
Annals of Mathematics and Artificial Intelligence (2005) 43: 307–342 Springer 2004

The SAT2002 Competition

Laurent Simon a, Daniel Le Berre b,∗ and Edward A. Hirsch c,∗∗
a LRI, U.M.R. CNRS 8623, Université Paris-Sud, 91405 Orsay Cedex, France

E-mail: simon@lri.fr
b CRIL, F.R.E. CNRS 2499, Faculté Jean Perrin, Université d’Artois, Rue Jean Souvraz SP 18,

62300 Lens Cedex, France
E-mail: leberre@cril.univ-artois.fr

c Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, 191023 St. Petersburg, Russia
http://logic.pdmi.ras.ru/∼hirsch/

SAT Competition 2002 held in March–May 2002 in conjunction with SAT 2002 (the Fifth
International Symposium on the Theory and Applications of Satisfiability Testing). About 30
solvers and 2300 benchmarks took part in the competition, which required more than 2 CPU
years to complete the evaluation. In this report, we give the results of the competition, try to
interpret them, and give suggestions for future competitions.

Keywords: Boolean satisfiability (SAT), empirical evaluation

AMS subject classification: 68W20, 03B05

1. Introduction

The SAT2002 solver competition, involving more than 30 solvers and 2300 bench-
marks, took place in Cincinnati a decade after the first SAT solver competition held in
Paderborn in 1991/1992 [7]. Two other SAT competitions were organized since that
date: the Second DIMACS Challenge, held in 1992/1993 [29], and the Beijing compe-
tition, in 1996.1 In the last few years, the need for such a competition was more and
more obvious, reflecting the recent and important progress in the field. A lot of papers
have been published concerning “heuristics” algorithms for the NP-complete satisfiabil-
ity problem [11], and even software exists that people use on real-world applications.
Many techniques are currently available, and it is difficult to compare them. This com-
parison can hardly be only on the theoretical level, because it often does not tell any-
thing from a practical viewpoint. A competition can lead to some empirical evaluation
of current algorithms (as good as possible) and thus can be viewed as a snapshot of
the state-of-the-art solvers at a given time. The data collected during this competition

∗ This work has been supported in part by the IUT de Lens, the Université d’Artois and by the “Région
Nord/Pas-de-Calais” under the TACT-TIC project.∗∗ Supported in part by RFBR grant No. 02-01-00089 and by grant No. 1 of the 6th RAS contest-expertise
of young scientists projects (1999).

1 Benchmarks available at http://www.cirl.uoregon.edu/crawford/beijing/.

308 Simon et al. / The SAT2002 Competition

will probably help to identify classes of hard instances, solvers limitations and allow
to give appropriate answers in the next few years. Moreover, we think that the idea of
such a competition takes place in a more general idea of empirical evaluation of algo-
rithms. In a number of computer science fields, we need more and more knowledge
about the behavior of the algorithms we design and about the characteristics of bench-
marks. This competition is a step in a better – and crucial – empirical knowledge of
SAT algorithms and benchmarks [26,27]. The aim of this paper is to report what orga-
nizers learned during this competition (about solvers, benchmarks and the competition
itself), and to publish enough data to allow the reader to make is own opinion about the
results.

As it was mentioned, in the first half of the last decade, some competitions were
organized to compare solvers. However, one major – and recent – step in that area was
the creation of the SAT-Ex web site [54], an online collection of results concerning
various SAT solvers on some classical benchmarks. Among all the advantages of this
kind of publication, SAT-Ex allows to check every solver output, generate dynamically
synthesis and add constantly new solvers and benchmarks.

More and more researchers would like to see how their solver compares with
other solvers on the current benchmark set. This is not really a problem because
only a few CPU days are needed to update SAT-Ex database with a new solver:
usually, the new solver will outperform old ones for some series of benchmarks.
A problem arises with the introduction of new benchmarks: the benchmarks have
to be tested on each solver, and they are likely to give them a hard time. Since
all the results available on SAT-Ex were obtained on the same computer (the only
way to provide a fair comparison based on the CPU time) it will take ages before
seeing results on new benchmarks. To solve that problem, there are several solu-
tions:

– working with a cluster of computers instead of a single one. Laurent Simon is cur-
rently working that out, preparing a new (and updated) release of SAT-Ex;

– using SAT-Ex system as a convenient way to take a picture of some SAT solvers
efficiency on a given set of benchmarks.

This last point is one of our major technical choices: using SAT-Ex architecture for
the competition, providing a SAT-Ex style online publication. In order to enlight some
of the other choices we made during the competition, let us first recall some SAT state-
ments. Currently, approaches to solve SAT can be divided into two categories: complete
and incomplete ones. A complete solver can prove satisfiability as well as unsatisfia-
bility of a boolean formula. On the contrary, an incomplete solver can only prove that
a formula is satisfiable, usually by providing a model of the formula (a certificate of
satisfiability).

Most complete solvers descend from the backtrack search version of the initial
resolution-based Davis and Putnam algorithm [14,15], often referred to as DPLL algo-
rithm. It can be viewed as an enumeration of all the truth assignments of a formula, hence
if no model is found, the formula is unsatisfiable. Last decade has resulted in many im-

Simon et al. / The SAT2002 Competition 309

provements of that algorithm in various aspects both in theory (exponential worst-case
upper bounds; the most recent are [13,24]) and in practice (heuristics, especially for
k-SAT formulas: [16,17,20,39], data structures [66] and local processing). Forward lo-
cal processing is used to reduce the search space in collaboration with heuristics (unit
propagation lookahead [37], binary clause reasoning [62], equivalence reasoning [38],
etc.). Backward local processing tries to correct mistakes made by the heuristics: learn-
ing, intelligent backtracking, backjumping, etc. [5,42,65]. Also randomization is used to
correct wrong heuristics choices: random ties breaking and rapid restart strategies have
been shown successful for solving some structured instances (planning [22], Bounded
Model Checking (BMC) [4]).

Another use of randomization is the design of incomplete solvers, where ran-
domness is inherent. There was an increased interest in their experimental study af-
ter the papers on greedy algorithms and later WalkSAT [51,52]. Encouraging average-
case time complexity results are known for this type of algorithms (see, e.g., [33]).
In theory, incomplete solvers could perform (much) better than complete ones just
because they belong to a wider computational model. Indeed, there are benchmarks
(especially coming from various random generators) on which incomplete solvers
perform much better. Worst-case time bounds are also better for incomplete algo-
rithms [50].

A revolution? Furthermore, a completely new approach to solve SAT appeared last
year, resulting from the existence of huge SAT instances encoding some specific prob-
lems, such as planning [18,31,32] or more recently Bounded Model Checking [1,6,63].
While most of the underlying techniques are not new (DPLL with intelligent back-
tracking, learning and a rapid restart strategy), one of the main idea was to focus on
a carefully engineered solver: when dealing with a huge instance, choosing the right
algorithm or data structure is as important as choosing the right heuristics to reduce
the search space. Chaff [43,67] was designed from the begining to handle large formu-
las (more than 100000 variables) from a very specific area (mostly Bounded Model
Checking) using “lazy” data structures. Since there is no heuristics shown to be ef-
ficient on EDA instances, Chaff also integrated a new form of learning, taking ad-
vantage of the overall lazy data structures used: Chaff makes mistakes, but learns
quickly! Chaff outperformed existing SAT solvers on Bounded Model Checking in-
stances, and a large set of “structured” (as opposed to random) instances [54]. It
looked interesting to establish a new overall picture of SAT kingdom after that “revo-
lution”.

Such a competition allows to obtain both new solvers and new benchmarks. It was
proved to stimulate the community (more than just by providing awards to it). Many
breakthroughs in the last years were due to empirical evaluation of algorithms, leading
to a better knowledge of algorithms behaviors and of benchmarks hardness. This knowl-
edge allow to propose (and test) new answers. Such a competition can thus be viewed
as one of the fundamental part of the research around the topic.

310 Simon et al. / The SAT2002 Competition

2. Rules and submissions

In order to ensure fairness, all the rules concerning the competition were available
a few months before the competition on the web,2 after public discussions on a SATLive!
forum.

The solver and benchmark submission processes were running in parallel. The sub-
mitters did not know who else submitted solvers or benchmarks, and what was submit-
ted. All submissions were received and processed by Laurent Simon who kept them in
secret from everybody including the two other organizers. After that, he alone (+ system
administrators) was running the competition computers. That allowed Edward A. Hirsch
to participate in the competition despite of being among the organizers.

2.1. The rules

The general idea was to award the most “generic” solver, i.e. the one that is able
to solve the widest range of problems. However, it looked like a nonsense to compare
a solver tailored for 3-SAT random instances and one tailored for Electronic Design
Automation (EDA) instances, and the same remark applies for complete and incom-
plete solvers. So we divided the space of SAT experiments into 6 categories: industrial,
handmade, random benchmarks for either complete (which could solve both satisfiable
and unsatisfiable benchmarks) or all solvers (in the latter case, only satisfiable and “un-
known” benchmarks were used, and only satisfiable ones were counted). Submitters
were asked to stamp their benchmarks with the correct category.

To rank the solvers in each category, we decided to use the notion of series: a series
of benchmarks is a set of closely related benchmarks (for instance, pigeon-hole series
consists of hole-2, hole-3, etc. instances). We considered that a series was solved if
and only if at least one of the instances of that series was solved. Thus the idea was to
award a solver solving a maximum number of series in a given category. To break ties,
we decided to count the total number of instances solved. We planned to use CPU time
as a last resort but we did not have to use it (note that, besides its effects with the CPU
cut-off limit, pure CPU time performances do not play a crucial role in the results: two
solvers have the same performance if they solve a benchmark, whatever the exact CPU
time it takes). Benchmarks were grouped in series by us, authors were only allowed to
submit families of benchmarks (a series was one or more families of benchmarks).

Furthermore, if there was a scaling factor between the instances of the series
(hole-2 � hole-3 � hole-4, etc.) then we did not launch a solver on the
biggest instances if it failed to solve any smaller. The initial idea of this “heuristic”
(well-founded in practice on the pigeon hole example) was to save CPU time (allowing
to discard quickly any weak solver). Later, it happened that this choice had an impor-
tant impact on results and was not well-founded in general (we will discuss this later
in the paper). The scaling information of families of benchmarks was only given by
benchmarks author.

2 http://www.satlive.org/SATCompetition/cfs.html.

Simon et al. / The SAT2002 Competition 311

2.1.1. Input and output formats
We asked submitters to send benchmarks in DIMACS file format.3 One of the ideas

underlying this format is that benchmarks are in CNF and are easy to read (for instance,
variables are already indexed by integers). Of course, generators of benchmarks were
allowed, assuming that authors gave clues for the interesting parameters to use with.

The output format (printed by solvers) was detailed in our call for solvers.4 Briefly,
the idea was to allow any solver to print any “comment” line (any information judged as
“interesting” by authors) and some special lines for automated interpretation purposes.
Information lines are important if one wants to understand results and to be able to
interpret the huge amount of data collected during the competition. The output format
allows to print the answer (SAT, UNSAT or unknown), and requests a certificate if SAT
was claimed. If no answer was (syntactically) found in the output (for instances if the
solver crashed or was timed out), then unknown was assumed.

