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strength of their signal is proportional to the total number of 
active heart cells [4]. As a result, changes in atrial and ven-
tricular cell action potentials are the predominant cause of 
variation in a surface ECG waveform [5]. Figure 1 depicts 
the QRS bundle, P, and T waves in their entirety, as well as 
the whole ECG cycle. These waves, along with the derived 
QT, PR, and ST segments, are the most essential distinctive 
features of the ECG, indicating the conduction system of 
the heart and revealing whether the heart itself has abnor-
malities or not [6]. As a result, it is vital that the ECG not be 
disrupted by noise throughout the data collection process.

ECGs are distinguished by their quasi-periodicity, low 
frequency, and energy concentration. ECG sampling is 
frequently interrupted by a high level of noise, most nota-
bly Muscle Artefacts (MA), Baseline Wander (BW), and 

1 Introduction

Cardiovascular disease is a prominent cause of death in the 
world today wreaking havoc on human life and health [1]. 
The ECG has become a common method for monitoring 
cardiac health due to its utility in both research and clinical 
use [2]. ECG is often the most cost-effective, least intru-
sive, and most efficient approach [3]. Because the atrium 
and ventricle comprise the majority of the heart’s cells, the 
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Electrode Motion (EM) artefacts [7] and it is given in Fig. 2. 
MA frequently occurs between 20 and 40 Hz (Hz), classi-
fying them as high-frequency noise [8]. This background 
noise is caused by muscle tremors, which appears as an 
inconsistency between the portrayal of the muscles and the 
actual scene. Medical imaging professionals must apply 
effective ways to minimize the unfavourable effects of noise 
on image quality. EM artefacts are brief bursts of noise 
caused by insufficient skin contact with the electrodes. Elec-
trode slippage and BW are both the result of low-frequency 
noise, such as that produced by breathing [9]. These abnor-
malities substantially impair clinical judgment, increasing 
the likelihood of making an inaccurate diagnosis. For this 
reason, de-noising sampled ECG data is critical. The hard-
ware implementation of the ECG denoising technique using 
FPGA has gotten little attention [10, 11]. The FPGA is a 
reprogrammable integrated circuit that interacts with the 
DSP and the microcontroller unit (MCU) [12]. Implement-
ing signal processing techniques on an FPGA presents sig-
nificant challenges. Because all CPUs can do mathematical 
operations, nearly all of them can run DSP algorithms. An 
FPGA and a general-purpose DSP are functionally equiva-
lent for this application. Designing digital systems with 
excellent efficiency and low consumption of energy is hard, 
especially for mobile devices. To lower the system’s overall 

power consumption, it is essential to have energy-efficient 
designs at the coarse-grained level. FPGAs are capable of 
handling a greater number of simultaneous operations than 
DSPs.

The goal of this study is to improve the quality of ECG 
data by eliminating noise, which results in a higher SNR 
and a lower RMSE. Specifically, we aim to improve health-
care outcomes by developing a noise reduction method that 
can effectively separate the relevant features of ECG data 
from the noise, thereby reducing the amount of distracting 
background noise, and increasing the reliability of the ECG 
data, allowing for a more precise diagnosis of heart disease. 
We use FPGA technology to achieve real-time deployment. 
To ensure efficient and long-lasting functioning, we will 
be picking an FPGA board that is well-suited for the task 
at hand and fine-tuning the model’s design to achieve low 
power consumption. The three main contributions of this 
study are as follows. First, we collected benchmark data and 
did an extensive study on the removal of three types of noise 
in ECG signals: MA, EM, and BW noise. Second, we devel-
oped a novel technique that considerably enhances the SNR 
during the denoising process, hence improving the quality 
of ECG data. Third, we have found an FPGA that is both 
suitable for real-time processing and well-known for its low 

Fig. 1 ECG trace: interval, wave, 
and bundle
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power consumption; this ensures an effective and sustain-
able approach to implementing our model.

The paper is properly divided into several sections that 
all have their purpose. Section 1 provides a thorough expla-
nation of ECG, its importance in diagnosing disease, and 
the most frequent types of noise that can impact ECG read-
ings. In Sect. 2, relevant prior literature on ECG denoising 
is offered for background on the current study. Section 3 
describes the research methodology and provides a full 
explanation of the proposed method workflow. Section 4, 
explores an extensive analysis of the denoising algorithm’s 
performance and examines the resource utilization and 
power consumption of the FPGA. Finally, Sect. 6 concludes 
the research by underlining the excellence of the proposed 
technique and providing perspectives on future research.

