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This paper analyses the process and outcomes of competitive bilateral negotiation for a
model based on negotiation decision functions. Each agent has time constraints in the form of
a deadline and a discounting factor. The importance of information possessed by participants
is highlighted by exploring all possible incomplete information scenarios – both symmetric
and asymmetric. In particular, we examine a range of negotiation scenarios in which the
amount of information that agents have about their opponent’s parameters is systematically
varied. For each scenario, we determine the equilibrium solution and study its properties. The
main results of our study are as follows. Firstly, in some scenarios agreement takes place at
the earlier deadline, while in others it takes place near the beginning of negotiation. Secondly,
in some scenarios the price surplus is split equally between the agents while in others the
entire price surplus goes to a single agent. Thirdly, for each possible scenario, the equilibrium
outcome possesses the properties of uniqueness and symmetry – although it is not always
Pareto optimal. Finally, we also show the relative impacts of the opponent’s parameters on the
bargaining outcome.
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1. Introduction

Negotiation is a means for agents to communicate and compromise to reach mu-
tually beneficial agreements. In such situations, the agents have a common interest in
cooperating, but have conflicting interests over exactly how to cooperate. Put differently,
the agents can mutually benefit from reaching agreement on an outcome from a set of
possible outcomes, but have conflicting interests over the outcome that they prefer. The
main problem that confronts agents in such a situation is to decide how to cooperate be-
fore they actually enact the cooperation, and obtain the associated benefits. On the one
hand, each agent would like to reach some agreement rather than disagree and not reach
any agreement. But, on the other hand, each agent would like to reach an agreement that
is as favourable to it as possible.

The negotiation process has long been modelled using the tools of game theory,
and these are now being used extensively in the development of software agents for
automated negotiation [11,14,16,25]. In such encounters, each agent has to make deci-
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sions about generating offers and counter-offers in such a way that its own utility from
the final agreement is maximized. An essential input to this decision making process is
information [28]; here defined as the knowledge about all factors which affect the abil-
ity of an individual to make choices in any given situation. For example, in bargaining
between a buyer and a seller, information includes what an agent knows about its own
parameters (like its reservation price or its preferences over possible outcomes), and also
what it knows about its opponent (like the opponent’s reservation price or the opponent’s
preferences over possible outcomes).

Game theoretic models for bargaining can be divided into two types: those that
deal with complete information and those that deal with incomplete information. In
the former setting, agents know each other’s parameters as well as their own [18]. In
the latter setting, agents lack information about some specific parameters. For instance,
there could be uncertainty over the players’ discounting factors [24], reservation prices
[7], or deadlines [26]. These models study the strategic behaviour of agents when there
is information uncertainty. Our objective here is not to address the issue of uncertainty
per se, but rather to analyse the impact on the negotiation outcome of knowing various
pieces of information about the opponent’s parameters. We therefore explore a range
of negotiation scenarios by varying the degree of information an agent has about its
opponent.

To provide a concrete setting for our study, we consider negotiation between a
buyer and a seller over the price of a good or service. Negotiation needs to be com-
pleted by a specified time, which is likely to be different for the different parties.
Apart from the agents’ respective deadlines, the time at which agreement is reached
can effect the agents in different ways [4]. An agent can gain utility with time and
have the incentive to reach a late agreement (within its deadline). In such a case it is
said to be a patient player. The other possibility is that it can lose utility with time,
and try to reach an early agreement. It is then said to be an impatient1 player. As we
will show, this disposition and the actual deadline itself strongly influence the nego-
tiation outcome. Apart from this, the agents’ reservation limits also influence the out-
come. We therefore study the effect of all these parameters on the equilibrium solu-
tion.

In more detail, we analyse the mutual strategic behaviour of agents for a particular
negotiation model based on negotiation decision functions (see section 2 for details).
This analysis is done for a complete range of symmetric and asymmetric information
scenarios. In [2] we examined the influence of information on the negotiation equilib-
rium for symmetric information scenarios. Here we extend this to asymmetric informa-
tion scenarios. In each of these situations we determine equilibrium strategies and study
how the information state of agents influences the division of gains from trade between
agents. We say that an agent has more/less bargaining power than its opponent if this
division is more/less favourable to it than to its opponent. In addition, we study the
properties of the equilibrium solution.

1 Kraus [14] provides examples of scenarios in which agents gain and lose utility with time.
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This paper advances the state of the art in that such an analysis has not previously
been undertaken. We believe this analysis is particularly useful for constructing soft-
ware agents for electronic commerce for the following reasons. Firstly, it uses simple
functions for generating offers and counter-offers that have shown to be practical in e-
commerce scenarios [12]. Secondly, it takes the time constraints of bargainers into con-
sideration, both in the form of deadlines and discounting factors. Thirdly, it provides a
comprehensive study of all possible incomplete information scenarios that include both
symmetric and asymmetric information. Time and information are the two important
aspects of negotiation in this domain, and player strategies and the outcomes depend
on both these factors [24]. Fourthly, the equilibrium solution generated by our model
is robust, i.e., has the property of uniqueness and symmetry for each possible scenario.
However, the bargaining outcome is not always Pareto optimal, since agents bargain with
incomplete information. Finally, we also show the relative impacts of the opponent’s pa-
rameters on the negotiation outcome.

The remainder of the paper is structured as follows. Section 2 describes our negoti-
ation model. Section 3 determines the optimal and equilibrium strategies for symmetric
information scenarios. The analysis for asymmetric information scenarios is carried out
in section 4. In section 5 we compare the influence of negotiation parameters on the
bargaining power of agents. Section 6 studies the properties of equilibrium solutions
and section 7 discusses related work. Finally in section 8 we present our conclusions.
Appendix A provides a summary of the notation employed throughout the paper. Ap-
pendix B summarizes the equilibrium outcomes for both symmetric and asymmetric
information scenarios.

2. The negotiation model

We use an alternating offers protocol for our study [23]. Let b denote the buyer,
s the seller and let [IPa, RPa] denote the range of values for price that is acceptable to
agent a, where a ∈ {b, s}. Let â denote agent a’s opponent. A price that is acceptable to
both b and s, i.e., the zone of agreement (Z), is the interval [RPs, RPb]. The difference
between RPb and RPs is called the price-surplus. T a denotes agent a’s deadline. Let
pt

b→s denote the price offered by b to s at time t . Negotiation starts when the first offer
is made. When an agent, say s, receives an offer at time t , i.e., pt

b→s , it rates the offer
using its utility function Us where Us : Offers × Times → R. The set Offers is a set of
values for price and the set Times is the set of positive integers. If Us(pt

b→s, t) is greater
than the utility of the counter-offer agent s is ready to send at time t ′, i.e., pt ′

s→b with
t ′ > t , then agent s accepts. Otherwise s makes a counter-offer unless its deadline has
passed. So the action that agent s takes at time t ′ is defined as:

As(t ′, pt
b→s) =






Quit if t ′ > T s where T s is the seller’s deadline,

Accept if Us from pt
b→s � Us from counter-offer pt ′

s→b,

pt ′
s→b otherwise.
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The action for b can be defined analogously. The process of making offers and counter-
offers continues until either an agreement is reached, or one of the two deadlines is
reached. If the deadline T a is reached without an agreement taking place, then agent a

quits and negotiation ends in a conflict.
Since both agents have a deadline, we assume that they use a time dependent func-

tion (i.e., linear, Boulware or Conceder [1]), for generating offers. These tactics vary
the price depending on the remaining negotiation time, modelled as the above defined
constant T a . In these functions, the predominant factor used to decide which value to
offer next is time t . The initial offer is a point in the interval [IPa , RPa]. Agents define
a constant ka that, when multiplied by the size of the interval, determines the price to be
offered in the first proposal by a. The offer made by a at time t (0 < t � T a) is defined
in terms of the negotiation decision function (NDF), f a , as follows:

pt
a→â =

{
IPb + f b(t)(RPb − IPb) for b,

RPs + (1 − f s(t))(IPs − RPs) for s.