2.1.2. Checking results and outputs: What makes a solver buggy
Let us notice a tricky consideration about buggy solvers. If SAT was claimed on

a satisfiable instance, but the certificate was not correct, then unknown (and not buggy)
was assumed as an answer. Each SAT result is thus certified, and we did not consider
as buggy a solver that gave a wrong certificate (this can be due for instance to a CPUs
exceed while printing the certificate or to a data structure problem if the certificate is
displayed on a single line). As a matter of fact, we only considered as “buggy” all
solvers that answered incorrectly, UNSAT on a SAT instance (previously known SAT or
proved by any other solver during the competition). In addition, solvers are by essence
incomplete, because of memory and CPU limitation. Thus, if a solver crashed during
the competition (which can be due or not to bugs), we did not consider it as buggy. We
only considered that its answer was “unknown”.

Each time a buggy solver was found, it was tagged hors-concours and discarded
from the awards (results were still available “unofficially”).

2.1.3. Competition steps
From a practical point of view, the competition ran in several steps, going from

March to May 2002. The initial step was exclusively for authors: a machine was opened
over the web to allow them to compile/test their sources code in “realistic environment”.
After that, the competition began:

– compliance testing:

• solvers: each of them was compiled and tested on a few benchmarks to check that
the solvers conformed input/output requirements of SAT-Ex framework. During
that step, some bugs (in the usual sense) were detected and reported to authors.
But note that it was not the aim of that step. Some fixed version were accepted.

3 This was more precisely a restriction of this format, as described in our call for benchmarks
(http://www.satlive.org/SATCompetition/cfb.html).

4 http://www.satlive.org/SATCompetition/cfs.html.

312 Simon et al. / The SAT2002 Competition

• benchmarks: at the same time, new submitted benchmarks were shuffled (literal re-
naming, clauses reordering). Comment line were also removed. Some benchmarks
were discarded because of incorrect syntactical format.

– first round: all solvers ran on all “correct” benchmarks during 40 minutes (see sec-
tion 2.4 for the computer description). We first ran all the solvers on industrial bench-
marks, then handmade benchmarks and finally randomly generated ones (this last
ones were run for 20 minutes only, on faster machines).
In this step, the launching heuristic was applied, and, according to it, each complete
solver was launched on each applicable benchmark one time. Randomized solvers
(incomplete or not) were launched 3 times on each applicable benchmarks, on indus-
trial and hand-made benchmarks only. To take these 3 executions into account, the
median CPU time was taken and the instance was solved if at least one execution
solved it (that means that a randomized solver can solve a particular instance and be
charged of the maximum CPU time, if only one of the three launches has succeeded).

• second round: the top five solvers ran on a part of the remaining unsolved instances
during 6 hours. If a solver returned an incorrect result (typically, UNSAT instead of
SAT) in the first round, then it was not qualified for this stage (even “unofficially”).

2.2. Benchmark submission

The following benchmarks were submitted to Industrial category:

bart, homer from Fadi Aloul. Represent FPGA Switch-Box problems, all instances
should imply a lot of symmetries, as it is described in [19]. Bart instances are all
satisfiable, Homer instances are unsatisfiable.

cmpadd from Armin Biere. These benchmarks encode the problem of comparing the
output of a carry ripple adder with the output of a fast propagate and generate adder.
They are all unsatisfiable.

dinphil from Armin Biere. These benchmarks are generated from bounded model
checking from the well-known dining philosophers example. The instances have the
generic name ‘dp i t k cnf’, where ‘i’ is the number of philosophers, ‘k’ is
the model checking bound and ‘t’ is ‘u’ for unsatisfiable or ‘s’ for satisfiable. The
model for ‘i’ philosophers may reach a bug not faster than in ‘i’ steps.

cache, comb, f2clk, fifo8, ip, w08, w10 from Emmanuel Dellacherie (TNI-Valiosys,
http://www.tni-valiosys.com/, France). All these problems represent
18 industrial model-checking examples and 3 combinational equivalence examples.

bmc1 from Eugene Goldberg. Bounded Model Checking (BMC) examples (76 CNFs,
30% of them are unsatisfiable) encoding formal verification of the open-source Sun
PicoJava II (TM) microprocessor. These CNFs were generated by Ken Mcmillan
(Cadence Berkeley Labs). The complete description of the benchmarks is given at
http://www-cad.eecs.berkeley.edu/∼kenmcmil/satbench.html.

bmc2 from Eugene Goldberg, suggested by Ken Mcmillan (Cadence Berkeley Labs).
This small set of 6 BMC instances encodes testing whether a sequential N-bit counter

Simon et al. / The SAT2002 Competition 313

(file cntN.cnf) can reach a final state from an initial state in 2N−1 cycles. In the
initial state all the bits of the counter are set to 0 and, in the final state, all the bits of
the counter are set to 1. All CNFs are satisfiable.

fpga_routing from Eugene Goldberg and Gi-Joon Nam (32 CNFs submitted by
E. Goldberg and 6 by G.-J. Nam separately, but all instances were generated by
G.-J. Nam). These Boolean SAT problems are constructed by reducing FPGA (Field
Programmable Gate Array) detailed routing problems into Boolean SAT. More infor-
mation on transforming FPGA routing problems into SAT, are available at http://
andante.eecs.umich.edu/sdr/index.html.

rand_net from Eugene Goldberg. This is a set of miter CNFs (all unsatisfiable) pro-
duced from randomly generated circuits. To produce a miter, a random circuit is
generated first. This circuit is specified by the number of primary input variables
(N), the number of levels in the circuit (M) and the “length” (K) of wires connecting
gates of the circuit (K=1 means that the output of a gate may be connected only to
the input of a gate of the next level). A circuit consists of AND and OR gates and
does not contain inverters. So any circuit implements a monotone function (by adding
inverters to a randomly generated circuit one can make it very redundant). Circuits
are “rectangular”, i.e. the number of primary inputs, the number of gates of mth level,
and the number of primary outputs are all equal to N. Now, to check if a circuit is
equivalent to itself, a miter is formed. This class of benchmarks allow one to vary the
“topology” of the circuit by changing the “length” of wires. Each instance is named
rand_netN_M_K.miter.cnf where N, M and K are the values of parameters
described above.

mediator from Steven Prestwich. The encoded problem (described in [47]) is to con-
struct a query plan to supply attributes in a mediator system (e.g., an online book-
store). These problems combine set covering with plan feasibility and involve chains
of reasoning that should make them hard for pure local search. Symmetry break-
ing constraints were not added, in order to make the problems harder for systematic
backtrack search. A file medN.cnf contains a problem with shortest known plan
length N.

IBM from Emmanuel Zarpas (IBM). Bounded Model Checking for real hardware for-
mal verification. Benchmarks are partitioned by difficulty in {Easy, Medium, Hard}
by the submitter.

The following benchmarks were submitted to Handmade category:

lisa from Fadi Aloul. Those instances represent integer factorization problems. They
are all satisfiable (see [19]). Note that other factorization problems (given as genera-
tors) were submitted (described below).

matrix, polynomial from Chu-Min Li (with Bernard Jurkowiak and Paul W. Purdom).
Those instances encode respectively the multiplication of two n × n matrices using
m products, and the multiplication of two polynomials of degree-bound n using m

products. Both problems should involve a lot of symmetries (see [8]).

314 Simon et al. / The SAT2002 Competition

urquhart from Chu-Min Li (with Sebastien Cantarell and Bernard Jurkowiak) [38] and
independently from Laurent Simon [10]. All instances are unsatisfiable and proved
very hard for all DLL and DP approaches (hard for all resolution-based procedures,
in general [57]). Chu-Min Li benchmarks are 3-SAT encoding of Urquhart problems
and Laurent Simon are non-reduced encoding (clauses can be long).

hanoi from Eugene Goldberg (but generated by Henry Kautz). These instances repre-
sent the classical problem of the Towers of Hanoi, hand-encoded axioms around 1993
(similar to the ones used in [29], but larger instances available).

graphcolorK from Dan Pehoushek. Random regular graph coloring problems. Above
some number of vertices, most of them should be colorable.

ezfact from Dan Pehoushek. SAT encoding of factorization circuits.
glassy-sat-sel from Federico Ricci-Tersenghi. Selected instances (by the submitter) of

medium hardness from the glassy-sat generator (see below).
gridmnbench from Allen Van Gelder. Encode (negated) propositional theorem about a

(non realistic) fault-tolerant circuit family.
checkerinterchange from Allen Van Gelder (with Fumiaki Okushi). Planning problem

to solve checker interchange problem within deadline.
ropebench from Allen Van Gelder. A linear family of graph coloring problems (se-

quence of unsatisfiable formulas in 3-CNF). The formula length is linear in the num-
ber of variables (namely, 36n).

qgbench from Hantao Zhang. Small instances of quasigroups with constraints 0–7.
sha from Lintao Zhang and Sharad Malik. CNF encoding of secure hashing problems.
xor-chains (among them, the smallest unsolved unsatisfiable instance with 106 vari-

ables, 282 clauses and 844 literals), from Lintao Zhang and Sharad Malik. This en-
codes verification problems of 2 xor chains.

satex-challenges from Laurent Simon. Selection of (heterogenous) unsolved instances
from SAT-Ex [54].

pyhala from Tuomo Pyhàlà. Submitted as a generator. Depending on arguments, it
can generate a SAT encoding of factoring of primes (unsat instances) or products
of two primes (sat instances). The benchmarks encode multiplication circuits, with
predefined output. Two circuits are available (braun or adder-tree multipliers).

The benchmarks of Random category were submitted as generators (except for
plainoldcnf and twentyvars):

3sat from the organizers. This generator produces uniform 3-CNF formulas. Checks
are performed to prevent duplicate or opposite literals in clauses. In addition, no
duplicate clause are created.

glassy-sat from Federico Ricci-Tersenghi (with W. Barthel, A.K. Hartmann, M. Leone,
M. Weigt, and R. Zecchina). Generator of hard and solvable 3-SAT instances, cor-
responding to a glassy model in statistical physics. A description is available as a
preprint at http://xxx.lanl.gov/abs/cond-mat/0111153.

okrandgen from Oliver Kullman [34,36], k-CNF uniform random generator, based on
encryption functions to ensure strong and reliable random formulae. Detailed descrip-

Simon et al. / The SAT2002 Competition 315

tion and sources available at http://cs-svr1.swan.ac.uk/∼csoliver/
OKgenerator.html.

hgen2 from Edward A. Hirsch (available from http://logic.pdmi.ras.ru/∼
hirsch/benchmarks/hgen2.html). An instance generated by this genera-
tor (3-CNF, 500 variables, 1750 clauses, 5250 literals, seed 1 216 665 065) was the
smallest satisfiable benchmark that remained unsolved during the competition. De-
scription: First a satisfying assignment is chosen; then clauses (3.5n of them for n

variables) are generated one by one. A literal cannot be put into a clause if

1. There is a less frequent literal.

2. The corresponding variable already appears in the current clause.

3. A variable dependent on it (i.e., occurred together in another clause) already ap-
pears in the current clause.

4. A variable dependent on a dependent variable already appears in the current clause.

5. The opposite literal is not satisfying and occurs not more frequently (except for
the case that choosing a satisfying literal is our last chance to satisfy this clause).