2 Literature survey

Due to the growing relevance of precise and real-time ECG 
signal processing in healthcare and biomedical engineer-
ing, research on ECG denoising and its application in FPGA 
has seen a tremendous increase in recent years. Since ECG 
signals are frequently contaminated by a wide variety of 
noise sources, researchers have recognized the importance 
of identifying methods to improve their quality. This section 
describes some of the most recent works.

The paper [13] presents a unique approach for denois-
ing ECG data affected by wideband noise. The proposed 
approach considers clean ECG data to be a composite of 
many elements. These components are distinct in the time 
domain, share some frequency-domain spectral coefficients, 
and operate over a wide range of frequencies. Based on this 
approach, this study presents a consecutive local filtering 
strategy for cleaning up ECG data by reducing wideband 
noise. A segmentation approach has been developed to divide 

Fig. 2 ECG and its noise
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database. The concept’s performance has been evaluated in 
a variety of experimental configurations with varied degrees 
of background noise. In terms of RMSE and SNR improve-
ment, the system outperforms prior art approaches.

The paper [16] shows the design and development of a 
low-cost, portable device that can clean up noisy ECG sig-
nals efficiently and discreetly. To begin, they employ a sin-
gle-node reservoir Computing (SNRC) architecture to clean 
the damaged ECG signal in a very efficient manner. Sec-
ond, by implementing the technique on a portable, low-cost 
FPGA chip, they obtain excellent speed and privacy. This 
text simulates regular EMG and PLI noises. To evaluate 
the efficacy of the technique, three performance metrics are 
used. The information comes from the MIT-BIH database. 
In the case of EMG and PLI noise, it achieves an excel-
lent SNRimp and PRD with a 0 dB input SNR. The study 
[17] discusses a new approach for achieving the develop-
ment of optimal IIR digital filters to eliminate interruptions 
in the ECG signal. Following synthesis and simulation, a 
summary of its power consumption, resource consumption, 
and timing is provided. To do this, the HDL command line 
interface is used to transform MATLAB code for various 
IIR filters designed for denoising ECG signals into Verilog 
code. The intended hardware was the Spartan-6 field-pro-
grammable gate array (XC6SLX75T in 3FGG676 pack-
age). The Xilinx Power software is utilized to calculate a 
digital design’s projected power consumption. The filter’s 
complex structure must be examined on the FPGA platform 
for it to be hardware efficient. According to the findings, the 
FPGA-based filter design looks to be ideal for ECG portable 
devices since it reduces complexity and expense by employ-
ing fewer multipliers and adders, which take up less space 
on the chip and use less power than MATLAB.

In the study [18], an FIR filter is employed to eliminate 
particular types of sounds. FIR filters for ECG noise have 
been created utilizing noise-specific coefficients. The filter’s 

the recorded ECG data into subsamples, each of which typi-
cally reflects a single dominating component, before trying 
to apply the proposed method to the data. By successively 
applying ideal filters to each segment, the denoised ECG 
signal can be built. The suggested approach automatically 
adjusts the BW for each ideal filter to match the BW of the 
dominant component in the studied subsegment. In simu-
lations employing both synthetic and actual ECG data, the 
proposed technique was proven to be effective in denoising 
ECG data that had been contaminated by wideband noise. 
It is also demonstrated that the suggested approach signifi-
cantly outperforms different existing algorithms. In research 
[14], the author describes a new denoising technique for 
ECG signals that improves performance and availability in 
a variety of noise settings. The solution builds on the condi-
tional generative adversarial network (CGAN) paradigm for 
ECG denoising. An optimized convolutional auto-encoder 
(CAE) serves as the system’s generator, while a CAE serves 
as the discriminator. Comprehensive research findings from 
the MIT-BIH databases demonstrate that the denoised ECG 
signal achieves good SNR, outperforming state-of-the-art 
approaches for both single and mixed noises. The average 
accuracy of classifying four heart diseases using denoised 
data increases by roughly 32% when several noises are pres-
ent at SNR = 0 dB. As a result, the proposed method may 
effectively remove noise while keeping the finer proper-
ties of ECG signals. In a paper [15], researchers disclose 
a DL-based ECG denoising system that exploits the natu-
ral periodicity of ECG signals. This technique stacks ECG 
cardiac cycles to form a 2D signal to train a convolutional 
neural network (CNN). As a result, by capitalizing on the 
correlation between cardiac cycles, ECG denoising can be 
made more effective and robust. The suggested CNN model 
incorporates a unique local/non-local cycle observation ele-
ment is takes into consideration the cycles’ inherent associa-
tion. The suggested approach will be tested on the MIT-BIH 

Table 1 Details of the proposed method workflow
Step Process Description
1 Data Acquisition The acquisition of ECG signal data includes both the clean ECG signal and the corresponding noise data.
2 ECG Denoising using 

HSST
The acquired ECG signal is subjected to denoising through the HSST. This step decomposes the signal 
into a series of IMFs, effectively separating the signal components.

