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Abstract
This paper presents a sub-1-V CMOS bandgap reference circuit with ultra-low power consumption, utilizing only 9 MOS 
transistors. The proposed circuit achieves nano-watt power consumption by biasing all transistors in the sub-threshold region. 
A three-branched configuration is utilized to create the bandgap voltage reference in the circuit. The proposed architecture 
generates CTAT and PTAT voltages without using any op-amp and BJT. In this circuit, the cascode structure are used to 
improve the line sensitivity (LS). In the proposed bandgap circuit, self-biased configuration is used without using an external 
bias circuitry. The first branch generates PTAT current and the second and third branches generate PTAT and CTAT voltages. 
The bandgap circuit is designed and simulated using Cadence in TSMC 0.18 μm CMOS technology. The results of post-layout 
simulation indicate that the bandgap voltage reference circuit generates a voltage reference of 644 mV, with a temperature 
coefficient (TC) of 78.5 ppm/°C within the temperature range of − 25 to 85 °C. The proposed circuit operates with a power 
supply of 0.9 V and consumes only 8.2 nW. Furthermore, the circuit exhibits a line sensitivity of 0.31%/V for power supply 
voltages ranging from 0.9 to 1.8 V. The Power Supply Ripple Rejection (PSRR) of the proposed circuit is about − 40 dB 
within the frequency range of 1–100 Hz.
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1 Introduction

In today’s modern period, due to competition in market and 
industry, all devices and machines should be developed in 
terms of accuracy, power consumption, minimum required 
voltage, dimensions, and manufacturing costs, etc. In other 
words, various components of a device must be optimized 
to compete in industry and market. One crucial element that 
significantly affects the overall performance of devices is 
a bandgap references (BGR). Voltage references are fre-
quently used in analog and electronic circuits. These circuits 
is usually used in bias circuitries, low-dropout regulators, 
DRAMs, flash memories, and data converters. The perfor-
mance and accuracy of decoders and encoders, as well as the 
accuracy of conversion of a signal processing block in data 
converter systems, depends on the accuracy of the voltage 

references. Important parameters in design of voltage refer-
ences are temperature coefficient (TC), line sensitivity (LS), 
power supply ripple rejection (PSRR), and power consump-
tion [1–3].

Voltage references should be designed such that they stay 
unchanged towards the changes of process, supply voltage 
and temperature. In order to design a bandgap circuit that is 
independent of temperature, a complementary-to-absolute 
temperature (CTAT) voltage and a proportional to absolute 
temperature (PTAT) voltage should be generated and mixed 
to compensate the temperature changes [1]. A CTAT volt-
age can be generated through the base-emitter voltage of 
a diode-connected BJT or gate–source voltage of a MOS 
transistor. A PTAT voltage can be generated through the 
difference of the gate-source voltages of two transistors or 
difference of base-emitter voltages of two BJTs with differ-
ent collector currents. For generating a voltage reference, 
the sum of PTAT and CTAT voltages with appropriate coef-
ficients is mandatory [1–5].

There is a demand for small bandgap voltage reference 
that are insensitive to process, voltage, and temperature 
(PVT) variations while minimizing power dissipation. The 
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reduction of power consumption and circuit dimensions not 
only necessitates the adoption of new technologies but also 
affects certain parameters, such as the maximum voltage 
headroom. As dimensions decrease, the threshold voltage 
also decreases. The amount of voltage reference should be 
decreased proportionally with the technology, to prevent a 
decrease in circuit lifespan, minimize power consumption, 
and lower chip temperature. Hence, sub-1-V and low-power 
supply voltage reference is an inevitable part of modern sys-
tems [5].

It is worth noting that while silicon references are 
commonly used in industries to reduce final costs by using 
standard CMOS technologies, Hedayati and et al. with the 
help of materials like silicon carbide (SiC), introduce a 
voltage reference that operates for a wide temperature range 
of 25–500 °C. However, this circuit suffers from high power 
consumption and such structure is not applicable in standard 
CMOS technologies [6]. In Ref. [7], a fractional bandgap is 
presented. Using emitter–base voltage of a BJT as a CTAT 
voltage and applying a current with positive TC to a resistor 
in a feedback loop, a near zero TC voltage is generated. Due 
to the use of op-amp and BJTs, the power consumption of 
the fractional bandgap is in micro watt range [7]. Banba and 
et al. [8] proposed a sub-1-V bandgap voltage reference by 
converting sum of two PTAT and CTAT currents to a voltage 
in a feedback loop. Due to use of op-amp and diodes, it also 
suffers from high power consumption and supply voltage. 
In [9] a switched-capacitor bandgap circuit is introduced 
in which no resistor is used. Using capacitors instead of 
resistors in [9] results in a high precision voltage reference. 
While an offset cancellation technique is used [9], but the 
power consumption of the op-amp is still a challenging issue.