If the generation process fails (no literal can be chosen), it is restarted from the begin-
ning.

hgen1 from Edward A. Hirsch. Similar to hgen2 except for condition 5.
hgen3 from Edward A. Hirsch. Similar to hgen1, but formulas are not required to be

satisfiable.
hgen4 from Edward A. Hirsch. Similar to hgen2, but formulas are in 4-CNF, with 9n

clauses. Also condition 4 is not applied.
hgen5 from Edward A. Hirsch. Similar to hgen2, but formulas are a mix of 3-CNF

(1.775n clauses) and 4-CNF (5.325n clauses).
g3 from Mitsuo Motoki. Generates positive instances at random. These instances have

only one solution with high probability. Benchmarks were discarded because of a bug
in the generator.

plainoldcnf from Dan Pehoushek. Selection of regular random 5-CNF.
twentyvars from Dan Pehoushek. Small instances (in terms of their number of vari-

ables) of k-CNF, with k ∈ {6, 7, 8}.
2.3. Solver submission

We wanted the competition to be as fair and open as possible. So we did not want
to restrict people to a given language (such as C or C++): the only condition was that
the solver can run on a standard Linux/Unix box. The solver sources had to be provided,
with a suitable makefile. Additional libraries were statically linked to the code. All but
one solvers were in C/C++, one was in Java.

limmat Armin Biere. Complete deterministic solver. This is a zchaff-like SAT solver
(implemented in C) with an early detection of conflicts in the BCP queue; a con-
stant time lookup of the ‘other’ watched literal; an optimized ordering of decision

316 Simon et al. / The SAT2002 Competition

variables and a robust code through sophisticated test framework. More informations
and sources are available at http://www.inf.ethz.ch/personal/biere/
projects/limmat/.

saturn by Steven Prestwich [48]. Incomplete randomized solver.
2clseq by Fahiem Bacchus. Complete deterministic solver. DPLL with binary clause

and equivalence reasoning plus intelligent backtracking and learning [2,3]. Available
in source (C++) at http://www.cs.toronto.edu/∼fbacchus/2clseq.
html.

marchI, marchIse, marchII, marchIIse by Marijn Heule, Hans van Maaren, Mark
Dufour, Joris van Zwieten. Complete deterministic solver. Those solvers were de-
signed by postgraduate students for a course given by Hans van Maaren. The heuris-
tics used in those solvers can be found in [64]. Note that some of them (marchIse-hc,
marchII-hc, marchIIse-hc) were received after the deadline so we decided to run them
hors-concours.

blindsat by Anatoly Plotnikov and Stas Busygin. Complete deterministic solver. A re-
port and the solver source (C++) are available at http://www.vinnica.ua/∼
aplot/current.html.

ga by Anton Eremeev and Pavel Borisovsky. Incomplete randomized solver. A greedy
crossover genetic algorithm.

berkmin by Eugene Goldberg and Yakov Novikov [21]. Complete deterministic solver.

“Berkmin inherits such features of GRASP, SATO, and Chaff as clause recording,
fast BCP, restarts, and conflict clause “aging”. At the same time Berkmin intro-
duces a new decision making procedure and a new procedure for the management
of the database of conflict clauses. The key novelty of Berkmin is that this database
is organized as a chronologically sorted stack. Berkmin always tries to satisfy the
topmost unsatisfied clause of the stack. When removing clauses Berkmin tries to
get rid of the clauses that are at the bottom of the stack in the first place” [Eugene
Goldberg].

The version used for the competition was 62. Berkmin 56 binaries are available at
http://eigold.tripod.com/.

unitwalk by Edward A. Hirsch and Arist Kojevnikov [25]. Incomplete randomized
solver. UnitWalk is a combination of unit clause elimination (particularly, the idea
of Paturi, Pudlák and Zane’s randomized unit clause elimination algorithm [46]) and
local search. The solver participated in the competition extends this basic algorithm
with adding some of 2-resolvents using incBinSat [68], and mixes its random walks
with WalkSAT-like [51] walks. The version used for the competition was 0.98. Avail-
able in source (C) at http://logic.pdmi.ras.ru/∼arist/UnitWalk/.

jquest by Joao Marques-Silva and Inês Lynce. Complete deterministic solver. Jquest
is a SAT platform in Java containing various heuristics, data structures and search
strategies [40]. The solver was configured with lazy data structures (inspired by
both SATO and Chaff), non-chronological backtracking and clause recording (like
in Grasp), chaff-like heuristic, randomized backtracking [41] and rapid restarts strat-

Simon et al. / The SAT2002 Competition 317

egy. JQuest source code is available at http://sat.inesc.pt/sat/soft/
jquest/jquest-src.tgz.

lsat by Richard Ostrowski, Bertrand Mazure and Lakhdar Sais [45]. Complete deter-
ministic. LSAT detects some boolean functions (equivalence chains, and/or gates)
and uses them

– to simplify the original CNF,

– to detect independent variables.

Then a classical DPLL is launched on the simplified CNF, branching only on inde-
pendent variables.

usat05, usat10 by Bu Dongbo. Incomplete randomized solver. No description avail-
able.

sato by Hantao Zhang [65]. Complete deterministic solver.
simo by Armando Tacchella, Enrico Giunchiglia, Marco Maratea [12]. Complete de-

terministic (wrongly noted randomized in the competition). In Simo3.0 there are fea-
tures the most recent and effective in SAT like UIP-based learning, restart, 2-literals
watching. Simo3.0 is characterized by a new type of heuristic(called GMT). GMT
tries to combine Chaff-like and SATZ-like heuristics. The idea is to switch between
SATZ-like and Chaff-like heuristics by introducing measures of “probably success-
ful search” and “probably unsuccessful search”. The default is to use a Chaff-like
heuristic. When the measure of unsuccessful search exceeds a given threshold, SIMO
switches to a SATZ-like heuristic. SIMO resumes the Chaff-like heuristic once the
measure of successful search exceeds a given threshold. SIMO 2.0 is available in
source (C++) at http://www.mrg.dist.unige.it/∼sim/simo/.

OKsolver by Oliver Kullmann [35]. Complete deterministic solver.

“OKsolver has been designed to be a “clean solver” as possible, minimising the use
of “magical numbers”, and for 3-CNF indeed the algorithm is completely generic.
OKsolver is a DPLL-like algorithm, with reduction by failed literals (complete
and iterated at each node) and autarkies (found when searching for failed literals),
while the branching heuristic chooses a variable creating as many new clauses
as possible (exploiting full unit clause propagation for all variables), and the first
branch is chosen maximising an approximation of the probability, that a branching
formula is satisfiable” [Oliver Kullmann].

OKsolver 1.2 source code is available at http://cs-svr1.swan.ac.uk/
∼csoliver/.

dlmsat1, dlmsat2, dlmsat3 by Benjamin Wah and Alan Zhe Wu [53]. Incomplete
randomized solvers. Available in source at http://manip.crhc.uiuc.edu/
Wah/programs/SAT_DLM_2000.tar.gz.

modoc by Allen Van Gelder [44,58,61]. Complete deterministic solver. Binaries avail-
able at ftp://ftp.cse.ucsc.edu/pub/avg/Modoc/.

rb2cl by Allen Van Gelder [59,60,62]. Complete deterministic solver.

318 Simon et al. / The SAT2002 Competition

It applies reasoning in the form of certain resolution operations, and identification
of equivalent literals. Resolution produces growth in the size of the formula, but
within a global quadratic bound; most previous methods avoid operations that pro-
duce any growth, and generally do not identify equivalent literals. Computational
experience so far suggests that the method does substantially less “guessing” than
previously reported algorithms, while keeping a polynomial time bound on the
work done between guesses [Allen van Gelder].

zchaff by Lintao Zhang and Sharad Malik [43,67]. Complete deterministic solver. This
solver is a carefully engineered DPLL procedure with non-chronological backtrack-
ing, learning (clause recording), restarts, randomized branching heuristic and an in-
novative notion of “heuristic learning” (VSIDS). Zchaff source code is available at
http://www.ee.princeton.edu/∼chaff.

partsat by John Kolen. Complete deterministic solver. No description available.

2.4. Computers available

The competition was held on 2 clusters of Linux PCs, kindly provided by the Uni-
versity of Cincinnati, thanks to John Franco. The first cluster of 32 dual PIII-450 com-
puters with 1 GB of RAM was used to run most of the competition: compliance testing,
first stage for handmade and industrial benchmarks, second stage for all benchmarks.
The second cluster, consisting of 16 Athlon 1800+ machines, was used to run the first
stage on random instances. Only one processor was used, virtual (hard drive) memory
was disabled and each program was given 900 MB of memory.

3. The results

The results of the competition were released during the SAT2002 symposium. The
detailed results can be found on the competition web page http://www.satlive.
org/SATCompetition/2002/.

Some of the solvers were found buggy by the organizers during compliance testing,
returned to their authors, and corrected (some of them). However, this was not the aim
of this phase, and cannot be considered as a guarantee of any kind of testing. Only
wrong answers (or obvious crashes) were reported as bugs. We also noticed problems
with some solvers during the first round but we did not accept new version of the solvers.
Here are some of the things one must be aware of before reading the results.

But, first of all, we must begin with a word of caution: The following results should
be considered with care, because they correspond to the behavior of a particular version
of each solver (the one that was submitted) on the benchmarks accepted for the compe-
tition, on a particular computer under a particular operating system.5 The competition
results should increase our knowledge about solvers, but one inherent risk of such snap-

5 Linux-SMP 2.4.3, solvers binaries compiled by gcc 2.96.

Simon et al. / The SAT2002 Competition 319

shot is that results can be misinterpreted, and thus lead to wrong pictures of the state of
the art.

We discarded some of the solvers from the competition (ran hors concours) be-
cause they demonstrated unexpected behavior; mainly, claimed UNSAT for a satisfiable
instance. Most of the time, the problem showed up only on a few families of benchmarks.
Also some versions of the marchXYZ solvers were hors concours from the beginning,
because these versions were submitted substantially after the deadline (but before the
first stage of the competition). Hors concours solvers results are also displayed on the
competition web page. For instance, the lsat solver answered incorrectly on some
instance (there was actually a bug in the code), but the corrected version (as well as the
buggy version) solved easily all urquhart instances and the xor-chains bench-
marks, awarded during the competition (adding the detection of boolean functions pays
on small but hard hand-made formulas). But it was officially discarded because of its
bug.

Some specific problems occured with other solvers (not hors concours). In the
following two cases, the picture given by the competition results does not reflect the real
solvers performance:

Berkmin was composed of two engines, one for small/medium instances, and one for
large instances. The latter just crashed on Linux (the authors tested it under MS Win-
dows and Solaris only). That problem was not detected during the compliance test-
ing (for more details, see http://www.satlive.org/SATCompetition/
2002/berkmin.html). Note that other solvers also crashed sometimes, especially
during the second round where benchmarks were larger.

JQuest did not output a correct certificate when the instance had less variables than the
nbvar parameter provided in the “p cnf nbvar nbclause” line (because in
that case, it renames internally the variables ids). For that reason, JQuest is reported
not solving those instances.