3 DFA-Based Noise 
Elimination

DFA is applied to eliminate noisy IMFs. DFA is employed to target and filter out the undesired noise 
components, leaving behind the essential ECG components.

4 NLM Denoising with 
PSO

The remaining IMFs, after the DFA step, undergo further denoising using the NLM technique. To opti-
mize the NLM parameters and enhance its effectiveness, a PSO algorithm is applied.

5 Signal Reconstruction The denoised IMFs are then reconstructed to form a clean ECG signal. This reconstruction step aims to 
restore the ECG signal to its original form while eliminating the noise.

6 Model Evaluation The denoised ECG signal’s performance is rigorously evaluated using various metrics, including SNR 
and RMSE, to assess its effectiveness.

7 FPGA Deployment The denoising model is deployed in an FPGA, which serves as the real-time platform for ECG signal 
processing. The model’s implementation on FPGA enables efficient and low-latency execution.

8 FPGA Evaluation The deployed FPGA system’s power consumption and resource utilization are thoroughly evaluated 
using tools like VIVADO.
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and noise data. When tested on MATLAB, the proposed 
denoising method improved the SNR of the ECG signal 
and reduced the mean squared error. The proposed wavelet-
based denoising structure uses less hardware and operates at 
a higher frequency when compared with previous denoising 
solutions for ECGs. In the paper [20], researchers offer a 
novel FPGA architecture for noise reduction using variable 
step-size variable tap length delayed error normalized least 
mean square (VSS-VT-DENLMS) method. This strategy 
alters the DENLMS method’s weight update formula by 
adjusting the tap lengths and step sizes. At the same time to 
identify a better trade-off between error reduction and rapid 
convergence. To further enhance effectiveness in terms of 
area and speed, the suggested VSS-DENLMS adaptive fil-
ter structure integrates a systolic and folding structure with 
a compressor-based booth multiplier. The suggested filter 
design is tested on the MIT-BIH database, and the obtained 
filtrated results are evaluated. The simulation outcome 
shows that the suggested filter is superior to state-of-the-art 
filters while requiring less hardware complexity, proving the 
approach is viable for analysing ECG data in real-time.

performance attributes were prioritized during the design 
process. A Kaiser window has been included in the ECG 
to provide a happy medium between noise suppression and 
signal distortion. The period of the impulse response in an 
FIR filter is finite. The fundamental blocks of a multiplier, an 
adder, and a flip-flop can be used to create and execute FIR 
filters. The effectiveness of the FIR filter is greatly affected 
by the multiplier, the slowest component of the adder. It’s 
been proposed to use both the carry choose adder and the 
Booth Multiplier in tandem in a Finite Impulse Response 
Filter. Several of this filter’s properties have been contrasted 
to those of others. The proposed filter was created with the 
help of Verilog and Xilinx 14.7 Vivado. Time and space 
requirements were reduced. This FIR filter was utilized to 
build the filter for denoising ECG because its coefficients are 
well-suited for ECG denoising. The authors [19] suggest a 
hardware-efficient FPGA-based design for creating a noise-
free ECG signal using lifting-based wavelet denoising and a 
universal threshold level-dependent function in tandem with 
soft thresholding. A simplified lifting-based DWT approach 
is also proposed in the article, which offers a single-step 
calculation for determining the DWT’s inverse and forward 
coefficients. Instead of using the comparators that are so dif-
ficult to build in VLSI, wavelet-based thresholding makes 
use of a median computation and soft thresholding block. 
The MIT-BIH database is the source for the ECG rhythm 

Fig. 3 Workflow of proposed ECG denoising
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3 Methodology

The ECG signal denoising methodology and its subsequent 
deployment in FPGA involve a series of crucial steps, as 
detailed in Table 1; Fig. 3.