A wide range of functions can be defined by varying the way in which f a(t) is
computed (see [1] for more details). However, functions must ensure that 0 � f a(t) �
1, f a(0) = ka and f a(T a) = 1. That is, the offer will always be between the value
range, at the beginning it will give the initial constant and when the deadline is reached
it will offer the reservation value. Function f a(t) is defined as follows:

f a(t) = ka + (1 − ka)

(
min(t, T a)

T a

)1/ψ

.

An infinite number of functions can be defined for different values of ψ . However,
three extreme sets show clearly different patterns of behaviour [20,21] (see figure 1).

1. Boulware (B). For this function, ψ < 1 and the initial offer is maintained until time
is almost exhausted, when the agent concedes up to its reservation value.

Figure 1. Negotiation decision functions for the buyer.
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2. Conceder (C). For this function, ψ > 1 and the agent goes to its reservation value
very quickly.

3. Linear (L). For ψ = 1, price is increased linearly.

As it is important for both the agents to reach an agreement before their respective dead-
lines, the key factor in the generation of offers and counter-offers is the remaining time
for negotiation. An agent’s strategy is therefore defined in terms of time and not in terms
of the history of negotiation. This is explained below. The value of a counter-offer de-
pends on the initial price (IP) at which the agent starts negotiation, the final price (FP)

beyond which it does not concede, the time at which FP is offered and ψ .

Definition 1. An agent a’s strategy (Sa) is a 4-tuple
〈
IPa, FPa, ta, NDFa

〉
,

where IPa denotes the agent’s initial price, FPa the final price beyond which it does
not concede, ta the time at which it offers FPa and the last element denotes its NDF
(i.e., ψa).

Definition 2. The negotiation outcome (O) is an element of the set {(p, t), C}, where
(p, t) denotes the price and time at which agreement is reached and C denotes the con-
flict2 outcome.

As an illustration, when b’s strategy is 〈IPb, RPb, T s, B〉 and s’s strategy is
〈IPs, RPs, T s, B〉, the outcome (O1) that results is shown in figure 2(a). Note that each
agent offers its final price at the earlier deadline, i.e., T s . As shown in the figure, agree-
ment is reached at a price RPs +(price − surplus)/2 and at a time close to T s . Similarly

Figure 2. Illustration of agreement and negotiation conflict.

2 An agent’s optimal strategy should avoid the conflict outcome since an agreement always gives a better
utility than conflict. Conflict is the worst outcome.
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when the NDF in both strategies is replaced with C, agreement (O2) is reached at the
same price but near the beginning of negotiation. Figure 2(b) illustrates a negotiation
conflict. The strategies for b and s are 〈IPb, RPb, T b, B〉 and 〈RPs, RPs, T s, B〉 respec-
tively and T s < T b. As agents have unequal deadlines and both agents use the B

function, the strategies do not converge and result in a conflict. In general, agents can
avoid conflict by using a strategy that offers a mutually acceptable price (i.e., within Z)
by a mutually acceptable time (the earlier deadline). As we will show in the following
sections, the optimal strategies that we determine always result in an agreement (see
appendix B for a summary of the outcomes).

Agents’ utilities are defined with the following two von Neumann–Morgenstern
utility functions [13] that incorporate the effects of discounting and bargaining costs:

Ua(p, t) = Ua
p(p)Ua

t (t) where a ∈ {b, s} and t < T a.

Ub
p is a decreasing function of price and Us

p is an increasing function of price. For an
agent, Ua

t increases with time if its discounting factor δa > 1. Consequently, the agent
gains utility with time and has an incentive to reach a late agreement. But if Ua

t decreases
with time (i.e., δa < 1) then the agent loses on time and has an incentive to reach an
early agreement. Agents are said to have similar time preferences if both gain on time or
both lose on time; otherwise they have conflicting time preferences. Let Ua(C) denote
agent a’s utility from conflict. Each agent’s utility from agreement is always higher than
its conflict utility, i.e., Ua(p, t) > Ua(C) where p is any price within Z, the zone of
agreement, and t � T a . Conflict is the worst outcome for both b and s.

3. Equilibrium outcomes for symmetric information scenarios

Each agent has a reservation limit, a deadline and a discounting factor. Thus b

and s each have three parameters denoted 〈RPb, T b, δb〉 and 〈RPs, T s, δs〉 respectively.
The outcome of negotiation depends on all these six parameters. The information state
of an agent is the information it has about the negotiation parameters. An agent’s own
parameters are known to it, but the information it has about the opponent’s parameters
varies.

Definition 3. The information state I a of an agent a is an ordered pair. The first ele-
ment, denoted Fa , is a 3-tuple containing its own parameters. This forms the fixed part
of I a . The second element, denoted V a , is an n-tuple containing information about its
opponent’s parameters where n varies between zero and three. This forms the variable
part of I a . Thus

I a = 〈
Fa, V a

〉
, F b = 〈

RPb, T b, δb
〉
, and F s = 〈

RPs, T s, δs
〉
.

In the following subsections we vary n between zero and three. For each value of n, we
determine b’s optimal strategy Sb on the basis of I b and s’s optimal strategy Ss on the
basis of I s where b and s are von Neuman and Morgenstern expected utility maximizers.
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As described in the previous section, strategy is a four tuple Sa = 〈IPa, FPa, ta, NDFa〉.
This is optimal if the four elements not only satisfy the constraint of avoiding conflict
but also result in agreement at the maximum possible utility. For each agent a, we first
determine (on the basis of I a) the four elements that form the optimal strategy Sa . We
then prove that the mutual strategic behaviour of agents where both use their respective
optimal strategies form sequential equilibrium points [15,19].

The information states of the players can be symmetric or asymmetric. In the sym-
metric information scenarios, the buyer and the seller have equal information about each
other (i.e., they have information on the same parameter(s) about each other). On the
other hand, information is said to be asymmetric if the players have information on
different parameters about each other (i.e., they have unequal information about each
other). This section analyses the symmetric information scenarios and section 4 deals
with the asymmetric case.

3.1. V a contains a single element

This covers the cases where V a contains the opponent’s deadline, reservation price
or discounting factor. The optimal strategy determination for an agent a when it has no
information about its opponent’s parameters (i.e., V a = 〈〉) is described under the item
for V a = 〈δâ〉 since both cases have the same optimal strategy.

The following analysis is carried out from the perspective of the buyer. The analy-
sis for the seller can be carried out analogously.