The best way to view the detailed results of the competition is to take a look
at all the traces at http://www.ececs.uc.edu/sat2002/scripts/menu_
choix2.php3; the summaries of the results per competition stage per category fol-
low. The instances used for the competition are available on SATLIB.6

3.1. First stage

In tables 1–3, letfmost number is the number of solved series (a series is solved
if at least one of its instances is solved). Rightmost number (where breaking a tie is
necessary) denotes the total number of instances solved.

In each category, the top five solvers went to the second stage.

6 http://www.satlib.org/.

320 Simon et al. / The SAT2002 Competition

Table 1
First stage results on Industrial instances.

Complete solvers on
Industrial benchmarks

23 zchaff
22 limmat
18 berkmin
15 simo
14 2clseq

12 jquest
11 oksolver
10 rb2cl, march2[se], modoc
3 blindsat

All solvers on satisfiable
Industrial benchmarks

11 zchaff
10 limmat
8 berkmin
7 simo
6 unitwalk 57

6 2clseq 55
6 dlmsat2 54
6 dlmsat1 53
6 rb2cl 50
6 saturn 49
6 oksolver 47
6 march2 44
6 march2se 43
6 jquest 32
5 usat10/usat05, modoc, dlmsat3
3 blindsat
1 ga

3.2. Second stage

In this stage, Top 5 solvers were run on smallest remaining unsolved instances for
6 hours. For industrial benchmarks, only 31 instances remained unsolved. So, we used
all of them for complete solvers, and only satisfiable instances for all solvers. Thus,
in table 4, berkmin, oksolver, 2clseq, simo and zchaff were launched on all instances.
unitwalk was only launched on all instances that were not known to be unsatisfiable.
Over the 31 instances, only 15 were solved. One can notice that, surprisingly, berkmin
and 2clseq are able to solve comb/comb3 instance in less than 2000 s. This benchmark
was not solved during the first stage of the competition (recall that CPU cut-off was
2400 s on the same machines), due to the use of our launch-heuristic (comb1 and comb2
are still unsolved, and considered as easiest by the heuristic). Let us also notice how

Simon et al. / The SAT2002 Competition 321

Table 2
First stage results on Handmade instances.

Complete solvers on Handmade benchmarks

20 berkmin, oksolver
19 2clseq, limmat, zchaff

18 simo
17 march2se
16 jquest
15 rb2cl, march2
14 modoc
2 blindsat

All solvers on satisfiable Handmade benchmarks

11 berkmin, oksolver, unitwalk
10 zchaff 73
10 limmat 65

10 2clseq 63
9 dlmsat2, simo, usat05/10
8 dlmsat3, dlmsat1, jquest, march2se, saturn
7 march2, rb2cl
5 modoc
2 ga, blindsat

zchaff seems well-tuned for this category: it is able to solve instances with millions of
literals.

For handmade instances (table 5), only a few families remained (but several in-
stances per family) so we took the smallest 2 SAT+UNSAT instances in each family for
complete solvers, and 2 smallest SAT benchmarks in each family for all solvers (fami-
lies are urq/urq*bis, urq/urq, xor-chain/x1_*, xor-chain/x1.1_*, xor-chain/x2_*, matrix,
Lisa, satex-c/par32-*-c, satex-c/par32, pbu-4, pbs-4 and hanoi). One can notice that the
only incomplete solver used in this stage (i.e., uniwalk) was not able to solve any in-
stance during this stage. Let us just recall that most instances in this table are easy for
lsat (xor-chains, urq, par32), which was hors-concours.

The selection of random benchmarks was guided by the following considerations:
the smallest unsolved unsatisfiable instance had already been found in the handmade
category (the smallest unsolved random instance was larger than it). Concerning SAT
instances, all the SAT instances in the industrial and handmade categories were tested
for the second stage and the smallest unsolved one had 82 345 literals (handmade pbs4
instance). One feature of random category is that most instances are unknown. So,
to be sure to award the smallest SAT instance, we needed to keep the smallest in-
stances for the second stage, independently of their series. As a consequence, if all
the series were present in that second stage, the number of instances per series var-
ied.

322 Simon et al. / The SAT2002 Competition

Table 3
First stage results on randomly generated instances.

Complete solvers on randomly generated benchmarks

34 2clseq, oksolver
32 march2, march2se
31 rb2cl 616

31 simo 569
31 berkmin 541
30 zchaff
28 limmat, modoc
17 jquest

4 blindsat

All solvers on satisfiable randomly generated benchmarks

23 dlmsat1,dlmsat2,dlmsat3
22 unitwalk
21 oksolver 261

21 usat10 257
21 saturn 255
21 2clseq 228
20 march2[se], rb2cl, simo, usat05
19 berkmin
18 modoc, zchaff
16 limmat

9 jquest
5 ga
4 blindsat

Table 6 shows all the results for randomly generated instances, sorted by their
respective length. Note that all solved instances were previously known as SAT (by
forced-SAT generators).

We finally give as summary of results, in tables 7–9. The leftmost number denotes
the total number of instances solved during the second stage. Rightmost numbers (if
any) denote the 1st stage result (number of solved series and total number of instances
solved to break ties).

3.3. Benchmarks

We awarded the two smallest (one satisfiable and one unsatisfiable) instances that
remained unsolved during the competition. Of course, both instances participated in the
second stage, i.e., the top 5 solvers were run on them for 6 hours! Note that we did not
take into account here the instances that were submitted as “unknown”.

The smallest hard unsatisfiable instance xor-chain/x1_36 (106 variables, 844 lit-
eral occurrences) was submitted by Lintao Zhang and Sharad Malik.

Simon et al. / The SAT2002 Competition 323

Table 4
Industrial benchmarks used for the second stage. “N∗”, in the “SAT?” colmun, denotes a previously-
unknown benchmark claimed to be Unsat (recall that no proof were given, and solver have to be trusted on
this answer). All fpga-r/file are fpga-routing/k2fix_gr_file, 6pipe_o for 6pipe_6_ooo, and satex-c/cnf-r4-i

for satex-challenges/cnf-r4-b1-k1.i-comp.

Name Nb Var Nb Clauses Length (Max) SAT? Solved by

Homer/homer17 286 1 742 3 718 (12) N limmat (6957 s)
Homer/homer18 308 2 030 4 312 (12) N
Homer/homer19 330 2 340 4 950 (12) N
Homer/homer20 440 4 220 8 800 (12) N
dinphil/dp11u10 9 197 25 271 59 561 (12) N
dinphil/dp12u11 11 137 30 792 72 531 (13) N
comb/comb1 5 910 16 804 38 654 (29) –
comb/comb2 31 933 112 462 274 030 (14) –

comb/comb3 4 774 16 331 39 495 (14) N∗
{

berkmin (1025 s)
2clseq (1772 s)

f2clk/f2clk_40 27 568 80 439 186 255 (26) –
f2clk/f2clk_50 34 678 101 319 234 655 (26) –
fifo8/fifo8_300 194 762 530 713 1 200 865 (12) N∗ zchaff (5716 s)
fifo8/fifo8_400 259 762 707 913 1 601 865 (12) N∗ zchaff (16083 s)

ip/ip36 47 273 153 368 366 122 (21) N∗
{

limmat (20919 s)
zchaff (6982 s)

ip/ip38 49 967 162 142 387 080 (21) N∗
{

limmat (5640 s)
zchaff (13217 s)

ip/ip50 66 131 214 786 512 828 (21) –
w08/w08_14 120 367 425 316 1 038 230 (16) Y zchaff (16359 s)
w08/w08_15 132 555 469 519 1 146 761 (16) –
bmc2/cnt10 20 470 68 561 187 229 (4) Y
fpga-r/2pinvar_w8 3 771 270 136 1 620 816 (7) –
fpga-r/2pinvar_w9 5 028 307 674 2 438 766 (9) –
fpga-r/2pin_w8 9 882 295 998 1 727 100 (7) –
fpga-r/2pin_w9 13 176 345 426 2 606 340 (9) –
fpga-r/rcs_w8 10 056 271 393 550 328 (9) –

satex-c/cnf-r4-1 2 424 14 812 39 764 (25) Y

{
limmat (21339 s)
berkmin (13071 s)

satex-c/cnf-r4-2 2 424 14 812 39 764 (25) Y limmat (20454 s)
fvp-unsat/6pipe 15 800 394 739 1 157 225 (116) N zchaff (12714 s)
fvp-unsat/6pipe_o 17 064 545 612 1 608 428 (188) N zchaff (4398 s)
fvp-unsat/7pipe 23 910 751 118 2 211 468 (146) N
sha/sha1 61 377 255 417 769 041 (5) Y
sha/sha2 61 377 255 417 769 041 (5) Y

The smallest hard satisfiable instance hgen2-v500-s1216665065 (500 variables,
5250 literal occurrences) was generated by Edward A. Hirsch’s random instance gener-
ator hgen2.

Note that instances with fewer variables also remained unsolved, but the winner
was determined by the total number of literal occurrences in the formula (note that a

324 Simon et al. / The SAT2002 Competition

Table 5
Handmade benchmarks used for the second stage. pbu and pbs are pyhala-braun-unsat and pyhala-braun-
sat, respectively. Comp/Un. denotes which solvers were used: “C” means that we tried berkmin, oksolver,
2clseq, limmat and zchaff on the considered benchmark. “U” means that unitwalk was also launched (see
previous section for the Top 5 in Handmade category) and note that berkmin, oksolver, limmat and zchaff

where common in both Complete/All categories.

Name Nb Var Nb Clauses Length (Max) SAT? Comp/Un. Solved by

urq/urq3_25bis 99 264 792 (4) N C berkmin (2825 s)
xor-chain/x1_36 106 282 844 (4) N C
xor-chain/x1.1_40 118 314 940 (4) N C
xor-chain/x1_40 118 314 940 (4) N C zchaff (3165 s)
xor-chain/x2_40 118 314 940 (4) N C
xor-chain/x1.1_44 130 346 1 036 (4) N C
xor-chain/x2_44 130 346 1 036 (4) N C
urq/urq3_25 153 408 1 224 (4) N C
urq/urq4_25bis 192 512 1 536 (4) N C
urq/urqu4_25 288 768 2 304 (4) N C
matrix/Mat26 744 2 464 6 432 (4) N C zchaff (18604 s)
satex-c/par32-2-c 1 303 5 206 15 246 (4) Y C,U
satex-c/par32-1-c 1 315 5 254 15 390 (4) Y C,U
Lisa/lisa21_99_a 1 453 7 967 26 577 (23) Y C,U berkmin (20459 s)
satex-c/par32-2 3 176 10 253 27 405 (4) Y C,U
satex-c/par32-1 3 176 10 277 27 501 (4) Y C,U

pbu-4/p-b-u-35-4-03 7 383 24 320 62 950 (4) N C

berkmin (3693 s)
oksolver (3073 s)
2clseq (10821 s)
limmat (4718 s)
zchaff (2738 s)

pbs-4/p-b-s-40-4-03 9 638 31 795 82 345 (4) Y C,U
pbs-4/p-b-s-40-4-04 9 638 31 795 82 345 (4) Y C,U zchaff (3182 s)
pbu-4/p-b-u-40-4-01 9 638 31 795 82 345 (4) N C
hanoi/hanoi6 4 968 39 666 98 346 (10) Y C,U berkmin (2551 s)
matrix/Mat317 24 435 85 050 227 610 (4) – C,U

hard randomly generated formula in 4-CNF will have a much greater clauses/variables
ratio, not to say about the length of its clauses).