3.1 Acquired ECG signal

The MIT-BIH Noise Stress Test Database and the Arrhyth-
mia Database made up the main dataset [21]. The BIH 
arrhythmia laboratory recorded dual-channel dynamic 
ECGs on 47 individuals from 1975 to 1979, and the record-
ings are included in the MIT-BIH Arrhythmia Database. 
Across all of the records, there are 650,000 signal samples 
collected at 360 Hz. When slicing the ECGs, we used a slice 
size of 1024 signal samples per record, with a total of 30,240 
slices used for the pure ECG data sample. The Noise Data-
base was used to extract BW, EM, and MA noise, totalling 
650,000 signal samples. We additionally selected 630 noise 
dataset slices, each comprising 1024 signal samples from 
the original noise signal. Using the following procedure on 
both the clean ECG dataset and the noisy dataset, the value 
of the ECG signal was normalized.

Normalized (xi) =
xi − xmin

xmax − xmin
 (1)

The xi  is the signal value in a given slice, xmax
 is the big-

gest signal value in this particular slice, and xmin
 is the least 

signal value in this particular slice. Then, we subjected the 
clean ECG to a variety of noises with SNR of -20 dB, -10 
dB, 0 dB, 10 dB, and − 20 dB using Eq. 2. MA, EM, and 
BW noise were all included. To generate the noise, we uti-
lized the following expressions:

Y = X +N,Ni = ηi

√ ∑
x2i

(
∑

η2i ) ∗ 10
snr
10

 (2)

where xi denotes the pure ECG, ηi  denotes the noise signal, 

snr  represents signal-to-noise ratio, and Y  represents noisy 
ECG. The noise, represented by Ni , is the outcome of cal-
culating the SNR. We segmented the ECG dataset with an 
8:2 split between the training and validation/test sets. With 
this ratio in mind, we randomly divided each ECG record’s 
630 data slices into 504 and 126 data slices, generating a 
total of 24,192 and 6048 data slices to be utilized in the 
ECG noise reduction train and test set, respectively.
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3.2 Denoise ECG into series of IMF

The high-order synchrosqueezing transform (HSST) 
extends the standard short-time Fourier transform (STFT)-
based SST (FSST) first established in the article [22] by 
using higher-order phase and amplitude approximations. 
The following is the definition of an AM-FM signal:

f (t) = A (t) ei2π∅(t) (3)

Where A (t)  and ∅ (t) represent the amplitude and phase 
functions. The STFT of the signal f  is expressed as follows:

V g
f (t, n) =

∫
f (τ ) g* (τ − t) e−i2πn(τ−t)dτ  (4)

The complex conjugate of the window function g , denoted 
as g∗ . Here is an expression for the traditional FSST:

T g,γ
f (t, ω) =

1

g∗ (0)

∫
{
η,
∣∣∣V g

f (t,η)
∣∣∣>γ

}V
g
f (t, η) δ (ω − ωf (t, η)) dη  (5)

Where δ  is the Dirac distribution and γ  is the threshold. 
The instantaneous frequency estimation at frequency η  and 
time t  is denoted by ωf(t, η)  and is calculated as:

ωf (t, η) = R

{
∂tV

g
f (t, η)

i2πV g
f (t, η)

}

 (6)

Where R {Z}  represents the real component of the Z , and 
∂t represents the temporal partial derivative.

The high-order SST calculates instantaneous frequency 
using Taylor expansions of phase and amplitude. For values 
near to 1, the signal’s Taylor expansion appears to be this.

f (t) = exp

(
N∑

k=0

[log (A)](k) (t) + i2πϕ(k) (t)

k!
(τ − t)k

)

 (7)

The kth derivative of Z  at the time t  is denoted by Z(k) (t) . 
So, we can write this signal’s STFT at time t  and frequency 
η  as:

V g
f (t, η) =

∫
f (τ + t)g* (τ ) e−i2πητdτ  (8)

=

∫
exp

(
N∑

k=0

[log (A)](k) (t) + i2πϕ(k) (t)

k!
(τ )k

)
g* (τ ) e−i2πητdτ  (9)

Using Eq. 4, we may estimate the instantaneous frequency 
ωf (t, η), at a given location.
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ωf(t, η) =
[log(A)]′(t)

i2π

+ϕ′ (t) +
∑N

k=2
[log(A)](k)(t)+i2πϕ(k)(t)

i2π(k−1)!