1. Deadline. When agents know each others’ deadline, the information states are V b =
〈T s〉 and V s = 〈T b〉.

Optimal strategies. In the absence of RPs , b can ensure convergence by making
IP = IPb (a very low price that lies outside Z), FPb = RPb, and offering FPb before the
earlier deadline. Thus the third element of the strategy becomes T s if (T s < T b) and
T b if (T b < T s). Given this, the last element, i.e., the NDF, needs to be determined so
as to optimise the time of agreement. Figure 3 depicts the negotiation outcome for each
of the three NDFs. T denotes the earlier deadline. The dashed lines indicate s’s strategy

Figure 3. Possible strategies and associated outcomes for V a = 〈T â〉.
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and the solid lines indicate b’s strategy. Note that the actual values of IP and FP in s’s
strategy are not known to b although b knows that IPs is some value greater than RPb,
and FPs is some value less than RPb and greater than IPb. Out of the three NDFs we
need to determine the one that always gives b the best possible utility. Agent b can have
two possible attitudes towards time. It can gain utility with time and have an incentive to
reach a late agreement, or it can lose utility with time and have an incentive to reach an
early agreement. Consider the case where b gains on time. If s uses the Boulware NDF,
then as seen in figure 3(a) the outcome can be O1, O2, or O3 depending on b’s strategy.
Of these three, O3 results in agreement at the lowest price and the latest time. Thus if
s uses the Boulware NDF, it is best for b to also use the Boulware NDF. Similarly if
s uses the Conceder (or Linear) NDF (see figures 3(b) and 3(c)), the most favourable
outcome to b is O6 (or O9) generated by the Boulware NDF. Thus if b gains on time,
irrespective of s’s strategy, it is best for it to always use the Boulware NDF. Agent
b’s optimal strategy is therefore Sb = 〈IPb, RPb, T , B〉. Consider the other possibility
where b loses utility on time. Here we consider scenarios where Z is small and T is
large. So the gain in utility on time from O5 to O4 (and O6 to O5) outweighs the loss in
utility from price. In other words, agents always try to minimize the time of agreement
as long as the price is within the zone of agreement. As shown in figures 3(a), 3(b),
and 3(c), irrespective of s’s strategy, b can minimize the time of agreement by using the
Conceder NDF. Agent b’s optimal strategy therefore becomes Sb = 〈IPb, RPb, T , C〉.
Analogously, Ss = 〈IPs, RPs, T , B/C〉, where IPs is some high price outside Z and the
last element in Ss is B if s gains on time and C if it loses on time.

Since an agent’s optimal strategy does not depend on its opponent’s strategy, nei-
ther agent has the incentive to deviate from it at any point during negotiation. We now
prove that this mutual strategic behaviour of agents forms a sequential equilibrium. As
agents do not have information about their opponent’s strategy or utility, negotiation can
be considered as a game G of alternating offers and incomplete information. For games
of alternating offers, a strategy profile and belief system pair is a sequential equilibrium
of an extensive game if it is sequentially rational and consistent [15,19]. A system of
beliefs µ in G is a specification of a probability x ∈ [0, 1] for each decision node x in G
such that

∑

x∈I

µ(x) = 1

for all information sets I. In other words, µ represents the agent’s beliefs about the
history of negotiation. The player’s strategies satisfy sequential rationality if for each
information set of each player a, the strategy of player a is a best response to the other
player’s strategies, given a’s beliefs at that information set. The requirement for µ to be
consistent with the strategy profile is as follows. Even at an information set that is not
reached, if all players adhere to their strategies, it is required that a player’s belief be
derived from some strategy profile using Bayes’ rule.

Theorem 1. The strategy profile Sb × Ss forms a sequential equilibrium of the game G.
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Figure 4. Extensive form of the negotiation game.

Proof. The first three levels of the extensive form for this game (G) are shown in fig-
ure 4. At node 1, one of the players, say b, starts negotiation using its optimal strategy
Sb. After the first offer, play reaches node 2. At this level, it is player s’s turn to make
a decision. I1 becomes the information set for s since it is unaware of the strategy used
by b and hence does not know which of the three nodes 2, 3 or 4, play has reached.
However, irrespective of exactly which node play reaches at this level (i.e., irrespective
of s’s belief about the history of negotiation), the dominant strategy for s is Ss . Play
now reaches node 5 (since both agents use B) at which b makes a move. At this point b

does not know exactly which node the play is at, but it knows that its information set I2

is reached with probability 1 (probability of reaching other decision nodes at this level
is 0). The dominant strategy for b at this information set (and at all others) is Sb. Thus
at every information set at which it is b’s turn to move, its optimal strategy is Sb and at
every information set at which it is s’s turn to make a move, its optimal strategy is Ss .
The strategy profile Sb × Ss therefore satisfies the requirements for sequential ratio-
nality. Furthermore, at every information set the optimal strategies are also dominant
strategies. This makes the strategy profile Sb × Ss a sequential equilibrium irrespective
of the agents’ beliefs about the history of negotiation. �

Corollary 1. The equilibrium profile Sb × Ss is unique.

Proof. This is a direct consequence of the above proof. As the optimal strategies for
both agents are dominant strategies at each of their information sets, there does not exist
any other equilibrium (neither a pure nor a mixed strategy) where an agent uses a strategy
other than its optimal strategy. The equilibrium solution is therefore unique. �

The equilibrium outcomes for V a = 〈T â〉 in the four possible negotiation scenarios
are listed in table 1. The proof of theorem 1 can be used to show the existence of a unique
equilibrium in all the following scenarios.
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2. Reservation price (RPa). Here V b = 〈RPs〉 and V s = 〈RPb〉. In the absence of T s ,
agent b can ensure convergence if it starts making offers at RPs and reaches RPb by T b.
Using the same analysis as for V a = 〈T â〉, we get Sb = 〈RPs, RPb, T b, B/C〉. The last
element is B if b is patient and C if it is impatient. Similarly the optimal strategy for s

becomes Ss = 〈RPb, RPs, T s, B/C〉. The proof of theorem 1 can also be used to show
that a unique equilibrium exists at Sb × Ss in this case. The equilibrium outcomes for
V a = 〈RPâ〉 are also listed in table 1 of appendix B.

3. Discounting factor (δa). Here V b = 〈δs〉 and V s = 〈δb〉. In the absence of
any other information about the opponent, the strategies available to the agents are
Sb = 〈IPb, RPb, T b, B/C〉 and Ss = 〈IPs, RPs, T s, B/C〉. Consider the optimal strat-
egy determination for the buyer. Figure 5 illustrates the case where T s < T b. As-
sume that δs < 1. In this scenario, the buyer can ensure an agreement only by us-
ing the Conceder NDF (Sb

1 ). Any other strategy (i.e., Linear (Sb
2 ) or Boulware (Sb

3 ))
can result in a conflict irrespective of the seller’s strategy (i.e., Ss

1, Ss
2, or Ss

3). In
other words, the buyer knows that δs < 1 and can infer that s will use a Conceder
NDF to reach an early agreement. But since b does not know the seller’s deadline
(T s) or its reservation price (RPs), b can ensure convergence of strategies only by us-
ing the Conceder NDF. Thus the buyer’s optimal strategy is Sb = 〈IPb, RPb, T b, C〉
and it is independent of δs . In the same way it can be seen that b’s optimal strategy
is Sb = 〈IPb, RPb, T b, C〉 if T b < T s . So irrespective of the relationship between
agent deadlines, b’s optimal strategy remains Sb = 〈IPb, RPb, T b, C〉. Analogously,
the seller’s optimal strategy becomes Ss = 〈IPs, RPs, T s, C〉. The strategy profile
Sb × Ss = 〈IPb, RPb, T b, C〉 × 〈IPs, RPs, T s, C〉 forms an equilibrium since only this
profile guarantees an agreement. The proof of this is the same as that for (V a = 〈T â〉).
See table 1 for the corresponding outcomes.