4. Other views of the competition

As we said, one of the risks of such competition is that it results can be misleading
(how strong are the results w.r.t. the performance of solvers in a real situation: embeded
component in a model checker or a planning system for instance?). As long as the
competition was running, we had to make decisions, each of them having a direct impact
on final results. We have collected a large amount of data, much more valuable than just
the name of the final winner. Here, we try to interpret these data from a different point
of view. Note that the following is based on the data collected during the first stage of
the competition.

Simon et al. / The SAT2002 Competition 325

Table 6
Random benchmarks used for the second stage. Clause max length is not reported (it is exactly 4 for all
benchmarks). Comp is “C” if 2clseq, oksolver, marchII, marchIIse and rb2cl were launched; and “U” if
dlmsat [1–3], unitwalk and oksolver were launched (see previous section for Top 5 solvers and random

instances).

Name Nb Var Nb Cl. Length SAT? Comp/Un. Solved by

hgen3-v300-s1766565160 300 1 050 3 150 – C
hgen3-v300-s1817652174 300 1 050 3 150 – C
hgen3-v300-s229883414 300 1 050 3 150 – C
hgen3-v350-s1711636364 350 1 225 3 675 – C
hgen3-v350-s524562458 350 1 225 3 675 – C
hgen2-v400-s161064952 400 1 400 4 200 Y C,U unitwalk (20199 s)
hgen3-v400-s344840348 400 1 400 4 200 – C
hgen3-v400-s553296708 400 1 400 4 200 – C
hgen2-v450-s41511877 450 1 575 4 725 Y C,U dlmsat3 (94 s)
hgen3-v450-s432353833 450 1 575 4 725 – C
unif-c1700-v400-s734590802 400 1 700 5 100 – C
okgen-c1700-v400-s2038016593 400 1 700 5 100 – C
hgen2-v500-s1216665065 500 1 750 5 250 Y C,U
hgen3-v500-s1349121860 500 1 750 5 250 – C
hgen3-v500-s1769527644 500 1 750 5 250 – C
hgen3-v500-s1803930514 500 1 750 5 250 – C
hgen3-v500-s1920280160 500 1 750 5 250 – C

glassybp-v399-s382874052 399 1 862 5 586 Y C,U

{ oksolver (13034 s)
marchII (7100 s)
marchIIse (7064 s)

glassybp-v399-s499089820 399 1 862 5 586 Y C,U
glassyb-v399-s500582891 399 1 862 5 586 Y C,U oksolver (13834 s)
glassyb-v399-s732524269 399 1 862 5 586 Y U oksolver (8558 s)
glassy-v450-s1188040332 450 2 100 6 300 Y U oksolver (15444 s)
glassy-v450-s1679149003 450 2 100 6 300 Y U oksolver (18766 s)
glassy-v450-s1878038564 450 2 100 6 300 Y U
glassy-v450-s2052978189 450 2 100 6 300 Y U
glassy-v450-s325799114 450 2 100 6 300 Y U
glassybp-v450-s1173211014 450 2 100 6 300 Y U
glassybp-v450-s1349090995 450 2 100 6 300 Y U
glassybp-v450-s1976869020 450 2 100 6 300 Y U
glassybp-v450-s2092286542 450 2 100 6 300 Y U
glassybp-v450-s40966008 450 2 100 6 300 Y U
glassyb-v450-s1529438294 450 2 100 6 300 Y U
glassyb-v450-s1709573704 450 2 100 6 300 Y U
glassyb-v450-s1729975696 450 2 100 6 300 Y U

4.1. SOTA view

Geoff Sutcliffe and Christian Suttner are running the CASC7 competition for many
years now, and provide in [55] some clues about what is a fair way to evaluate au-

7 CASC = “CADE ATP System Competition”, CADE = “Conference on Automated Deduction”, ATP =
“Automated Theorem Proving”.

326 Simon et al. / The SAT2002 Competition

Table 7
Second stage results on Industrial benchmarks (summary).

Complete solvers All solvers on satisfiable benchmarks

7 zchaff 2 limmat
5 limmat 1 zchaff [11]
2 berkmin 1 berkmin [8]
1 2clseq 0 simo [7]
0 simo 0 unitwalk [6]

Table 8
Second stage results on Handmade benchmarks (summary).

Complete solvers All solvers on satisfiable benchmarks

3 zchaff 2 berkmin [11]
2 berkmin 2 zchaff [10]
1 oksolver [20] 1 oksolver [11]
1 limmat [19 140] 1 limmat [10]
1 2clseq [19 126] 0 unitwalk

Table 9
Second stage results on randomly generated benchmarks (summary).

Complete solvers All solvers on satisfiable benchmarks

4 oksolver 5 oksolver
3 march2, march2se 1 dlmsat3 [23]
0 2clseq [34] 1 unitwalk [22]
0 rb2cl [31] 0 dlmsat1, dlmsat2

tomated theorem provers. One of the key ideas of their work is the notion of State
Of The Art (SOTA) solver. It is based on a subsumption relationship between the set
of instances solved by the competing solvers: “a solver A is better than a solver B
iff solver A solves a strict subset of the instances solved by solver B”. The underly-
ing idea is that any solver being the only one to solve an instance is meaningful. The
subsumption relationship provides a partial order between the competing solvers, and
a virtual solver representing advances of the whole community, the SOTA solver. This
solver can solve every problem solved by any of the competing solvers (so would be
the unique maximal element for the subsumption relationship). There is a little chance
that the SOTA solver is a real solver, and thus the notion of SOTA contributors is in-
troduced by the authors. They correspond to the maximal elements of the subsumption
relationship. The SOTA solver is equivalent to the set of SOTA contributors running in
parallel.

Tables 10–12 show the problems solved by only one solver during the first stage
of the competition, for the three categories of benchmarks (hors-concours solvers are
discarded). We can now find SOTA contributors from each table:

Simon et al. / The SAT2002 Competition 327

Table 10
Uniquely solved Industrial benchmarks during the first stage.

Solver Bench (shortname) CPU (s)

2clseq bmc2/cnt09.cnf 198.00
2clseq rand_net/50-60-10 96.33
2clseq rand_net/60-40-10 16.03
2clseq rand_net/60-60-10 180.45
2clseq rand_net/60-60-5 172.22
2clseq rand_net/70-40-10 35.02
2clseq rand_net/70-40-5 52.15
2clseq rand_net/70-60-10 188.11
2clseq rand_net/70-60-5 611.71
2clseq satex-c/c6288-s 0.73
2clseq satex-c/c6288 0.77
berkmin dinphil/dp10u09 321.67
berkmin fpga-r/rcs_w9 2 054.50
berkmin satex-c/cnf-r4-b2-k1.1 1 402.24
limmat Homer/homer16 2 315.05
limmat dinphil/dp12s12 5.21
modoc Homer/homer15 843.87
zchaff fifo8/fifo8_200 1 417.68
zchaff w10/w10_70.cnf 661.74
zchaff satex-/9vliw_bp_mc 1 274.94
zchaff fvp-u.2.0/5pipe 186.58
zchaff fvp-u.2.0/5pipe_3_oo 533.11
zchaff fvp-u.2.0/5pipe_4_ooo 1 667.30
zchaff fvp-u.2.0/5pipe_5_ooo 814.92
zchaff fvp-u.2.0/7pipe_bug 452.14

Table 10 (Industrial) SOTA contributors for industrial instances are 2clseq, berkmin,
limmat, modoc and zchaff. Note that 2clseq worked very well on rand_net bench-
marks, same thing for zchaff and pipe instances.

Table 11 (Handmade) SOTA contributors for hand-made benchmarks are berkmin,
limmat, rb2cl and zchaff.

Table 12 (Random) SOTA contributors for randomly generated benchmarks are 2clseq,
dlmsat1, dlmsat3, oksolver, unitwalk, usat05, usat10.

In order to obtain a total order among the solvers, one must first classify bench-
marks themselves. For this, the notion of SOTA contributors can be used [55]: bench-
marks solved by all SOTA contributors are said easy, those solved by at least one SOTA
contributor (but not all) are called difficult.8 Note that the benchmarks not solved by any
solver are not considered here.

Now, it is easy to rank the solvers accordingly to the number of difficult instances
they can solve. Tables 13 and 14 provide a summary for SAT2002 competition, for
respectively complete solvers and satisfiable benchmarks.

8 A degree of difficulty can be computed using the ratio number of failing SOTA contributors over the total
number of SOTA contributors.

328 Simon et al. / The SAT2002 Competition

Table 11
Uniquely solved Handmade benchmarks during the first stage.

Solver Benchmark CPU (s)

berkmin hanoi6_on 295.04
berkmin rope_1000 2 058.62
berkmin x1.1_32 57.13
berkmin x1_32 82.18
limmat pyhala-braun-sat-40-4-01 1 295.77
rb2cl lisa21_1_a 1 955.62
zchaff lisa21_2_a 287.74
zchaff pyhala-braun-sat-40-4-02 971.59
zchaff pyhala-braun-unsat-35-4-01 1 474.30
zchaff pyhala-braun-unsat-35-4-02 1 653.80
zchaff Urquhart-s3-b5 1 507.11
zchaff x1.1_36 786.60
zchaff x2_36 1 828.81

What can we conclude? First of all, we awarded SOTA contributors. Looking at
the SOTA ranking per category, berkmin, zchaff and oksolver would be awarded. Lim-
mat, our fourth awarded, is most of the time third after zchaff and berkmin in industrial
and hand-made categories. So the result of the SAT2002 competition looks reasonable.
Berkmin certainly deserves a special attention from the community, since despite the
bug that made it crashed on more than 100 benchmarks, it is ranked first in the industrial
category using the SOTA system. This little impact of crashes can certainly be due to
the fact that only the second SAT-engine of Berkmin crashed, which means that most in-
stances on which Berkmin crashed are hard for all solvers anyway (this engine is called
for hardest instances only).

Furthermore, we now have difficult and unsolved instances for the next competi-
tion. The degree of difficulty provided by the SOTA system can be used to tune solvers
for the next competition: first try to solve instances of medium difficulty, then try the
really hard ones. All that information will be included in the instances archive.

4.2. Graphical analysis of SOTA CPU performances

The SOTA ranking also allows to focus on subsets of solvers/benchmarks. We can
for instance represent the above results in a graphical way, mixing this time complete
and incomplete solvers. Doing this, we can take CPU time results into account to give
a better picture of SOTA contributors performance. Figures 1–3 show for all respective
SOTA contributors how much CPU time is needed to solve an increasing number of
instances.

Such representation is important for the validation of the CPU time slice parameter.
For this competition, it was arbitrarily chosen9 and one can ask whether this value can
play a crucial role in the results.

9 Based only on the number of benchmarks/solvers and machines.

Simon et al. / The SAT2002 Competition 329

Table 12
Uniquely solved randomly generated benchmarks during the first stage.