V
tk−1g
f (t,η)

V
g
f (t,η)

 (10)

The frequency modulation operator q[k,N ]
η,f  is introduced.

q
[k,N ]
η,f =

[loglog (A)](k) (t) + i2πϕ(k) (t)

i2π (k − 1)!
 (11)

The representation of the Nth-order local complex instan-
taneous frequency, ω[N ]

n,f , at frequency η  and time t  is as 
follows:

ω
[N ]
n,f (t, η) =






ωf (t, η) +
∑N

k=2 (η, t) (−xk, 1 (t, η)) ,

V g
f (t, η) �= 0, ∂ηxj.j−1 (t, η) �= 0 (j ≥ 2) ,

ωf (t, η) ,

Otherwise.

 (12)

Consequently, in Eq. 5, the high-order FSST can be 
expressed by substituting ω[N ]

n,f (t, η) for ωf (t, η):

T g,γ
N,f (t, ω) =

1

g∗ (0)

∫
{
η,
∣∣∣V g

f (t,η)
∣∣∣>γ

}V
g
f (t, η) δ

(
ω − ω

[N ]
η,f (t, η)

)
dη  (13)

At last, the model will be approximately reconstructed by.

f (t) ≈
∫

{ω,|ω−φ(t)|<d}
T g,γ
N,f (t, ω)dω  (14)

Where d  represents the compensation factor and ϕ (t) is an 
estimate forϕ′ (t) .

3.3 Eliminate noisy IMF

Detrended fluctuation analysis (DFA), as described in [23], 
is an effective method for obtaining a more trustworthy scal-
ing exponent when the signal exhibits non-stationary char-
acteristics. The DFA’s essential idea is to determine the link 
between the time scale n and the variance around the local 
trend in the box size. The first phase of the procedure is to 
calculate the integrated time series y (k) after eliminating 
the average, as seen below:

y (k) =

k∑

i=1

[
x (i)− −

x
]
, 1 ≤ k ≤ N  (15)

Where N  denotes the total samples and x_  denotes the aver-
age throughout the range [1, N ]

Then, n  compartments are created in y(k ). The EMD 
residue is used to estimate the local trend yn (k) for each 
box. Definition of Root-Mean-Square Disturbance F (n)
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After that, y(k ) is split into n boxes. The EMD residue 
is used for determining the local trend yn (k) for each box. 
The root-mean-squared fluctuation, F (n), is described as

F (n) =

√√√√ 1

N

N∑

k=1

[y (k)− yn (k)]
2  (16)

After n  iterations, the scaling exponent, α, is expressed as 
the slope of the log [F (n)] /loglog (n)plot.

F (n) ∝ nα  (17)

The scaling exponent can be employed to quantitatively 
describe the temporal correlation in the time series. A value 
of α = 0.5 represents the uncorrelated data. An anti-corre-
lated signal has a value of α between 0 and 0.5. A value 
of α between 0 and 0.5 represents the long-range temporal 
correlations. When α > 1, power-law decay is not observed 
in the correlations. Additionally, the scaling exponent char-
acterizes the volatility of the time series. Due to its capac-
ity to detrend time series, DFA is commonly employed to 
detect scaling features and long-range correlations in non-
stationary time series. We use DFA in the study to estimate 
the total number of IMFs and to separate the signal from the 
noise among the IMFs.

3.4 Denoise remaining IMF

The non-local-mean filter attempts to remove noise from the 
signal by restoring the original signal u . If noise is denoted 
by n , the noisy signal v  is represented in the article [24]:

v = u + n  (18)

NLM will attempt to approximate the original signal utiliz-
ing Eq. 19.

û (s) =
1

Z (s)

∑

t∈N(s)

w (s, t) v (t)  (19)

u (s) represents the predicted signal given the s  sample, and 
Z (s) is calculated by:

Z (s) =
∑

t

w(s, t) (20)

Where w (s, t) denotes the weights formalized by:

w (s, t) = exp

(
−Σδ?∆(v (s + δ)− v (t + δ))2

2L∆λ2

)

 (21)
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= exp

(
−d2(s, t)

2L∆λ2

)
 (22)

The bandwidth is specified by the λ  value in the Eq. 21. 
In addition, L∆  samples are contained in the local patch 
denoted by ∆ , which surrounds s . Since each patch has an 
average value of 1, the center patch is typically corrected to 
provide a more uniform outcome. Thus, the formalization of 
the weight is as follows:

w (s, s) = maxt?N(s),t �=sw (s, t)  (23)

PSO has been frequently utilized for algorithm optimiza-
tion. PSO is well-known due to its ease of use and effec-
tiveness in locating the best solution. Eberhart and Kennedy 
[25] suggested PSO, which was influenced by the patterns 
of behavior observed in schools of fish and flocks of birds. 
Each PSO particle represents a potential answer to a certain 
issue. Particles are dispersed at will throughout the search 
area. There are two aspects to every particle: its location 
(X) and its motion (V) [26]. Each iteration towards a global 
solution will involve updating these two parts. Equation 24 
and Eq. 25 provide the current forms.