Wang and et al. [10] used a MOS transistor in the weak 
inversion to reduce the power consumption and voltage 
headroom of the circuit. Also, the offset of op-amp has been 
suppressed in [10]. In [11] a cross-coupled structure for 
BGR is presented. But this circuit is suitable for the voltage 
references higher than one volt, which is not compatible with 
the recent technology nodes [11]. The line sensitivity has 
been significantly improved by using a self-adjusting circuit 
in [12]. All the transistors used in [12] operate in the sub-
threshold region, which has reduced the power consumption 
of the circuit. However, this circuit has a high TC [12]. A 
self-biased nano-watt voltage and current reference has 
been presented in [13] by using a single resistor with zero 
temperature coefficient (TC). The main challenge in [13] 
is realizing such a zero TC resistor. A trimless voltage 
reference has been offered in [14] with using stack of LVT 
MOS transistor. This approach leads to improvement of 
occupied area and power consumption as well. Some other 
BGRs are also presented in literature [15, 16] that suffer 
from high power consumption.

In [17] a bandgap circuit is presented in which a modified 
beta multiplier bias circuit is used to reduce the mismatch 
caused by the contribution of the PMOS transistors op-amp 
and threshold mismatch between two NMOS transistors. A 
sub-1V voltage-mode reference circuit that sums the PTAT 
voltage with a scaled version of the CTAT voltage has been 
presented in [18]. The advantages of the proposed circuit 
compared to current-mode bandgap circuits are the elimi-
nation of a current mirror stage and minimizing the cur-
rent mirror ratio of PTAT, which leads to error reduction. 
In order to achieve a low TC voltage reference, a curvature 
compensation technique is applied to a voltage-mode sub-
bandgap reference circuit in [19] that results in flicker noise 
reduction and ease of op-amp requirements. Nagulapalli and 
et al. [20] introduce a bandgap reference circuit in which 
noise multiplication of the operational amplifier is limited by 
moving the resistor used in the emitter of BJT into its base. 
This resistance is combined with a CTAT resistance in the 
current mode bandgap reference.

In this work a simple three-branched design is proposed 
without the use of any op-amp and BJT. Only two resistors 
and MOS transistors have been used in the weak inversion 
region to significantly reduce the power consumption. 
The remains of the paper are organized as follows: Sect. 2 
presents a study of the proposed BGR circuit. The proposed 
BGR is analytically examined in Sect. 3. The important 
parameters (like LS, PSRR, and TC) of a bandgap circuit 
are defined in Sect. 4. Section 5 presents the post-layout 
simulation results and the paper is concluded in Sect. 6.

2  Proposed BGR structure

The schematic of the proposed BGR structure is shown in 
Fig. 1. The behavior of the gate-source voltage of MOS 
transistors in weak inversion is similar to that of the emit-
ter–base voltage of a BJT [5, 13, 21]. Therefore, the gate-
source voltage of MOS transistors in sub-threshold is uti-
lized as a CTAT voltage and the difference of gate-source 
voltages of two MOS transistors is used for generating a 
PTAT voltage. The proposed circuit has a self-biased struc-
ture that eliminates the need for any external bias circuitry. 
By employing the MOS devices in sub-threshold, the circuit 
can operate with low supply voltages (i.e. less than 1V) that 
results in a very low power consumption.

As shown in Fig.  1, the proposed circuit includes a 
start-up circuitry and a bandgap core. The start-up circuit 
consists of transistors  MS1,  MS2, and  MS3 in which  MS1 acts 
as a MOS capacitor. When the circuit is powered-up, gate 
of  MS2 is charged via  MS1 until it turns on, and when  MS2 
turns on, the gate voltage of  M4,  M5 and  M6 is pulled down 
and leads to the separation of the circuit from the zero point; 
as a result, the circuit returns to its desired operation. When 
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the output voltage reaches its steady state value,  MS3 turns 
on, and in this case, the gate voltage of  MS2 transistor is 
pulled down and turns off. At this point, the start-up circuit 
completes its work and is disconnected from the bandgap 
core. Actually, due to self-biasing of the proposed BGR, the 
start-up circuit only helps the circuit to start quickly [22].