We now turn to the case where V a = 〈〉. In the preceding paragraph it was shown
that an agent’s optimal strategy does not depend on δâ . Adding δâ to V a or deleting δâ

Figure 5. Possible strategies and associated outcomes for V a = δâ .
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from V a does not alter a’s optimal strategy. The agents’ optimal strategies for V a = 〈〉
are therefore the same as those for V a = 〈δâ〉.

3.2. V a contains two elements

We now consider the effect of different parameter pairs on the negotiation equilib-
rium.

1. Deadline and reservation price. Here V b = 〈T s, RPs〉 and V s = 〈T b, RPb〉. With
this information available to both agents, the optimal strategies can be determined using
backward induction as follows. Consider the case where (T s < T b) shown in fig-
ure 6. The thick line denotes b’s strategy and dashed lines denote s’s strategies. No
matter which strategy s uses, it is bound to reach RPs by T s since it would have to
quit if agreement is not reached by T s . Agent b can use this information to maximize
its utility by never offering a price more than RPs prior to T s . If b gains on time, its
optimal strategy, Sb, is 〈IPb, RPs, T s, B〉 since B has the property of not reaching RPs

before T s . On the other hand if b loses on time, it tries to reach an early agreement
and Sb becomes 〈IPb, RPs, T s, C〉. Analogously, the optimal strategy for s, Ss , becomes
〈IPs, RPs, T s, B〉 if it gains utility with time or 〈IPs, RPs, T s, C〉 if it loses utility with
time. In the other case where (T b < T s), s will maximize its utility by never offer-
ing a price lower than RPb before T b. Thus Ss is 〈IPs, RPb, T b, B〉 if it gains on time,
and 〈IPs, RPb, T b, C〉 if it loses on time. Sb is 〈IPb, RPb, T b, B〉 if it gains on time and
〈IPb, RPb, T b, C〉 if it loses on time. Here again the proof of theorem 1 can be used to
show the existence of a unique equilibrium at Sb × Ss . See table 1 for the corresponding
equilibrium outcomes.

2. Reservation price and discounting factor. Here V b = 〈RPs, δs〉 and V s = {RPb, δb}.
An agent’s optimal strategy when V a = 〈RPâ〉 is independent of its opponent’s discount-

Figure 6. Possible seller strategies for V a = 〈T â, RPâ〉.
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ing factor. Adding the opponent’s discounting factor to V a therefore gives the same
equilibrium strategies and outcomes as for V a = 〈RPâ〉.
3. Deadline and discounting factor. As in the previous case, this gives the same equi-
librium outcomes as for V a = 〈T â〉.

3.3. V a contains three elements

Here V b = 〈T s, RPs, δs〉 and V s = 〈T b, RPb, δb〉. The optimal strategies of agents
for V a = 〈T â, RPâ〉 do not depend on the opponent’s discounting factor (see section 3.2
for n = 2). This gives the same equilibrium outcomes as for V a = 〈T â, RPâ〉. But δâ

can be used to infer the opponent’s NDF. For (n = 1) and (n = 2) we showed that a
patient player uses the Boulware NDF and an impatient player uses the Conceder NDF.
This makes G a game of complete information and both agents can pre-compute the
negotiation outcome with the available information. The outcome is the same as the one
obtained without δa (see table 1) but its inclusion eliminates the need for agents to go
through the process of negotiation to arrive at it.

4. Equilibrium outcomes for asymmetric information scenarios

In the previous section the buyer and the seller had equal information about each
other and they had information on the same parameter(s) about each other. This section
analyses bargaining scenarios where the agents have information on different parame-
ters about each other (i.e., they have unequal information about each other). As before,
each agent has three parameters. An agent’s optimal strategy is always determined on
the basis of its own information state and does not depend on the opponent’s information
state. Put differently, agent a’s optimal strategy depends solely on I a and is independent
of I â . Thus changing I â does not alter a’s optimal strategy as long as I a remains the
same. So agent a’s optimal strategies remain the same for both symmetric and asym-
metric information scenarios. However, as the combination of the two information states
(i.e., I a and I â) changes, the strategy profile and, consequently, the equilibrium outcome
changes.

We begin our analysis with those negotiation scenarios in which agent a knows
one, two or all three parameters about agent â but â has no information about a. Each
of these situations is studied below. The equilibrium outcomes when V s = 〈〉 are listed
in table 2. The corresponding outcomes for V b = 〈〉 can be obtained analogously.

1. Deadline. Here agent a knows â’s deadline but â knows nothing about a. This
gives rise to two scenarios – (V b = 〈T s〉 and V s = 〈〉) or (V s = 〈T b〉 and
V b = 〈〉). Consider (V b = 〈T s〉 and V s = 〈〉) first. From section 3.1 we know that
the buyer’s optimal strategy (determined on the basis of its own information state) is
Sb = 〈IPb, RPb, T , B/C〉, in which the last element is B if δb > 1 and C if δb < 1.
As observed in the previous section, agent a’s optimal strategy for V a = 〈〉 is the
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same as for V a = 〈δâ〉. Thus the seller’s optimal strategy is Ss = 〈IPs, RPs, T s, C〉.
The strategy profile 〈IPb, RPb, T , B/C〉 × 〈IPs, RPs, T s, C〉 therefore forms the equi-
librium. Analogously the equilibrium when (V s = 〈T b〉 and V b = 〈〉) becomes
〈IPb, RPb, T b, C〉 × 〈IPs, RPs, T , B/C〉.
2. Reservation price. For this case (V b = 〈RPs〉 and V s = 〈〉) or (V s = 〈RPb〉 and
V b = 〈〉). Again from section 3.1, the equilibrium strategy profile for (V b = 〈RPs〉 and
V s = 〈〉) is Sb × Ss = 〈RPs, RPb, T b, B/C〉 × 〈IPs, RPs, T s, C〉 and for (V s = 〈RPb〉
and V b = 〈〉) it is 〈IPb, RPb, T b, C〉 × 〈RPb, RPs, T s, B/C〉.
3. Discounting factor. On the same lines the equilibrium for both, (V b = 〈δs〉
and V s = 〈〉) and (V s = 〈δb〉 and V b = 〈〉) is Sb × Ss = 〈IPb, RPb, T b, C〉 ×
〈IPs, RPs, T s, C〉.
4. Deadline and reservation price. Here (V b = 〈T s, RPs〉 and V s = 〈〉) or (V s =
〈T b, RPb〉 and V b = 〈〉). For the former case, the equilibrium strategies are Sb ×
Ss = 〈IPb, RPs, T s, B/C〉 × 〈IPs, RPs, T s, C〉 if T s < T b and 〈IPb, RPb, T b, B/C〉 ×
〈IPs, RPs, T s, C〉 if T b < T s . For the latter case they are 〈IPb, RPb, T b, C〉 ×
〈IPs, RPb, T b, B/C〉 if T b < T s and 〈IPb, RPb, T b, C〉 × 〈IPs, RPs, T s, B/C〉 if T s <

T b.

5. Deadline, reservation price and discounting factor. An agent’s optimal strategy
does not depend on its opponent’s discounting factor. The equilibrium for this scenario
is thus the same as the previous one.

