add x̄ ∨ y in the formula. We also need to copy the
value µ(x) from step 1 to each component.

– Solve each new 2CNF formula by the MAX-2-SAT algorithm.

As shown later in the paper (see table 3), this preprocessing procedure reduces
the size of random instance greatly and improves considerably the performance of our
algorithm for random MAX-2-SAT instances.
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4.2. A new variable ordering

Another new usage of SCC is to design a variable ordering for the algorithm in
figure 1. As pointed in section 2, this algorithm uses a fixed ordering, i.e., from 1 to n, to
assign truth value to variables. It is found useful in [24] to sort the variables according
their occurrences in the input in nonincreasing order and then assign variables in that
order. Using SCC, we design a new weight function for variables and we then sort the
variables by this weight in nonincreasing order.

The weight function is computed using the following procedure: At first each vari-
able has a weight equal to 0. Then we update the weight by finding the shortest path
between every pair of (x, x̄) in the SCC. If the path goes through node y to z, we in-
crease both the weights of y and z by 1.

The intuition behind this ordering is that we want to derive conflicting clauses as
early as possible so that the lower bound checking at line 2 of the algorithm in figure 1
can be more effective. If a clause appears in the shortest path connecting two conflicting
literals in a SCC, we give the literals in this clause higher weights so that the truth
value of this clause can be decided early. The experimental results in the next section
show that the ordering by the new weight function performs better than the occurrence
ordering when either m/n or K(F) is small.

5. Experimental results

We have implemented all three techniques presented in this paper to support the
algorithm presented in figure 1. The implementation is written in C++ and experimental
results seem promising. All data are collected on a cluster of Pentium 4 2.4 GHz ma-
chines each with 1 GB memory. All these machines run Red Hat Linux 9.0 with gcc
version 3.2.2. Note that the running time of the DIMACS hardware program “dfmax
r500.5.b” is 13.7 on these machines.

5.1. Comparison of different implementations

Table 1 shows some results of Borchers and Furman’s program (BF) [5], Alsinet
et al.’s (AMP, the option LB2 − I + JW is used), and our implementations (LB3, LB4,
LB4a) on the MAX-2-SAT problems distributed by Borchers and Furman [5].1 The
benchmarks contain randomly generated 2-CNFs of 50, 100, and 150 variables (#var),
and are available from their Web site. Note that g0 in our algorithm is at first set to the
number found by the first phase of Borchers and Furman’s local search procedure and
then decreased by one until the optimal value is decided as BF and AMP did. It is clear
from the table that LB4a provides the best result while LB3 and LB4 are ranked second.
The harder the problem, the more significant the gain of LB4a over other implementa-

1 Since we could not obtain Zhao and Zhang’s implementation [25] and Gramm’s implementation [11], we
could not include their run times in our experiment.
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Table 1
Experimental results on Borchers and Furman’s examples. (in seconds).

Problem False BF AMP LB3 LB4 LB4a
#var #cls clauses

50 100 4 0.02 0.03 0.02 0.02 0.01
150 8 0.06 0.03 0.02 0.02 0.02
200 16 4.18 0.38 0.03 0.03 0.03
250 22 24 0.26 0.05 0.04 0.04
300 32 350 4.88 0.09 0.09 0.07
350 41 2556 10 0.09 0.17 0.11
400 45 2308 4.65 0.05 0.08 0.06
450 63 – 44 0.23 0.32 0.21
500 66 – 17 0.12 0.17 0.15

100 200 5 0.14 0.16 0.03 0.03 0.04
300 15 501 29 0.42 0.66 0.4
400 29 – 1204 1.26 3.15 0.98
500 44 – – 192 180 62
600 65 – – 303 394 130

150 300 4 0.18 0.22 0.12 0.10 0.08
450 22 – – 64 19 7.11
600 38 – – 347 385 54

Figure 4. Running time for Alsinet et al.’s program, LB2, LB3 and LB4a for 50 variables problems.

tions. All of our implementations are much faster than Borchers and Furman’s program
and Alsinet et al.’s modification.

Figures 4 and 5 compare Alsinet et al.’s program and our implementations (LB2,
LB3, LB4a) on the random MAX-2-SAT problems of 50 variables and 100 variables,
respectively. We considered the following cases: n = 50 variables with m = 200,

300, 400, . . . , 4700, 4800 clauses and n = 100 variables with m = 200, 250, . . . ,
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Figure 5. Running time for Alsinet et al.’s program, LB2, LB3 and LB4a for 100 variables problems.

Table 2
Performance comparison for LB3 and LB4a. The run times are in seconds. The number in the parentheses

following the run time is the number of unfinished cases after two hours of running.

Problem LB3 LB4a
#var #cls #branches sec #branches sec

100 200 3.7e+03 0.035 1.63e+03 0.030
250 6.22e+04 0.15 1.39e+04 0.082
300 5.91e+05 1.08 1.07e+05 0.41
350 2.28e+06 4.14 3.84e+05 1.5
400 9.5e+06 17 1.09e+06 5.23
450 1.77e+07 44 3.14e+06 14
500 3.91e+07 81 7.32e+06 32
550 7.32e+07 158 1.27e+07 55
600 1.69e+08 373 3.38e+07 152
650 3.15e+08 632 6.85e+07 337
700 4.34e+08 1191 1.14e+08 512

200 400 1.61e+06 3.41 2.09e+05 0.88
420 1.27e+07 28 1.3e+06 5.33
440 5.79e+07 145 3.17e+06 15
460 1.24e+08 330 (3) 1.81e+07 90
480 1.46e+08 405 (10) 2.26e+07 117 (1)

500 2.69e+08 758 (21) 4.31e+07 244 (2)

650, 700 clauses. For each case, we generated 100 random problems (excluding sat-
isfiable ones). Both figures show that all our programs are much faster than Alsinet et
al.’s program, and we can see that LB3 and LB4a are consistently better than LB2. Note
that in the figure of n = 50 variables, the running time of our program is decreasing
while c = m/n is increasing when c = m/n is large enough. The reason for this is that
the preprocessing (unit rule) can reduce a lot of clauses when c is very large.
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Table 3
Performance comparison for SOLB3 and SWLB3 (reduced is the problem after preprocessing).