According to the Fig.  1, the bandgap core has three 
branches. In the first branch consists of  M1, to generate the 
required PTAT current  (ID1 =  IPTAT ), the gate-source voltage 
of transistor  M1 is connected to one side of  R1 (i.e. node A) 
and the gate-source voltage of transistor  M2 is connected to 
the other side of  R1 (i.e. node B). In this way a PTAT current 
given by  (VAB) /R1 =  (VGS1 −  VGS2)/R1 is achieved. It is 
worth mentioning that transistors  M7–9 are used in a cascode 
scheme with  M4–6 to improve the PSRR and LS, and also 
reduce the impact of power supply noise on the reference 
voltage. The generated PTAT current  ID1 is mirrored into the 

second branch by ratio of
(
W

L
)
8

(
W

L
)
7

 . Similarly, with ratio of
(
W

L
)
9

(
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L
)
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 , 

the current  ID2 is mirrored into the third branch.  ID3 passes 
through resistor  R2 and generates the required PTAT voltage. 
Supposing identical aspect ratio for  M7,  M8 and  M9, the 
generated PTAT voltage is equal to  VPTAT  =  VCD =  R2.
ID3 =  R2.(

VGS1−VGS2

R1
 ). The mentioned current passes through a 

diode-connected transistor (i.e.  M3) and generates a CTAT 
voltage  (VGS3). Therefore, output voltage  Vref is obtained by 
applying a KVL from the output node of the circuit (C node) 
to ground as  VREF =  VCD +  VGS3, where  VCD =  R2 .

VGS1−VGS2

R1
 is 

a PTAT voltage and  VGS3 is a CTAT voltage.
Note that, here, all the currents of the three branches are 

assumed identical  (ID1 =  ID2 =  ID3). Finally, generated CTAT 
voltage (i.e.  VGS3) and PTAT voltage (i.e. voltage across  R2) 

are added to each other and the desired reference voltage 
is generated. The proposed design, operates with a nano-
ampere current and ultra-low power consumption. Detailed 
analyses of the proposed circuit are presented below.

3  Mathematical analysis

The drain current of a MOS transistor in the weak inversion 
region is given by (1) [21]:

where  VTH,  VGS,  VDS and  VT are the threshold, gate-source, 
drain-source, and thermal voltages, respectively and W

L
 

is MOS transistor aspect ratio.  I0 is drain’s current when 
 VGS =  VTH and is given by (2):

in which n is the sub-threshold gradient coefficient. In 
subthreshold, when  VDS >  4VT the transistor is in the 
saturation region, and its current is independent of  VDS. To 
avoid the effect of changes in  VDS on the circuit, parameters 
of the transistor should be chosen to operate in saturation 
region. The approximate value of transistor’s current in 
saturation is as follows:
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Fig. 1  Schematic of the proposed BGR with start-up circuit
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So the  VGS of transistors in subthreshold is given by (4):

VGS can be assumed as a CTAT voltage that can be 
represented for a MOS transistor as (5):

The constant coefficients � 0, � 1, and � 2 depend on the 
technology and � 2 is high-order nonlinear effects which is 
considered negligible. The temperature dependancy of  VGS1, 
 VGS2, and  VGS3 are shown in Fig. 2. In Fig. 2, the voltages 
 VGS1,  VGS2, and  VGS3 show CTAT behaviour.  VGS1 −  VGS2 is 
also is depicted in Fig. 2 and it represents a PTAT behaviour.

Using Kirchhoff law in Fig. 1, the current  ID1 can be 
determined as (6),

and current  ID2 is given by (7):

in which,

The transistors  M4 to  M9 form a current mirror, so the 
current  ID3 can be expressed as follows:
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Therefore the generated reference voltage is as (11):

Obviuosly Eq. (11) is comprised of a PTAT term (i.e. 
VGS1 − VGS2 ) and a CTAT term (i.e. VGS3 ), and choosing pro-
poer value for R2

R1
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 results in a zero TC  Vref. The 

required value for R2
R1

 can be obtained by derivation of (11) 
with respect to temperature and setting it equal to 0 as 
follows:

According to Fig. 2 the temperature coefficient (TC) of 
PTAT voltage is 0.345 mV/°C, while the TC of the CTAT 

voltage is − 0.845 mV/°C. Therefore, supposing 
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and considering Eq. (13), requierd R2
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 is given by (14):

4  Line Sensitivity, PSRR and Temperature 
coefficient

Line sensitivity (LS) explains the sensitivity of the 
voltage reference to the supply voltage. According to this 
description, lower LS results in lower dependency of  Vref to 
 VDD. LS is directly related to Power Supply Rejection Ratio 
(PSRR) as well, and minimizing LS results in mimimizing 
low frequency PSRR.