The equilibrium outcomes for the remaining negotiation scenarios (i.e., V s = 〈T b〉,
V s = 〈RPb〉, V s = 〈δb〉, V s = 〈T b, RPb〉) can be determined in the same way. The
results for each of these scenarios are summarised in table 3 to table 6 in appendix B.

5. Bargaining power

Having determined the equilibrium outcomes for symmetric and asymmetric in-
formation scenarios, we now study how the agents’ information states influence their
benefits from bargaining. The distribution property of a negotiation outcome relates to
the issue of how the gains from trade are divided between the players. The price (Pe)

and time (Te) of the equilibrium agreement reflect the relationship between agents’ bar-
gaining powers. We say that an agent has more (less) bargaining power than its opponent
if (Pe, Te) is more (less) in its favour than its opponent. Assume that the price-surplus is
split between b and s in the ratio x : y. The agent b is said to have more (less) power over
price if x > y (x < y). In other words, an agent’s bargaining power is determined on the
basis of its share of the price-surplus. Regarding the time of agreement, if a prefers an
early (late) agreement but â prefers a late (early) agreement and the actual time of agree-
ment is the earlier (later) deadline, then â is said to have more (less) bargaining power
than a over time. For the same time preferences, if the time of agreement is T0, then a is
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said to have more (less) power than â. Note that we do not use the agents’ utility func-
tions to determine their bargaining power since these functions can be subjective3. We
now study the influence of the agents’ information about their opponent’s parameters on
the bargaining power for symmetric information scenarios. The analysis for asymmetric
information can be undertaken in the same way. These results are summarised in table 1
through table 6.

1. Influence of opponent’s deadline. When agents know each others’ deadline, the
patient agent has equal or more power than its opponent over both price and time. This
can be explained as follows. Consider first the case where agents have similar time
preferences. The price-surplus is divided equally between the agents (see section 3)
giving them equal power over price. When both gain on time, agreement is reached at the
earlier deadline and when both lose on time, agreement is reached towards the beginning
of negotiation. In other words, the time of agreement is as favourable as possible to
both agents, giving them equal power over time. When agents have conflicting time
preferences, the entire price-surplus goes to the patient agent and agreement is reached
at the earlier deadline. This happens because although the impatient player attempts to
reach an early agreement by using the Conceder NDF, its opponent’s strategy delays
agreement till the earlier deadline. Thus both Pe and Te are in favour of the patient agent
giving it more power than its opponent.

2. Influence of opponent’s reservation-price. When agents know each others’ reser-
vation price, the patient agent has either more or less power than its opponent and the
impatient agent has equal or less power than its opponent over price. With respect to
time, the patient agent has equal or less power than its opponent and the impatient agent
has equal or more power than its opponent. This can be explained as follows. Consider
similar time preferences first. When both gain on time, the price-surplus goes to the
agent with the longer deadline giving it more power than its opponent. When both lose
on time, the price-surplus is divided equally between the agents giving them equal power
over Pe. Agreement is reached at the earlier deadline when both gain on time and at the
beginning of negotiation when both lose on time. Thus Te is as favourable as possible
to both agents giving them equal power. When agents have conflicting time preferences,
the price-surplus goes to the patient agent and agreement is reached towards the begin-
ning of negotiation. This happens because the initial offers are RPs for b and RPb for s.
The time of agreement is in favour of the impatient agent. Thus the patient agent has
more power over Pe but the impatient agent has more power over Te.

3. Influence of deadline and reservation-price. When agents know each others’ dead-
line and reservation price, the agent with the longer deadline always has more power
than its opponent over price. An agent’s power over time depends on its attitude towards
time. The patient agent has equal or more power than its opponent over time. This pa-

3 In many economic and social choice theory contexts, one unit of utility for the buyer is not equivalent to
one unit of utility for the seller.
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rameter combination always gives the entire price-surplus to the agent with the longer
deadline giving it more power over price. Agreement is reached at the earlier deadline
when at least one agent gains on time and at the beginning of negotiation when both
lose on time. Thus agents have equal power in the case of like time preferences, but the
patient agent gets more power in the case of conflicting time preferences.

4. Influence of opponent’s discounting factor. Adding this information when there is
no existing information, or when there is information on any other single parameter, or a
parameter pair does not alter the equilibrium strategies or the outcome with the following
exception. Adding this information to the parameter pair (T â, RPa) eliminates the need
for negotiation between agents as the solution can be pre-computed (see section 3 for
details).

Having determined the equilibrium strategies for symmetric and asymmetric infor-
mation scenarios, the next step is to find the solution properties.

6. Properties of the equilibrium solutions

A well designed negotiation mechanism should not only be simple to implement,
and have stability (have strategies in equilibrium [27]) but it should also generate solu-
tions that are unique, symmetric and efficient [22]. In the proposed negotiation model,
in some scenarios Te is T0 (the beginning of negotiation), while in others it is T (the
earlier deadline). The time of agreement (Te) is T0 if both the participants have a dis-
counting factor less than one. In the remaining scenarios, it is either T0 or T depending
on the agents’ information state. Pe also has only two possible values. Either the entire
price-surplus goes to a single agent or both agents get an equal share of it. The following
theorems show some important properties of the equilibrium outcomes in different bar-
gaining scenarios. These properties relate to the uniqueness, symmetry and efficiency of
the solution. Apart from these properties, we also study the influence of the opponent’s
parameters on the bargaining outcome.

Uniqueness is a desirable solution property because if the outcome is unique, then
it can be identified unequivocally.

Theorem 2. For each negotiation scenario, the proposed negotiation model has a unique
equilibrium agreement.

Proof. In section 3.1 it was shown that the solution is unique if V a = 〈T â〉. Using
the same proof, it can be shown that the solution is unique for the remaining scenarios.
Thus for each possible symmetric and asymmetric information scenario, there is only
one possible agreement. �

Another desirable solution property is that of symmetry. A bargaining mechanism
is said to be symmetric if it does not treat the players differently on the basis of inap-
propriate criteria. Exactly what constitutes inappropriate criteria depends on the specific
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domain. The proposed negotiation mechanism possesses the property of symmetry since
the outcome does not depend on which player starts the process of negotiation.

Theorem 3. In all negotiation scenarios, the bargaining outcome is independent of the
identity of the first player.

Proof. As shown in appendix B, in the equilibrium outcome for both symmetric and
asymmetric information scenarios, there are two time points at which an agreement can
be reached; T0 which denotes the beginning of negotiation or T which is the earlier
deadline. At these time points one of the agents (either b or s depending on whose turn
it is) offers the equilibrium solution which the other agent accepts. �

An agreement is efficient if there is no wasted utility, i.e, the agreement satisfies
Pareto optimality. The equilibrium solution in the proposed model is Pareto optimal in
some, but not all, negotiation scenarios.

Theorem 4. The equilibrium outcome is Pareto optimal when both agents have similar
time preferences and V a contains T â for at least one of the agents.