Solver Benchmark CPU (s)

2clseq 5col100_15_1 1 148.08
2clseq 5col100_15_4 1 097.78
2clseq 5col100_15_5 1 018.13
2clseq 5col100_15_6 1 353.14
2clseq 5col100_15_7 748.21
2clseq 5col100_15_8 1 160.66
2clseq 5col100_15_9 821.42
dlmsat1 hgen5-v300-s1895562135 391.94
dlmsat1 hgen5-v300-s528975468 512.81
dlmsat1 hgen2-v300-s1807441418 651.35
dlmsat1 hgen3-v450-s646636548 141.16
dlmsat1 hgen4-v200-s2074278220 16.79
dlmsat1 hgen4-v200-s812807056 1 158.20
dlmsat3 hgen3-v450-s356974048 821.42
dlmsat3 4col280_9_2 1 766.60
dlmsat3 4col280_9_4 6.60
dlmsat3 4col280_9_6 1 792.59
dlmsat3 4col280_9_7 108.43
oksolver glassy-v399-s1993893641 1 162.07
oksolver glassy-v399-s524425695 814.44
oksolver glassybp-v399-s1499943388 273.31
oksolver glassybp-v399-s944837607 615.27
oksolver glassyb-v399-s1267848873 1 001.71
oksolver 5cnf_3900_3900_160 243.24
oksolver 5cnf_3900_3900_170 911.32
oksolver 5cnf_3900_3900_180 1 790.46
oksolver 5cnf_3900_3900_190 1 778.96
oksolver 5cnf_4300_4300_090 1 390.55
oksolver 5cnf_4300_4300_100 1 311.92
unitwalk hgen2-v650-s2139597266 536.09
unitwalk hgen2-v700-s543738649 32.38
unitwalk hgen2-v700-s548148704 0.62
unitwalk hgen3-v500-s1754870155 157.03
usat05 okgen-c2550-v600-s552691850 5.57
usat10 hgen3-v450-s1400022686 0.39

The first observation from all the figures is that, in general, the order of the respec-
tive curves does not change after a certain CPU time (there is mostly no crossing of lines
after 100 s). There are however two exceptions. First, on figure 1, for 2clseq and zchaff:
2clseq did not solve any other problem after 1000 s, which allowed zchaff to solve more
problems in the given CPU time. 2clseq would probably have been considered in a better
way if the cut-off had been fixed to less than 1000 s. Secondly, on Handmade bench-
marks, the Berkmin curve crosses the one of zchaff just after 2000 s (this can be due to
the internal bug of Berkmin). One can ask the question of what happened to the results if

330 Simon et al. / The SAT2002 Competition

Table 13
Number of difficult SAT+UNSAT benchmarks solved by each solver during the first stage.

Industrial Handmade Randomly generated

Solver # solved Solver # solved Solver # solved

berkmin 121 berkmin 68 oksolver 548
zchaff 104 zchaff 68 marchII 543
2clseq 93 limmat 47 marchIIse 543
limmat 87 simo 43 2clseq 369
simo 57 2clseq 34 rb2cl 338
rb2cl 36 oksolver 33 zchaff 305
oksolver 35 jquest 16 simo 298
jquest 31 marchIIse 13 berkmin 263
marchIIse 29 rb2cl 10 limmat 221
modoc 26 marchII 9 modoc 219
blindsat 20 modoc 7 jquest 122
marchII 16 blindsat 0 blindsat 3

Table 14
Number of difficult satisfiable benchmarks solved by each solver during the first stage.

Industrial Handmade Randomly generated

Solver # solved Solver # solved Solver # solved

berkmin 68 zchaff 35 oksolver 548
zchaff 64 berkmin 33 marchII 543
limmat 54 limmat 29 marchIIse 543
2clseq 46 simo 27 2clseq 369
unitwalk 41 oksolver 23 rb2cl 338
simo 39 2clseq 21 zchaff 305
dlmsat2 37 unitwalk 11 simo 298
dlmsat1 36 dlmsat1 11 berkmin 263
rb2cl 35 marchIIse 10 dlmsat1 255
dlmsat3 35 dlmsat3 10 dlmsat2 234
saturn 34 saturn 9 dlmsat3 233
usat10 33 usat05 9 unitwalk 227
usat05 31 usat10 9 limmat 221
oksolver 30 dlmsat2 9 modoc 219
marchIIse 26 marchII 7 saturn 208
jquest 24 rb2cl 6 usat10 206
blindsat 20 modoc 5 usat05 205
modoc 20 jquest 4 jquest 122
ga 18 blindsat 0 blindsat 3
marchII 13 ga 0 ga 3

the CPU time slice was less than 2000 s. At last, as expected, one can notice on figure 3
that uncomplete solvers obtain the best performances on SAT instances (the rightmost
curve is oksolver on SAT+UNSAT benchmarks). Obviously – oksolver is complete –
the picture is quite different as soon as we take into account all (SAT+UNSAT) answers

Simon et al. / The SAT2002 Competition 331

Figure 1. Number of instances solved vs. CPU time for SOTA contributors: Industrial benchmarks.

Figure 2. Number of instances solved vs. CPU time for SOTA contributors: Handmade benchmarks.

332 Simon et al. / The SAT2002 Competition

Figure 3. Number of instances solved vs. CPU time for SOTA contributors: Randomly generated bench-
marks (note that the CPU time slice was smaller for these benchmarks). For each complete solvers (2clseq
and oksolver), we plot two curves: (1) a curve for SAT results only (in order to compare their performances

to uncomplete solvers) and (2) for all benchmarks (SAT+UNSAT).

for oksolver. It may be at last interesting to notice that all uncomplete solvers obtain
more or less the same curve (observe how close are the curves for dlmsat1, dlmsat2,
unitwalk, usat05 and usat10).

Two conclusions may be drawn. First, the growth of the curves on industrial bench-
marks clearly shows that 2500 s is enough. Moreover, we can guess that a CPU time of
1500 s would have been sufficient. On hand-made instances, the picture is not so clear.
May be this is due to the scalability of generated instances, which sometimes allows
a smooth growth of the needed CPU time (a smooth growth may also be observed on
random instances).

4.3. Cumulative CPU analysis of results

There is a lot of different ways to study the data collected during the first stage.
Here, we give a ranking similar to the one of SAT-Ex. Each solver is given a maxi-
mal amount of time to solve an instance (recall that the launching heuristic also applies
here). If it cannot solve the instance, then we only penalize it with the maximal CPU
time. The ranking is given by the sum of all CPU time. However, this kind of ranking
implies to penalize solvers that cannot solve a given instance, instead of just counting
successes, we also have to count failures. So, a problem occurs with incomplete solvers
on Unknown instances (whose can be Unsat). Thus, we reconsider how to compare

Simon et al. / The SAT2002 Competition 333

Table 15
Cumulative CPU time on Industrial benchmarks. Beware, we partition here complete vs. in-

complete solvers.

Complete Incomplete

Solver CPU (hours) # solved (245) Solver CPU (hours) # solved (137)

berkmin 54 175 unitwalk 54 57
zchaff 66 163 dlmsat1 57 53
2clseq 70 146 dlmsat2 57 54
limmat 79 144 saturn 60 49
simo 97 105 dlmsat3 63 51
rb2cl 114 81 usat05 64 44
oksolver 115 78 usat10 64 46
modoc 117 79 ga 79 20
marchIIse 118 72
jquest 122 71
marchII 128 59
blindsat 146 25

Table 16
Cumulative CPU time on Handmade benchmarks. Beware, we partition here complete vs. in-

complete solvers.

Complete Incomplete

Solver CPU (hours) # solved (276) Solver CPU (hours) # solved (156)

berkmin 83 160 dlmsat1 71 56
zchaff 88 160 dlmsat3 71 54
limmat 99 139 dlmsat2 76 52
simo 105 134 saturn 80 44
2clseq 107 125 unitwalk 84 45
oksolver 109 122 usat05 84 33
rb2cl 120 102 usat10 85 31
jquest 126 98 ga 96 15
marchII 129 91
marchIIse 129 98
modoc 130 89
blindsat 172 18

solvers, and we rather partition solvers in Complete/Uncomplete solvers rather than by
solver/benchmarks (e.g., Complete on ALL, All on SAT).

Results are given in tables 15 (Industrial), 16 (Handmade) and 17 (Random). For
randomized solvers, the median CPU time needed for a given benchmark is taken into
account. As already noted using the SOTA system, berkmin is in head on industrial
benchmarks, the whole picture tends to reinforce our awards, in all categories.

334 Simon et al. / The SAT2002 Competition

Table 17
Cumulative CPU time on Random benchmarks. Beware, we partition here complete vs. incom-

plete solvers.

Complete Incomplete

Solver CPU (hours) # solved (1502) Solver CPU (hours) # solved (1502)

oksolver 248 834 dlmsat1 325 541
marchII 253 829 unitwalk 332 513
marchIIse 254 829 dlmsat2 332 517
2clseq 310 655 dlmsat3 335 519
rb2cl 316 616 usat10 339 492
zchaff 326 573 usat05 340 491
berkmin 333 541 saturn 345 493
simo 337 569 ga 462 116
limmat 361 461
modoc 370 448
jquest 422 252
blindsat 464 115

5. Difficulties and future competitions

Despite a good maturity level in solvers, pure-SAT competitions are not so frequent
(the previous one took place 7 years ago). In some aspect, this competition has surpassed
all previous competitions (in the number of benchmarks and solvers, the availability of
results on the web), but some choices were hard to take. Some of them were good, some
were not. Because another competition will be held next year, it is important to take
stock of this one, in order to think about the next one.

5.1. Some lessons

Let us begin our first assessments with our own difficulties during the competition.
Despite of our efforts to make everything automatic, life is always more complex than
predictions. In particular, we got unexpected bugs (or should we say that we did not ex-
pect too many expected unexpected bugs?), in all the stages of the competition, including
bugs in benchmarks:

– problems with input/output format (solvers),

– duplicate literals or opposite literals in clauses (benchmarks),

– internal timeout hardcoded in solvers,

– wrong declaration of benchmarks (SAT vs. UNSAT) and solvers (randomized vs.
deterministic);

Even worse, the side effects of bugs were often important (e.g., if an instance is buggy,
it should be dropped, which affects the whole procedure; the running scripts had to be
modified to ignore buggy results). Thus, some experiments had to be repeated which had
lead to smaller amount of available CPU time than we expected. For all these reasons,

Simon et al. / The SAT2002 Competition 335

human action was frequently needed to understand whether a bug was due to solver, due
to benchmark, or due to running scripts, and, of course, how to fix it appropriately.

Despite we tried to set up as strict rules as possible, still human action was needed
in the choice of benchmarks (how to separate them into series/categories; how many
benchmarks to take for the second stage?; how many benchmarks to generate from each
random generator?). The human action was especially hard to implement since one of
the organizers submitted his own solver and benchmarks, another one submitted bench-
marks (though not qualified for the awards), and the remaining one planned to submit
a solver (but did not). Therefore, Laurent Simon had to make a lot of decisions almost
alone while was extremely busy with actually running the competition.

Also a wrong decision has been made concerning the selection of benchmarks from
series. We expected that larger benchmarks of the same series should be harder, and
therefore decided not to run a solver on larger benchmarks if it failed on smaller bench-
marks of the same series. However, our conjecture was false (especially for industrial
problems, where BMC SAT-checking of depth n can be harder than depth n + 1, and for
some of the random generators, where the conjecture can be true for the median CPU
time over a lot of formulas, but false for just 4 formulas), and it produced completely
wrong decisions concerning mixed SAT/UNSAT series (clearly, any incomplete solver
fails all (smaller) unsatisfiable benchmarks and thus is not run on (larger) satisfiable
ones). We had to fix the effect of this either by dropping SAT/UNSAT series from the
consideration for incomplete solvers, or by running the experiments on all benchmarks
(possibly wasting CPU time).