The LS for a voltage reference can be determined using 
(15):
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Fig. 2  VGS of  M1,  M2 and  M3 transistors versus temperature
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where, ∆Vref represents voltage reference variations, while 
∆Vdd denotes supply voltage variations. It is worth noting 
that employing a cascode structure reduces LS, though it 
may also increases the minimum required supply voltage.

PSRR describes the effect of power supply noise (small-
signal variation) on voltage reference. It is also defined as 
(16):

By using the small-signal equivalent circuit and simplify-
ing it, the value of  vref

vdd
 for Fig. 1 can be obtained as (17):

The temperature coefficient of a bandgap reference is 
defined as (18). Apparently low TC is desirable to acheive a 
tempereture independent reference voltage.

5  Post layout simulation results

To verify the performance of the suggested bandgap 
reference (BGR) circuit in Fig. 1, a prototype of the circuit 
is designed using TSMC 0.18-μm CMOS technology, and 
the circuit parameters are shown in Table 1. The circuit was 
designed with an active area of 480μm × 840μm. All required 
resistors are implemented by using high-resistance 
polysilicon (HpolyR). Since all resistors have identical tem-
perature coefficient so the ratio of  R2

R1

 in (11) remains inde-
pendent of temperature and does not affect the temperature 
coefficient of  Vref. To mitigate the effect of channel length 
modulation, the cascode transistors should be sufficiently 

(15)LS =

ΔVref

ΔVdd

Vref
× 100%

(16)PSRR = 20log (|vref
vdd

|)

(17)(
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) ≈

(R2 +
1

gm3
||ro3)

(R2 +
1

gm3
||ro3) + gm6ro6ro9

)

(18)TC =
Vref (maximum) − Vref (minimum)

(Tmaximum − Tminmum) × Vref (atT=27◦C)

large to reduce the line sensitivity (LS) of the produced volt-
age reference.

The current of the circuit in Fig. 1 is set by the value of 
 R1. Therefore,  R1 should be adjusted to maintain the current 
of the first branch in nano ampere range (here, 3.033nA) for 
achieving ultra-low power consumption.

Figure 3 shows the post layout simulation results of sup-
ply dependency of the proposed circuit at TT corner. As 
seen, over a wide range of power supply variations from 0.8 
to 1.8V, LS is as low as 0.31%/V that indicates ultra-low 
dependency of the generated reference voltage to power sup-
ply variation. The circuit consistently produces a constant 
voltage of 644 mV, while drawing a total current of only 
9.1 nA from the 0.9 V power supply, resulting in an ultra-
low power consumption of 8.2 nW.

The simulated reference voltage vs. temperature is 
depicted in Fig. 4. According to Fig. 4, the circuit’s tem-
perature coefficient (TC) is 78.5 ppm/°C over the tempera-
ture range of − 25 to 85 °C, that confirms the voltage refer-
ence has a good robustness against temperature variations. 
Figure 5 illustrates the simulated  Vref versus  VDD variation 
in different process corners. It shows the BGR sensitivity 
to the power supply variation in all process corners. Line 
sensitivity (LS) of the circuit is 0.48%/V, 0.30%/V, 0.34%/V 
and 0.33%/V respectively in the SS, FF, SF and FS corners.

The simulated  Vref versus temperature in different pro-
cess corners is depicted in Fig. 6. The TC is measured to be 
78.5 ppm/°C for TT corner while the TC is 92.4 ppm/°C for 

Table 1  Circuit parameters

Transistor M1 M2 M3 M4 M5 M6 M7 M8 M9

W(�m) 0.9 42 5 18 18 1 1 7 7
L(�m) 20 20 20 20 20 20 20 20 20

Resistor R1 R2

Value 49.2M 125M

Fig. 3  Supply dependency of the proposed BGR
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FF. The TC is 136 ppm/°C for the FS corner and it is 98.2 
ppm/°C at SF corner. For SS corner the TC is 79.8 ppm/°C. 
Hence, the simulation results in Fig. 6 indicate that the pro-
posed circuit has a low dependency on the process corner.

Figure 7 demonstrates the PSR of the proposed circuit. 
According to Fig. 7 the effect of power supply noise on the 
voltage reference has 40 dB attention in the frequency range 
of 1–100 Hz.