Problem Reduced SOLB3 SWLB3
#vars #clauses #vars #clauses branches branches

300 420 56.6 79.6 1.19e+03 326
300 450 77.4 115 1.66e+04 3.32e+03
300 480 102 166 2.01e+05 1.73e+05
300 510 122 210 5.87e+06 1.99e+06
300 540 139 253 2.01e+07 8.66e+06

500 650 59 76 1.3e+03 1e+03
500 700 89 120 1.7e+05 1.5e+04
500 750 132 197 5.9e+06 1.2e+06
500 800 171 277 3.1e+07 1.9e+07

5.2. Comparison of LB3 and LB4a

From figures 4 and 5, we see that for n = 50, LB3 and LB4a are almost as fast as
each other. For harder problem, n = 100, LB4a is faster than LB3.

Table 2 provides a detailed comparison of LB3 and LB4a. The instances are ran-
dom 2CNF with 100 or 200 variables and various number of clauses. The data show the
average run times on 100 instances (of the same numbers of variables and clauses). It
is clear from the table that LB4a explores only 1/4 of the search space (represented by
the number of branches in the search tree) of LB3 and LB4a is about 3 times faster than
LB3 on average.

5.3. Comparison of variable orderings

We have run our program with two different configurations: sorting variables
by occurrence with LB3 (SOLB3), sorting variables by weight with LB3 (SWLB3).
Table 3 and figures 6 and 7 show the results of the two configurations on random MAX-
2-SAT problems with 300, 500 variables. Each case has 100 random instances. We can
also see that SWLB3 is faster than SOLB3 when c = m/n is relatively small.

5.4. Max-Cut

Given an undirected simple graph G = (V , E), where V = {x1, . . . , xn} is the
set of vertices and E is the set of edges, let weight wxi,xj

be associated with each edge
(xi, xj ) ∈ E. The Weighted Max-Cut problem is to find a subset S of V such that

W
(
S, S

) =
∑

xi∈S,xj ∈S

wxi,xj

is maximized, where S = V − S. In this paper, we let weight wxi,xj
= 1 for all edges.

The following theorem shows how to reduce the Max-Cut problem to the MAX-2-SAT
problem.
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Figure 6. Performance comparison for SOLB3 and SWLB3 for n = 300.

Figure 7. Performance comparison for SOLB3 and SWLB3 for n = 500.

Theorem 5.1 [7,17]. Given G = (V , E), where |V | = n, |E| = m, we assume weight
w(xi, xj ) = 1 for each (xi, xj ) ∈ E. We construct an instance of MAX-2-SAT as
follows. Let V be the set of propositional variables and for each edge (xi, xj ) ∈ E, we
create exactly two binary clauses: (xi ∨ xj ) and (x̄i ∨ x̄j ). Let F be the collection of
such binary clauses, then the Max-Cut problem has a cut of weight k iff the MAX-2-SAT
problem has an assignment under which m + k clauses are true.

We have run thousands instances of the random Max-Cut problem. Some results
are shown in figures 8 and 9. In each case, there are 100 random instances. For the
instances where the number of variables n = 50, SO (sorting variables by occurrence)
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Figure 8. Performance of SOLB3 and SWLB3 for Max-Cut problems (n = 50).

Figure 9. Performance of SOLB3 and SWLB3 for Max-Cut problems (n = 1000).

is better than SW (sorting variables by weight). Those instances have a relatively large
c = m/n > 2 in most cases. For the instances with n = 1000, SW is often more than 10
times faster than SO when c = m/n < 2.

6. Conclusion

We have studied three new lower bound functions (LB3, LB4 and LB4a) for the
branch-and-bound algorithm of MAX-2-SAT and proved that these bounds are indeed
admissible and tighter than existing lower bound functions. Experimental results showed
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that these new lower bound functions are consistently better than other lower bound
functions. We have also used SCCs of the implication graph of a 2CNF formula to
simplify the formula and to design a new weight for variables. The experiments showed
that sorting variables by weight performs much better when the clause-to-variable ratio,
c = m/n, is less than 2. The proposed preprocessing technique can reduce the size
of the input greatly no matter what is the clause-to-variable ratio. A direct outcome
of this research is a high-performance implementation of an exact algorithm for MAX-
2-SAT, which outperforms any implementation we know about in the same category.
We applied the MAX-2-SAT algorithm to solve large instances of the Max-Cut problem
and the experimental results showed that this approach is feasible and effective. All the
techniques presented in the paper can be applied to the weighted MAX-2-SAT problem
where each clause has a weight. The Max-Cut problem with arbitrary weights can be
easily converted into an instance of the weighted MAX-2-SAT. As future work, we will
specialize and improve the MAX-2-SAT algorithm for the Max-Cut problem and attack
some real world Max-Cut problems. We will extend the techniques presented in the
paper to solve general MAX-SAT problems. We are also interested in applying these
techniques to approximate methods for MAX-2-SAT.
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