Proof. Let a represent the seller. Consider the asymmetric information scenarios first.
The equilibrium outcomes when V a contains T â are given in table 3 and table 6. In
rows 1, 2, 5, 6, 9, 10, 13 and 14 of these tables the agents have similar time preferences.
An agent’s utility can be changed by changing the price or time of agreement or both.
Consider the outcome in row 1 of table 3. The time of agreement is the earlier deadline.
For this scenario, the time of agreement can only be decreased since the agent with
the earlier deadline quits if agreement is not reached by T . But this decrease lowers
both agents’ utilities from time since δa > 1 for both b and s. So both agents get the
maximum possible utility from time at T . The price of agreement is P and it can be
increased or decreased. An increase in the price of agreement lowers b’s utility from
price and increases s’s utility from price. In other words a change in time decreases the
utility of both the agents while a change in price improves one agent’s utility at the cost
of the other agent. The outcome (P, T ) is therefore Pareto optimal. This argument holds
good for all the remaining rows.

The same argument also holds true for the symmetric information scenarios given
in rows 1, 2, 13 and 14 of table 1. In the same way, the property of Pareto optimality can
be shown for the scenarios in which a represents the buyer. �

In the remaining negotiation scenarios, the outcome may or may not be Pareto
optimal. The following theorems show the influence of the opponent’s parameters on
the equilibrium outcome.

Theorem 5. Adding δâ to V a does not change the equilibrium outcome.
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Proof. It was shown in section 3 (for symmetric information scenarios) and section 4
(for asymmetric information scenarios) that including δâ in V a does not change a’s
(where a is the buyer or the seller) optimal strategy. The equilibrium strategy profile
and, consequently, the equilibrium outcome remains unchanged by adding δâ to V a or
deleting δâ from V a . �

Theorem 6. When agents know nothing about the opponent’s parameters or know only
the opponent’s discounting factor, then the price-surplus is split equally between the
agents and agreement takes place towards the beginning of negotiation.

Proof. This is shown in appendix B. See outcomes for (V b = 〈δs〉 and V s = 〈〉) and
(V b = 〈δs〉 and V s = 〈δb〉). The results for (V b = 〈〉 and V s = 〈δb〉) and (V b = 〈〉 and
V s = 〈〉) can be obtained analogously. �

Theorem 7. In all the negotiation scenarios, an impatient agent (a) is indifferent be-
tween knowing the opponent’s deadline (T â) and its reservation price (RPâ).

Proof. The impatient agent could be the seller or the buyer. Consider the seller first.
The equilibrium outcomes when the seller knows the buyer’s deadline and reservation
price are listed in table 3 and table 4, respectively. In both tables the rows 2, 3, 6,
7, 10, 11, 14 and 15 correspond to the scenarios where δs < 1. Comparing the out-
comes in the two tables for rows 2 and 3 we see that the equilibrium outcomes and
the resulting utilities are the same for both deadline and reservation price. This equal-
ity holds good for the equilibrium outcomes in rows 6, 7, 10, 11, 14 and 15. Thus by
knowing the buyer’s deadline, the seller always gets a utility that is equal to the utility
it gets by knowing the buyer’s reservation price irrespective of the buyer’s information
state.

Consider the buyer now. The entries in rows 1, 2, 3 and 4 in table 3, table 4, table 5
and table 6 correspond to the scenarios where b knows the seller’s deadline. The entries
in rows 5, 6, 7 and 8 in these four tables correspond to the scenarios where b knows the
seller’s reservation price. δb < 1 in rows 2, 4, 6 and 8 of these tables. Consider table 3
first. The equilibrium outcome in row 2 is equal to the equilibrium outcome in row 6 and
the outcome in row 4 is equal to the outcome in row 8. This equality holds good between
rows 2 and 6 and rows 4 and 8 of the remaining 3 tables. Thus by knowing the seller’s
deadline, the buyer always gets a utility that is equal to the utility it gets by knowing the
seller’s reservation price irrespective of the seller’s information state. This can easily be
verified for the symmteric information scenarios as well. �

Theorem 8. A patient agent (a)’s utility over time if (V a = 〈T â〉) is greater than or
equal to its utility over time if (V a = 〈RPâ〉) or (V a = 〈δâ〉) irrespective of its oppo-
nent’s information state (V â).
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Proof. Let a represent the seller. Consider first the relation between the outcomes for
(V a = 〈T â〉) given in table 3 and (V a = 〈RPâ〉) given in table 4. δs > 1 in rows 1, 4,
5, 8, 9, 12, 13 and 16. The time of agreement is equal in both the tables in rows 1, 5
and 13, while it is greater in table 3 in rows 4, 8, 9, 12 and 16. Since δs > 1, s’s utility
if (V a = 〈T â〉) is greater than or equal to its utility if (V a = 〈RPâ〉). In the same way,
by comparing the entries in table 3 with the entries in table 5 it can be seen that Ua(t) if
(V a = 〈T â〉) is greater than or equal to Ua(t) if (V a = 〈δâ〉).

It can easily be verified that this result holds true for the symmetric information
scenarios and also if a represents the buyer. �

Theorem 9. A patient agent (a) has equal or more bargaining power over time if it
knows the opponent’s deadline (V a = 〈T â〉) irrespective of the opponent’s information
state (V â).

Proof. Let a represent the seller. Table 3 gives the bargaining outcomes for (V a =
〈T â〉). The rows 1, 4, 5, 8, 9, 12, 13 and 16 represent the scenarios where δa > 1. In
rows 1, 5, 9 and 13 the seller and buyer have equal power. But in rows 4, 8, 12 and 16
the seller has more bargaining power than the buyer. It can easily be verified that the
same result holds good for symmetric information scenarios and also when a represents
the buyer. �

Theorem 10. Agents have equal power over time if they have similar time preferences.

Proof. As seen in the last column of tables 1–6 the agents have equal bargaining power
in rows 1, 2, 5, 6, 9, 10, 13 and 14 that correspond to similar time preferences. �

7. Related work

Initial game theoretic research typically dealt with coordination and negotiation
issues by assuming that agents have complete information about each other and then
giving pre-computed solutions to specific problems [10,18]. Also the bargainers were
assumed to have no time preferences. In [23], Rubinstein took the time preferences of
bargainers into consideration in the form of their discounting factors, but again assumed
complete information. A number of strategic models were later explored to explain the
deadline effect on the bargaining outcome. The complete information models among
these include [6] and [17]. Fershtman and Seidmann model deadline effects in a multi-
period sequential bargaining model in which the player who will propose in each period
is chosen by a lottery. Equilibrium behaviour in this model depends on the discount
factor; if it is low, agreement is reached in the first period, but if it is high enough, then
the game will end in the last period with the proposer receiving all the surplus. Ma and
Manove’s model is also one of complete information but with imperfect player control
over the timing of the offers. Agreements in this model tend to be made near the deadline
and the division of surplus is close to an even split.
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The complete information assumption is limiting because uncertainty is endemic
in most realistic applications. In the latter category, information may be lacking about
a variety of factors in the bargaining problem. Each player may have some private in-
formation about its own situation that is unavailable to the other players, while having
only probabilistic information about the private information about other players. Fol-
lowing [9], models of games of incomplete information proceed by adopting the as-
sumption that all players start with the same probability distribution on this private in-
formation and that these priors are common knowledge. This is modelled by having
the game begin with a probability distribution, known to all players. Thus players not
only have priors over other players’ private information, they also know what priors
the other players have over their own private information. Strategic models of incom-
plete information thus include an extra level of detail, since they specify not only the
actions and information available to the other players in the course of the game, but
also their probability distributions and information prior to the start of the game. This
idea has been used by a number of researchers to explore incomplete information sce-
narios. For instance, Rubinstein extended his complete information model [23] to han-
dle incomplete information in [19,24]. This is an infinite horizon model that considers
uncertainty over player’s discounting factors. One of the players, say player 2, may
be one of two types: weak (for high discounting factor) and strong (for low discount-
ing factor). Player 1 adopts an initial belief about the identity of player 2. Player 1’s
preference is known to player 2. Agreement is reached in the first or second time
period. The main result of the work is the existence of a unique sequential equilib-
rium when player 1’s belief that player 2 is of type weak, is higher than a certain
threshold and another unique equilibrium when this belief is lower than the thresh-
old.