Two other difficulties we encountered were (briefly):

– SAT-Ex scripts had to be tuned during the competition, e.g., to present results ac-
cording to the competition rules, and to process solvers and benchmarks differently
in different categories;

– the lack of live action (the system was not automated enough to put everything on
the web without the help of the organizers who were extremely busy; also the results
would be quite misleading if putted on the web immediately because once a bug had
been eventually found, it changed the picture of the competition).

However, despite of the problems emphasized above, we treat the whole competi-
tion as a success in many aspects.

5.2. About the next competition

Because any of the SOTA contributors is important for SAT research, we are think-
ing about delivering a SOTA contributor certificate for the next competition. But, to
adopt the SOTA system for awarding solvers, we need a better classification of available
SAT benchmarks as in TPTP. Let us emphasize some differences between the CASC
competition (where SOTA ranking is the rule) and the SAT2002 competition. Differ-
ences are essentially due to the different level of maturity of these competitions:

336 Simon et al. / The SAT2002 Competition

1. In the CASC competition, most instances are part of the TPTP library, so they are
well known and classified. This is not the case for the SAT competition since we
received a lot of completely new benchmarks for running the competition.

2. The ranking proposed above is made on Specialist Problem Classes, whose granu-
larity is finer than our simple (Industrial, Handmade, Randomly generated) partition
(for instance, the pigeon-hole problem may occur as an industrial problem . . . How
can we classify such a benchmark?).

3. We used a heuristic to save CPU time, so not all systems were run on all instances.

Many other improvements are possible for the next competition. Still it seems
like human action is unavoidable. To make it more fair and less time-consuming for
the organizers, we propose to appoint a board of judges similarly to CASC. When the
competition rules do not give an explicit answer, it is up to the judges to decide what to
do. They can also play a role for instance in the partition of benchmarks.

For the future competitions we propose the following:

– Allow more time for submitters to experiment with their solvers (prior to submission)
on one of the actual computers of the competition.

– Make clear which version of a solver is used. Sometimes, under the same name, quite
different algorithms or techniques are used (e.g., Berkmin 56 that is a single engine
solver whose results were published in [21] and Berkmin 62 that was the 2 engines
solver submitted to the competition). This would prevent a spectator from a suspicion
when an instance is solved by a particular solver as reported in a previously published
paper but not during the competition.

– Make competition more automatic both technically (better scripts) and semantically
(more strict rules with no exceptions). This could allow to make the results online
as soon as they are available, for instance to allow solver submitters to check the
behavior of their solver during the first stage.

– After benchmarks are selected, every solver is run on every benchmark even if it
seems a waste of CPU time (however, solver submitters could be allowed to submit
their solvers only for some categories of benchmarks).

– Run the winners of the previous competition anyway (or the SOTA contributors). If
an old winner wins a category, no award is given for this category. The same principle
applies for the 2nd stage benchmarks.

– Limit the number of submissions per author groups: if one technique performs well
in a category, it is likely that all its variants perform equally well (see, e.g., dlm-
sat1/2/3 in 1st stage random SAT category). Then the second stage is biased. One
solution is to limit the number of variants and to qualify only the best one for the final
stage.

– Provide right now the scripts/programs used to check input/output/instances format
to delegate that step to the submitters. (Then a fully automatic machinery can reject
submissions not respecting the formats.)

Simon et al. / The SAT2002 Competition 337

Some other points, more or less prospective, are possible:

– Classify new benchmarks accordingly to the performances of previous year SOTA
contributors. For instance, “easy” benchmarks (according to SOTA) could thus be
discarded, freeing CPU time.

– Discuss the notion of series and how to score solvers on series. For instance, if
many benchmarks in a series are easy, then most of solvers would have solved the
series. This can be resolved for instance by giving the solvers points according to
their performance for each particular series (and not 1 vs. 0 as it was in SAT 2002
competition). For example, the series winner could get 5 points, the next solver could
get 4, etc.

– More prospective, one can use only a timeout per series instead of a timeout per
instance (maybe as a new category). A solver able to solve quickly the first instances
of a series will have more time to solve the remaining instances. Beware here: the
order in which the instances are provided to the solver matters, and it is not easy to
determine the best order.

– At last, we could use a larger cluster of machines, as the ones that they use for
VLSI/CAD applications and simulations, where very large empirical evaluations are
often performed. For instance, the new version of bookshelf.exe [9] should al-
low to use hundreds of identical computers with a simple-web interface (automatic
report, . . .). However, modifications are needed to merge the SAT-Ex architecture
into this cluster interface.

The final point is to run the next competition only before the SAT Symposium
(only publishing results and giving awards at the meeting) . . .

6. Conclusions

The competition revealed many expected results as well as a few surprising ones.
First of all, incomplete solvers appeared to be much weaker than complete ones. Note
that no incomplete solver won any category of satisfiable formulas while these categories
were intended rather for them than for complete solvers (note that in theory randomized
one-sided error algorithms accept potentially more languages than deterministic ones).
In Industrial and Handmade categories only one incomplete solver (UnitWalk) was in the
top five. This can be due to the need of specific tuning for local search algorithms (noise,
length of walk, etc.) and, probably, to the lack of new ideas for the use of randomization
(except for local search). If automatic tuning (for similar benchmarks) of incomplete
solvers is possible, how to incorporate it in the competition?

On Industrial and Handmade benchmarks, zchaff and algorithms close to it (Berk-
min and limmat) were dominating. On the other hand, the situation on randomly gener-
ated instances was quite different. These algorithms were not even in the top five! Also,
randomly generated satisfiable instances were the only category where incomplete algo-
rithms were competitive (four of them: dlmsat1(2,3) and UnitWalk, were in the top five).

338 Simon et al. / The SAT2002 Competition

Concerning the unsatisfiable instances, the top five list is also looking quite differently
to other categories.

In fact, only two solvers appeared in all the top five lists for the three cat-
egories Industrial/Handmade/Random: a non-zchaff-like complete solver 2clseq for
SAT+UNSAT and an incomplete solver UnitWalk for SAT. However, they did not win
anything. The (unsurprising) conclusion is that specialized solvers indeed perform better
on the classes of benchmarks they are specialized for. Also it confirms that our choice
of categories was right. But maybe an award should be given to algorithms performing
uniformly on all kinds of instances (while some part of the community was against an
“overall winner” for the present competition).

Another conclusion of the competition is that almost all benchmarks that remained
unsolved within 40 minutes on P-III-450 (or a close number of CPU cycles on a faster
machine) have not been solved in 6 hours either. This can be partially due to the fact that
few people experimented with the behaviour of their solvers for that long. Note that the
greatest number of second stage benchmarks was solved in Industrial–SAT+UNSAT
category, the one where probably the greatest number of experiments is made by the
solvers authors. Also many solvers crashed on huge formulas (probably due to the lack
of memory).

It is no surprise that the smallest unsolved unsatisfiable benchmark (xor-chain in-
stance by L. Zhang) belongs to Handmade category. In fact, many of unsatisfiable bench-
marks in this category are also very small. However, it seems like all these benchmarks
are hard only for resolution (and hence DP- and DLL-like algorithms) where exponential
lower bounds are known for decades (see, e.g., [56,57]). Therefore, if non-resolution-
based complete algorithms come, these benchmarks will be probably easy for them. For
example, LSAT (fixed version) and eqsatz (not participated) which employ equality rea-
soning can easily solve parity32 instances that remained unsolved in the competition.

On the other hand, the smallest unsolved (provably) satisfiable benchmark (hgen2
instance by Edward A. Hirsch) is made using a random generator. Other small hard
satisfiable benchmarks also belong to Random category. These benchmarks are much
larger than hard unsatisfiable ones (5250 vs. 844 literal occurrences). This is partially
due to the fact that no exponential lower bounds are known for DPLL-like algorithms
for satisfiable formulas (in fact, the only such lower bounds we know for other SAT
algorithms are of [23]). In contrast, no random generator was submitted for (provably)
unsatisfiable instances. (Of course, some of the handmade unsatisfiable instances can be
generated using random structures behind them; however, this does not give a language
not known to be in coRP (and even in ZPP).) Note that the existence of an efficient
generator of a coNP-complete language would imply NP = coNP (random bits form a
short certificate of membership).

Probably, at the end, the main thing about competition is that it attracted completely
new solvers (e.g., 2clseq and limmat) and a lot of new benchmarks.

Some challenging questions, drawn from the conclusion, are:

1. Construct a random generator for a “hard” language of provably unsatisfiable formu-
las.

Simon et al. / The SAT2002 Competition 339

2. Design an incomplete algorithm that would outperform complete algorithms (on sat-
isfiable formulas), or explain why it is not possible.

3. Construct satisfiable formulas giving exponential lower bounds for the worst-case
running time of DPLL-like algorithms.10

4. For the competition: how to request/represent a certificate for “unsatisfiable” answers
without violating the rights of non-DPLL-like algorithms?

Acknowledgements

We would like to thank John Franco, Michal Kouril, and the University of Cincin-
nati for providing us the computers and local maintenance. We also thank Hans van
Maaren and the computational logic group of the Technical University of Delft for pro-
viding the awards. Of course, not to forget the many benchmarks and solvers authors.
We are also very grateful to all SAT2002 conference participants for their feedback.

References

[1] P.A. Abdulla, P. Bjesse and N. Eén, Symbolic reachability analysis based on SAT-solvers, in: Proceed-
ings of the 6th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’2000) (2000).

[2] F. Bacchus, Enhancing Davis Putnam with extended binary clause reasoning, in: Proceedings of
National Conference on Artificial Intelligence (AAAI-2002) (2002).

[3] F. Bacchus, Exploring the computational tradeoff of more reasoning and less searching, in: [49, pp. 7–
16] (2002).

[4] L. Baptista and J.P. Marques-Silva, Using randomization and learning to solve hard real-world in-
stances of satisfiability, in: Proceedings of the 6th International Conference on Principles and Prac-
tice of Constraint Programming (CP) (2000).

[5] R.J.J. Bayardo and R.C. Schrag, Using CSP look-back techniques to solve real-world SAT instances,
in: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI’97) (AMS,
Providence, RI, 1997) pp. 203–208.

[6] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita and Y. Zhu, Symbolic model checking using SAT proce-
dures instead of BDDs, in: Proceedings of Design Automation Conference (DAC’99) (1999).

[7] M. Buro and H.K. Büning, Report on a SAT competition, Bulletin of the European Association for
Theoretical Computer Science 49 (1993) 143–151.

[8] C.-M. Li, B. Jurkowiak and P.W. Purdom Jr, Integrating symmetry breaking into a DLL procedure,
in: [49, pp. 149–155] (2002).

[9] A.E. Caldwell, A.B. Kahng and I.L. Markov, Toward CAD-IP reuse: The MARCO GSRC bookshelf
of fundamental CAD algorithms, IEEE Design and Test (May 2002) 72–81.

[10] P. Chatalic and L. Simon, Multi-resolution on compressed sets of clauses, in: Twelth International
Conference on Tools with Artificial Intelligence (ICTAI’00) (2000) pp. 2–10.