To estimate the effect of process and fabrication errors 
on the circuit, Monte Carlo simulation results for 1000 tri-
als are shown in Fig. 8. In Fig. 8a the average generated 
reference voltage is 644.23 mV with a standard deviation of 
16.24 mV. As seen in Fig. 8b, the circuit has an average TC 
of 81.59 ppm/°C and the average LS in Fig. 8c is 0.322%/V. 
Totally, Monte Carlo simulation results show a good robust-
ness of the BGR to the process and fabrication errors.

While the Monte Carlo simulation results in Fig. 8 show 
the robustness of the circuit against process variation, the 
exact value of generated  Vref may vary from one process 
corner to another corner in Fig. 6. It is worth mentioning 

that in low power BGRs the impact of process deviation 
is often greater due to the exponential characteristics of 
subthreshold currents. However, if more accurate  Vref at all 
process corners are required, using trimming techniques 
(like [23]) is mandatory. Actually trimming circuits [23] 
usually adjust  Vref by sinking/sourcing additional cur-
rent from/to the bandgap core. It is important to mention 
that, taking into account both the area requirements and 
the relatively minor deviation of this circuit compared to 
similar types of BGRs, this work opts not to employ any 
trimming circuitry.

The power spectral density (PSD) of the proposed BGR 
is shown in Fig. 9 for different load capacitances  (CL). 
Although, due to the extremely low power consumption 
of the proposed circuit in the subthreshold region, it tends 
to exhibit poor noise performance, but the noise level of 
the circuit is still promising. According to the simulation 
results, noise of the circuit is 4 µV/

√
Hz at the frequency 

of 100 Hz for  CL = 0.5 pF. As expected, higher value of  CL 
results in lower noise power at the output. For example, 
the output noise of the circuit at frequency of 1 MHz, is 
8.46, 4.26, 2.13 nV/

√
Hz , respectively, for  CL of 0.5, 1 and 

2 pF. Apparently, the main source of low frequency noise 

Fig. 4  Thermal behavior of the proposed BGR

Fig. 5  Line sensitivity at different process corners

Fig. 6  Thermal behavior of BGR at all process corners

Fig. 7  PSRR of the proposed BGR
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Fig. 8  Monte-Carlo simulation 
results of a generated reference 
voltage, b TC and c LS
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(here < 100Hz) in BGRs is caused by flicker noise of MOS 
transistors, while the thermal noise is dominant at high fre-
quencies (here > 100Hz).

Although the proposed BGR has a self-biased configu-
ration and needs no start-up circuit, a conventional start-up 
circuit is used in Fig. 1 to accelerate the circuit’s transi-
tion to a normal operating state after power-up. Transient 
response of the reference voltage after power-up with and 
without start-up circuit is shown in Fig. 10. As seen, the 
start-up circuit reduces the start-up time from 10 ms to less 
than 2 ms and results in a faster start-up.

The layout of the circuit has been optimized to utilize 
the minimum chip area. As shown in Fig. 11 the chip area 
of the BGR is as small as 480 μm × 840 μm.

For comparison, the performance summary of the pro-
posed BGR and some similar prior works are shown in 
Table 2. The performance of the circuit is amongst the 
best prior works.

6  Conclusion

A low-power BGR has been developed that consits of three 
branches with nine MOS transistors and two resistors. All 
transistors have been biased in weak inversion region. The 
circuit generates a PTAT current by using the gate-source 
voltage difference of two MOS transistors. This current 
is then mirrored into the second and third branches and 
passed through a resistor to generate a PTAT voltage. 
This PTAT voltage is combined with the  VGS of a diode-
connected transistor (as a CTAT voltage) to generate the 
voltage reference. The circuit has been simulated and post-
layout results confirm its performance. The post-layout 
simulation results demonstrate that the circuit produces 
a voltage reference of 644 mV with a TC of 78.5 ppm/°C 
within the temperature range of − 25 to 85 °C. The circuit 
operates with a power supply of 0.9 V and consumes only 
8.2 nW. The line sensitivity of the circuit was measured 
0.31%/V, indicating a minimal change in the voltage 
reference for power supply voltages ranging from 0.9 
to 1.8 V. The PSRR of the proposed circuit is − 40dB 
within the frequency range of 1–100 Hz, Furthermore, 
the chip area of this circuit has been significantly reduced 
compared to similar designs. The simulation results 
demonstrate that the proposed circuit exhibits a good 
robustness against process, supply voltage and temperature 
(PVT) variations, making it a promising solution for ultra-
low power applications.

Fig. 9  Noise spectrum of proposed BGR

Fig. 10  Start-up time of the circuit with/without start-up circuit

Fig. 11  Layout of the proposed circuit
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