Other models of incomplete information include [4,7,8,26]. Fudenberg and Tirole
[8] analyse an infinite horizon bargaining game by taking the players’ valuations and a
probability distribution over them as common knowledge. Fudenberg et al. [7] analyse
buyer–seller infinite horizon bargaining games in which reservation prices are uncertain,
but time preferences are known. Sandholm and Vulkan [26] consider uncertainty over
agent deadlines. A common feature of all these models is that they treat the information
state of agents as common knowledge. Fatima et al. [4] address uncertainty over two
parameters; deadlines and reservation prices by treating each agent’s information as its
private knowledge. This model was extended in [3,5] to handle multiple issues. Each
of these models is formulated for a different environment and the strategic behaviour of
agents is studied under the chosen environment.

Our objective here is not to address the issue of uncertainty4 per se (as in the
aforementioned models). Rather, our aim is to analyse the impact of knowing var-
ious pieces of information about the opponent’s parameters on the negotiation out-
come. To the best of our knowledge this analysis has not previously been under-
taken. Moreover, none of the above mentioned models use negotiation decision func-

4 The issue of uncertainty for our model was studied in [3–5].
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tions for counter offer generation. We explore the complete range of negotiation sce-
narios by varying the degree of information an agent has about its opponent. Thus
another difference between the existing work and ours is that while the existing mod-
els analyse the strategic behaviour of agents in specific negotiation scenarios, our
work provides a comprehensive analysis of outcomes across a wide range of scenar-
ios.

8. Conclusions

This paper highlights the importance of information possessed by participants in
a game. We analysed the process and outcomes of bilateral negotiation over the entire
range of symmetric and asymmetric information scenarios. This was carried out by vary-
ing the information state of agents. We determined the equilibrium for these scenarios
and analysed the relative influences of the opponent’s parameters on the equilibrium out-
come. A number of important properties of the equilibrium outcome were also studied.

Our main conclusions are as follows. Firstly, in some negotiation scenarios agree-
ment is reached at the earlier deadline, while in others it is reached towards the be-
ginning of negotiation. Secondly, in some scenarios the entire price surplus goes to a
single agent while in others the surplus is split equally between the two agents. Thirdly,
the proposed bargaining model generates solutions that are always unique and symmet-
ric (irrespective of the agents’ information states) but not always Pareto optimal (since
agents bargain with incomplete information). Finally, we showed a number of inter-
esting properties that relate to the relative impacts of the opponent’s parameters on the
outcome.

We believe that the results of our analysis can be particularly useful for construct-
ing software agents for electronic commerce for the following main reasons. Firstly,
constructing software agents that optimally negotiate on behalf of real world parties that
they represent is easy because our model uses simple functions for generating offers and
counter offers. Secondly, our model is realistic in the sense that it incorporates time (in
the form of deadlines and discounting factors) and incomplete information. Thirdly, we
provide a comprehensive analysis by not only taking into account all possible relation-
ships between agent deadlines and discounting factors but also considering all possible
combinations of information states. This gives the end user a clear picture of the possi-
ble outcomes that can result given its own information state. Fourthly, the question of
who will start the process of negotiation does not arise, because for each possible nego-
tiation scenario the equilibrium outcome is unique and symmetric. Thus our analysis is
important not only from the perspective of the software agent developer but also from
the perspective of the end user.

In the present analysis an agent’s strategy was defined in terms of the remaining
time for negotiation. However, this does not always result in a fair division of the surplus,
i.e., the entire surplus goes to one of the two agents. It would therefore be interesting
to explore these scenarios by defining an agent’s strategy not just in terms of remaining
time but also including the concessions made by the opponent in the previous rounds
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as another parameter and decide what to offer next, on the basis of both these parame-
ters.
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Appendix A. A summary of notation

b buyer,
s seller,
a an element of the set {b, s},
â agent a’s opponent,
IPa initial price at which agent a starts negotiation,
FPa final price beyond which agent a does not concede,
RPa agent a’s reservation price,
P (RPs + RPb)/2,
Z the zone of agreement, i.e., a price in the interval [RPs, RPb],
pt

b→s price offered by b to s at time t ,
B Boulware negotiation decision function,
C Conceder negotiation decision function,
L linear negotiation decision function,
I a information state of agent a,
Fa fixed part of I a ,
V a variable part of I a ,
T a agent a’s deadline,
T the earlier deadline,
T0 the beginning of negotiation,
δa agent a’s discounting factor,
Ua agent a’s utility,
Sa agent a’s optimal strategy,
Pe equilibrium price,
Te time of equilibrium agreement,
G indicates a discounting factor greater than 1,
L indicates a discounting factor less than 1,
† indicates the outcome if T s < T b,
‡ indicates the outcome if T b < T s .

Appendix B. Equilibrium outcomes for symmetric and asymmetric information
scenarios
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Table 1
Equilibrium outcomes and bargaining power for symmetric information scenarios.

V a δb, δs Equilibrium Bargaining power
outcome

Price Time

1 〈T â〉 G, G (P, T ) (Pb = P
s ) (Pb = P

s )

2 〈T â〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

3 〈T â〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

4 〈T â〉 L, G (RPb, T ) (Pb < P
s ) (Pb < P

s )

5 〈RPâ〉 G, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

6 〈RPâ〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

7 〈RPâ〉 G, L (RPs , T0) (Pb > P
s ) (Pb < P

s )

8 〈RPâ〉 L, G (RPb, T0) (Pb < P
s ) (Pb > P

s )

9 〈δâ〉 G, G (P, T0) (Pb = P
s ) (Pb = P

s )

10 〈δâ〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

11 〈δâ〉 G, L (P, T0) (Pb = P
s ) (Pb = P

s )

12 〈δâ〉 L, G (P, T0) (Pb = P
s ) (Pb = P

s )

13 〈T â , RPâ〉 G, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

14 〈T â , RPâ〉 L, L (RPs , T0)† (RPb, T0)‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

15 〈T â , RPâ〉 G, L (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb > P
s )

16 〈T â , RPâ〉 L, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Ps > P
b)

Table 2
Equilibrium outcomes and bargaining power for V s = 〈 〉.