[11] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third IEEE Sym-
posium on the Foundations of Computer Science (1971) pp. 151–158.

10 The question has been partially resolved in M. Alekhnovich, E.A. Hirsch, D. Itsykson, Exponential lower
bounds for the running time of DPLL algorithms on satisfiable formulas, in: Proceedings of ICALP 2004.
Springer, to appear.

340 Simon et al. / The SAT2002 Competition

[12] F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella and M. Vardi, Benefits of bounded model
checking at an industrial setting, in: Proc. of CAV (2001).

[13] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan and
U. Schöning, Deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search, Theoretical
Computer Science 189(1) (2002) 69–83.

[14] M. Davis, G. Logemann and D. Loveland, A machine program for theorem proving, Communications
of the ACM 5(7) (1962) 394–397.

[15] M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the ACM 7(3)
(1960) 201–215.

[16] O. Dubois, P. André, Y. Boufkhad and J. Carlier, SAT versus UNSAT, in: [29, pp. 415–436] (1996).
[17] O. Dubois and G. Dequen, A backbone-search heuristic for efficient solving of hard 3-SAT for-

mulae, in: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI’01), Seattle, WA (2001).

[18] M.D. Ernst, T.D. Millstein and D.S. Weld, Automatic SAT-compilation of planning problems, in: [28,
pp. 1169–1176] (1997).

[19] F. Aloul, A. Ramani, I. Markov and K. Sakallah, Solving difficult SAT instances in the presence of
symmetry, in: Design Automation Conference (DAC), New Orleans, LO (2002) pp. 731–736.

[20] J.W. Freeman, Improvements to propositional satisfiability search algorithms, Ph.D. thesis, Departe-
ment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA (1995).

[21] E. Goldberg and Y. Novikov, BerkMin: A fast and robust SAT-solver, in: Design, Automation, and
Test in Europe (DATE ’02) (2002) pp. 142–149.

[22] C.P. Gomes, B. Selman and H. Kautz, Boosting combinatorial search through randomization, in:
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI’98), Madison, WI
(1998) pp. 431–437.

[23] E.A. Hirsch, SAT local search algorithms: Worst-case study, Journal of Automated Reasoning 24(1/2)
(2000) 127–143. Also reprinted in Highlights of Satisfiability Research in the Year 2000, Frontiers in
Artificial Intelligence and Applications, Vol. 63 (IOS Press, 2000).

[24] E.A. Hirsch, New worst-case upper bounds for SAT, Journal of Automated Reasoning 24(4) (2000)
397–420. Also reprinted in Highlights of Satisfiability Research in the Year 2000, Frontiers in Artifi-
cial Intelligence and Applications, Vol. 63 (IOS Press, 2000).

[25] E.A. Hirsch and A. Kojevnikov, UnitWalk: A new SAT solver that uses local search guided by unit
clause elimination, Annals of Mathematics and Artificial Intelligence 43 (2005) 91–111.

[26] J.N. Hooker, Needed: An empirical science of algorithms, Operations Research 42(2) (1994) 201–
212.

[27] J.N. Hooker, Testing heuristics: We have it all wrong, Journal of Heuristics (1996) 32–42.
[28] IJCAI97, Proceedings of the 15th International Joint Conference on Artificial Intelligence

(IJCAI’97), Nagoya, Japan (1997).
[29] D. Johnson and M. Trick (eds.), Second DIMACS Implementation Challenge: Cliques, Coloring and

Satisfiability, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 26
(American Mathematical Society, 1996).

[30] H. Kautz and B. Selman (eds.), Proceedings of the Workshop on Theory and Applications of Satisfi-
ability Testing (SAT2001), LICS 2001 Workshop on Theory and Applications of Satisfiability Testing
(SAT 2001) (Elsevier Science, 2001).

[31] H.A. Kautz and B. Selman, Planning as satisfiability, in: Proceedings of the 10th European Confer-
ence on Artificial Intelligence (ECAI’92) (1992) pp. 359–363.

[32] H.A. Kautz and B. Selman, Pushing the envelope: Planning, propositional logic, and stochastic search,
in: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI’96) (1996) pp. 1194–
1201.

[33] E. Koutsoupias and C.H. Papadimitriou, On the greedy algorithm for satisfiability, Information
Processing Letters 43(1) (1992) 53–55.

Simon et al. / The SAT2002 Competition 341

[34] O. Kullmann, First report on an adaptive density based branching rule for DLL-like SAT solvers,
using a database for mixed random conjunctive normal forms created using the Advanced Encryption
Standard (AES), Technical Report CSR 19-2002, University of Wales Swansea, Computer Science
Report Series (2002). (Extended version of [36].)

[35] O. Kullmann, Investigating the behaviour of a SAT solver on random formulas, Annals of Mathemat-
ics and Artificial Intelligence (2002).

[36] O. Kullmann, Towards an adaptive density based branching rule for SAT solvers, using a database
for mixed random conjunctive normal forms built upon the Advanced Encryption Standard (AES), in:
[49] (2002).

[37] C.-M. Li, A constrained based approach to narrow search trees for satisfiability, Information Process-
ing Letters 71 (1999) 75–80.

[38] C.-M. Li, Integrating equivalency reasoning into Davis–Putnam procedure, in: Proceedings of the
17th National Conference in Artificial Intelligence (AAAI’00), Austin, TX (2000) pp. 291–296.

[39] C.-M. Li and Anbulagan, Heuristics based on unit propagation for satisfiability problems, in: [28,
pp. 366–371] (1997).

[40] I. Lynce and J.P. Marques Silva, Efficient data structures for backtrack search SAT solvers, in: [49]
(2002).

[41] I. Lynce, L. Baptista and J.P. Marques Silva, Stochastic systematic search algorithms for satisfiability,
in: [30] (2001).

[42] J.P. Marques-Silva and K.A. Sakallah, GRASP – A new search algorithm for satisfiability, in: Pro-
ceedings of IEEE/ACM International Conference on Computer-Aided Design (1996) pp. 220–227.

[43] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering an efficient
SAT solver, in: Proceedings of the 38th Design Automation Conference (DAC’01) (2001) pp. 530–
535.

[44] F. Okushi and A. Van Gelder, Persistent and quasi-persistent lemmas in propositional model elimina-
tion, in: (Electronic) Proc. 6th Int’l Symposium on Artificial Intelligence and Mathematics (2000).;
Annals of Mathematics and Artificial Intelligence 40(3–4) (2004) 373–402.

[45] R. Ostrowski, E. Grégoire, B. Mazure and L. Sais, Recovering and exploiting structural knowledge
from CNF formulas, in: Proc. of the Eighth International Conference on Principles and Practice of
Constraint Programming (CP’2002), Ithaca, NY (2002).

[46] R. Paturi, P. Pudlák and F. Zane, Satisfiability coding lemma, in: Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, FOCS’97 (1997) pp. 566–574.

[47] S. Prestwich, A SAT approach to query optimization in mediator systems, in: [49, pp. 252–259]
(2002).

[48] S.D. Prestwich, Randomised backtracking for linear pseudo-Boolean constraint problems, in: Pro-
ceedings of Fourth International Workshop on Integration of AI and OR techniques in Constraint
Programming for Combinatorial Optimisation Problems (2002).

[49] SAT2002, Fifth International Symposium on the Theory and Applications of Satisfiability Testing,
Cincinnati, OH (2002).

[50] R. Schuler, U. Schöning, O. Watanabe and T. Hofmeister, A probabilistic 3-SAT algorithm further
improved, in: Proceedings of 19th International Symposium on Theoretical Aspects of Computer
Science, STACS 2002 (2002).

[51] B. Selman, H.A. Kautz and B. Cohen, Noise strategies for improving local search, in: Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI’94), Seattle (1994) pp. 337–343.

[52] B. Selman, H. Levesque and D. Mitchell, A new method for solving hard satisfiability problems, in:
Proceedings of the 10th National Conference on Artificial Intelligence (AAAI’92) (1992) pp. 440–446.

[53] Y. Shang and B.W. Wah, A discrete Lagrangian-based global-search method for solving satisfiability
problems, Journal of Global Optimization 12(1) (1998) 61–99.

[54] L. Simon and P. Chatalic, SATEx: a Web-based framework for SAT experimentation, in: [30] (2001);
http://www.lri.fr/∼simon/satex.

342 Simon et al. / The SAT2002 Competition

[55] G. Sutcliff and C. Suttner, Evaluating general purpose automated theorem proving systems, Artificial
Intelligence 131 (2001) 39–54.

[56] G.S. Tseitin, On the complexity of derivation in the propositional calculus, in: Structures in Con-
structive Mathematics and Mathematical Logic, Part II, ed. A.O. Slisenko (Consultants Bureau, New
York, 1970) pp. 115–125. Translated from Russian.

[57] A. Urquhart, Hard examples for resolution, Journal of the Association for Computing Machinery
34(1) (1987) 209–219.

[58] A. Van Gelder, Autarky pruning in propositional model elimination reduces failure redundancy, Jour-
nal of Automated Reasoning 23(2) (1999) 137–193.

[59] A. Van Gelder, Extracting (easily) checkable proofs from a satisfiability solver that employs both pre-
order and postorder resolution, in: Seventh Int’l Symposium on AI and Mathematics, Fort Lauderdale,
FL (2002).

[60] A. Van Gelder, Generalizations of watched literals for backtracking search, in: Seventh Int’l Sympo-
sium on AI and Mathematics, Fort Lauderdale, FL (2002).

[61] A. Van Gelder and F. Okushi, Lemma and Cut strategies for propositional model elimination, Annals
of Mathematics and Artificial Intelligence 26(1–4) (1999) 113–132.

[62] A. Van Gelder and Y.K. Tsuji, Satisfiability testing with more reasoning and less guessing, in: [29,
pp. 559–586] (1996).

[63] M. Velev and R. Bryant, Effective use of Boolean satisfiability procedures in the formal verification of
superscalar and VLIW microprocessors, in: Proceedings of the 38th Design Automation Conference
(DAC ’01) (2001) pp. 226–231.

[64] J. Warners and H. van Maaren, Solving satisfiability problems using elliptic approximations: Effective
branching rules, Discrete Applied Mathematics 107 (2000) 241–259.

[65] H. Zhang, SATO: An efficient propositional prover, in: Proceedings of the International Confer-
ence on Automated Deduction (CADE’97), Lecture Notes in Artificial Intelligence, Vol. 1249 (1997)
pp. 272–275.

[66] H. Zhang and M.E. Stickel, An efficient algorithm for unit propagation, in: Proceedings of the Fourth
International Symposium on Artificial Intelligence and Mathematics (AI-MATH’96), Fort Lauderdale,
FL (1996).

[67] L. Zhang, C.F. Madigan, M.W. Moskewicz and S. Malik, Efficient conflict driven learning in a
Boolean satisfiability solver, in: International Conference on Computer-Aided Design (ICCAD’01)
(2001) pp. 279–285.

[68] L. Zheng and P.J. Stuckey, Improving SAT using 2SAT, in: Proceedings of the Twenty-Fifth Aus-
tralasian Computer Science Conference (ACSC2002), ed. M.J. Oudshoorn, Melbourne, Australia
(2002).