V b δb, δs Equilibrium Bargaining power
outcome

Price Time

〈T s〉 G, G (RPs , T ) (Pb > P
s ) (Pb = P

s )

〈T s〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

〈T s〉 G, L (RPs , T ) (Pb > P
s ) (Pb = P

s )

〈T s〉 L, G (P, T0) (Pb = P
s ) (Pb = P

s )

〈RPs〉 G, G (RPs , T0) (Pb > P
s ) (Pb = P

s )

〈RPs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

〈RPs〉 G, L (RPs , T0) (Pb > P
s ) (Ps = P

b)

〈RPs〉 L, G (P, T0) (Pb = P
s ) (Pb = P

s )

〈δs〉 G, G (P, T0) (Pb = P
s ) (Pb = P

s )

〈δs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

〈δs〉 G, L (P, T0) (Pb = P
s ) (Pb = P

s )

〈δs〉 L, G (P, T0) (Pb = P
s ) (Pb = P

s )

〈T s , RPs〉 G, G (RPs , T ) (Pb > P
s ) (Pb = P

s )

〈T s , RPs〉 L, L (RPs , T0)† (P, T0)‡ (Pb > P
s )† (Pb = P

s )‡ (Pb = P
s )

〈T s , RPs〉 G, L (RPs , T ) (Pb > P
s ) (Pb = P

s )

〈T s , RPs〉 L, G (RPs , T0)† (P, T0)‡ (Pb > P
s )† (Pb = P

s )‡ (Ps = P
b)
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Table 3
Equilibrium outcomes and bargaining power for V s = 〈T b〉.

V b δb, δs Equilibrium Bargaining power
outcome

Price Time

1 〈T s〉 G, G (P, T ) (Pb = P
s ) (Pb = P

s )

2 〈T s〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

3 〈T s〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

4 〈T s〉 L, G (RPb, T ) (Pb < P
s ) (Pb < P

s )

5 〈RPs〉 G, G (RPs , T )† (P, T )‡ (Pb > P
s )† (Pb = P

s )† (Pb = P
s )

6 〈RPs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

7 〈RPs〉 G, L (RPs , T0) (Pb > P
s ) (Pb < P

s )

8 〈RPs〉 L, G (RPb, T ) (Pb < P
s ) (Pb < P

s )

9 〈δs〉 G, G (RPb, T ) (Pb < P
s ) (Pb = P

s )

10 〈δs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

11 〈δs〉 G, L (P, T0) (Pb = P
s ) (Pb < P

s )

12 〈δs〉 L, G (RPb, T ) (Pb < P
s ) (Pb < P

s )

13 〈T s , RPs〉 G, G (RPs , T )† (P, T )‡ (Pb > P
s )† (Pb = P

s )‡ (Pb = P
s )

14 〈T s , RPs〉 L, L (RPs , T0)† (P, T0)‡ (Pb > P
s )† (Pb = P

s )‡ (Pb = P
s )

15 〈T s , RPs〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

16 〈T s , RPs〉 L, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb < P
s )

Table 4
Equilibrium outcomes and bargaining power for V s = 〈RPb〉.

V b δb, δs Equilibrium Bargaining power
outcome

Price Time

1 〈T s〉 G, G (RPb, T ) (Pb < P
s ) (Pb = P

s )

2 〈T s〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

3 〈T s〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

4 〈T s〉 L, G (RPb, T0) (Pb < P
s ) (Pb > P

s )

5 〈RPs〉 G, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

6 〈RPs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

7 〈RPs〉 G, L (RPs , T0) (Pb > P
s ) (Pb < P

s )

8 〈RPs〉 L, G (RPb, T0) (Pb < P
s ) (Pb > P

s )

9 〈δs〉 G, G (RPb, T0) (Pb < P
s ) (Pb = P

s )

10 〈δs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

11 〈δs〉 G, L (P, T0) (Pb = P
s ) (Pb < P

s )

12 〈δs〉 L, G (RPb, T0) (Pb < P
s ) (Pb > P

s )

13 〈T s , RPs〉 G, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

14 〈T s , RPs〉 L, L (RPs , T0)† (P, T0)† (Pb > P
s )† (Pb = P

s )‡ (Pb = P
s )

15 〈T s , RPs〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

16 〈T s , RPs〉 L, G (RPs , T )† (RPb, T0)‡ (Pb > P
s )† (Pb < P

s )‡ (Pb < P
s )† (Pb > P

s )‡
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Table 5
Equilibrium outcomes and bargaining power for V s = 〈δb〉.

V b δb, δs Equilibrium Bargaining power
outcome

Price Time

1 〈T s〉 G, G (RPs , T ) (Pb > P
s ) (Pb = P

s )

2 〈T s〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

3 〈T s〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

4 〈T s〉 L, G (P, T0) (Pb = P
s ) (Pb > P

s )

5 〈RPs〉 G, G (RPs , T0) (Pb > P
s ) (Pb = P

s )

6 〈RPs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

7 〈RPs〉 G, L (RPs , T0) (Pb > P
s ) (Pb < P

s )

8 〈RPs〉 L, G (P, T0) (Pb = P
s ) (Pb > P

s )

9 〈δs〉 G, G (P, T0) (Pb = P
s ) (Pb = P

s )

10 〈δs〉 L, L (P, T0) (Pb = P
s ) (Pb = P

s )

11 〈δs〉 G, L (P, T0) (Pb = P
s ) (Pb < P

s )

12 〈δs〉 L, G (P, T0) (Pb = P
s ) (Pb > P

s )

13 〈T s , RPs〉 G, G (RPs , T ) (Pb > P
s ) (Pb = P

s )

14 〈T s , RPs〉 L, L (RPs , T0)† (P, T0)‡ (Pb > P
s)† (Pb = P

s )‡ (Pb = P
s )

15 〈T s , RPs〉 G, L (RPs , T ) (Pb > P
s ) (Pb > P

s )

16 〈T s , RPs〉 L, G (RPs , T0)† (P, T0)‡ (Pb > P
s)† (Pb = P

s )‡ (Pb > P
s )

Table 6
Equilibrium outcomes and bargaining power for V s = 〈T b, RPb〉.

V b δb, δs Equilibrium Bargaining power
outcome

Price Time

1 〈T s〉 G, G (P, T )† (RPb, T )‡ (Pb = P
s )† (Pb < P

s )‡ (Pb = P
s )

2 〈T s〉 L, L (P, T0)† (RPb, T0)‡ (Pb = P
s )† (Pb < P

s )‡ (Pb = P
s )

3 〈T s〉 G, L (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb > P
s )

4 〈T s〉 L, G (RPb, T ) (Pb < P
s ) (Pb < P

s )

5 〈RPs〉 G, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

6 〈RPs〉 L, L (P, T0)† (RPb, T0)‡ (Pb = P
s )† (Pb < P

s )‡ (Pb = P
s )

7 〈RPs〉 G, L (RPs , T0)† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb < P
s )† (Pb > P

s )‡
8 〈RPs〉 L, G (RPb, T ) (Pb < P

s ) (Pb < P
s )

9 〈δs〉 G, G (RPb, T ) (Pb < P
s ) (Pb = P

s )

10 〈δs〉 L, L (P, T0)† (RPb, T0)‡ (Pb = P
s )† (Pb < P

s )‡ (Pb = P
s )

11 〈δs〉 G, L (P, T0)† (RPb, T0)‡ (Pb = P
s )† (Pb < P

s )‡ (Pb < P
s )

12 〈δs〉 L, G (RPb, T ) (Pb < P
s ) (Pb < P

s )

13 〈T s , RPs〉 G, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

14 〈T s , RPs〉 L, L (RPs , T0)† (RPb, T0)‡ (Pb > P
s )† (Pb < P

s )‡ (Pb = P
s )

15 〈T s , RPs〉 G, L (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Pb > P
s )

16 〈T s , RPs〉 L, G (RPs , T )† (RPb, T )‡ (Pb > P
s )† (Pb < P

s )‡ (Ps < P
b)
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