V d
i = V d

i + c1 ∗ rand1di
(
pbestdi − xdi

)
+ c2 ∗ rand2di (gbestdi −Xd

i ) (24)

Xd
i = Xd

i + V d
i  (25)

If d  = 1, 2, 3, … ,D , then d  is the particle’s dimension. 
Each particle is denoted by a different i from 1  to N . 
Acceleration coefficients c1 and c2 are the constants in this 
equation. Both rand1 and rand2 are arbitrary numbers with 
values between zero and one. The pbest  and gbest  are the 
local best and global best particles accordingly [27]. When-
ever a new, superior solution is discovered, it is added to 
both the global best and the local best.

The conventional NLM is optimized λ  to maximize. 
Mean Squared Error (MSE) is employed as the fitness func-
tion. We begin by setting numerous parameters in the NLM, 
including p  and M . The number of particles and the itera-
tions used to update their position and velocity were also 
determined. The input signal is then de-noised for each par-
ticle individually, and the MSE is calculated. Finally, we 
update the particles’ local and best positions and their posi-
tions. There will be t  iterations of this procedure. The best 
possible value λ  is determined.

The updated equations for the particle’s velocity and 
position are provided in Eq. 26 and Eq. 27, respectively, if 
the ith  particle’s position and velocity are given as xi and vi
, correspondingly.

vn+1
i = vni + c1.rand () . (p

n
i − xni ) + c2.rand () .(p

n
g (t)− xni ) (26)
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This study’s findings are useful for determining not only the 
viability and performance of the ECG denoising model but 
also the optimal FPGA board for its deployment in real-time 
in terms of resource utilization and power consumption. 
Through this approach, we ensure that the ECG denoising 
model can function efficiently in real-time environments.

4 Result and discussion

HSST-DFA-PSO-NLM is a unique ECG denoising model, 
and below we provide the results and analyse its perfor-
mance in contrast to the non-optimized version. The mod-
el’s efficacy in denoising ECG signals was assessed in the 
presence of MA, EM, and BW noise.

Tables (2, 3, 4) summarises the SNR analysis of the pro-
posed technique with and without optimization for denois-
ing ECG signals impacted by MA, EM, and BW noise at 
various noise levels. It allows for a direct evaluation of the 
optimized and non-optimized models under various noise 
conditions. Our proposed HSST-DFA-PSO-NLM model 
performed exceptionally well for ECG signals contami-
nated with MA noise. SNR values were consistently higher 
compared to the unoptimized HSST-DFA-NLM model 
throughout a wide range of MA noise levels (-20 dB to 20 
dB). Specifically, the SNR for the proposed model ranged 
from 29.05 dB to 30.57 dB, while the non-optimized model 
achieved SNR values between 26.41 dB and 27.57 dB. This 
demonstrates that the incorporation of PSO and NLM com-
ponents enhances the denoising capabilities of our model, 
especially for ECG signals contaminated by MA noise. 
Similar to the results observed for MA noise, the proposed 
HSST-DFA-PSO-NLM model outperformed the non-opti-
mized version when denoising ECG signals affected by 
EM noise. SNR values for the optimized model ranged 
from 29.33 dB to 30.55 dB, while the non-optimized model 
achieved SNR values between 26.29 dB and 27.58 dB at 
various EM noise levels. When addressing ECG signals 
corrupted by BW noise, the HSST-DFA-PSO-NLM model 
consistently exhibited better denoising performance com-
pared to the non-optimized HSST-DFA-NLM model. The 
SNR values for the optimized model ranged from 28.91 dB 
to 29.35 dB for different BW noise levels (-20 dB to 20 dB). 
In contrast, the non-optimized model achieved SNR values 
between 26.34 dB and 27.18 dB. These results suggest that 
the incorporation of PSO and NLM techniques improves the 
denoising capabilities of our model for ECG signals affected 
by BW noise.

Tables (5, 6, 7) provides a detailed summary of the 
RMSE analysis for the proposed HSST-DFA-PSO-NLM 
method with and without optimization for denoising ECG 
signals affected by MA, EM, and BW noise at different 

xn+1
i = xni + vn+1

i  (27)

Where V n+1
i  indicates the current particle’s velocity and 

xn+1
i indicates the current particle’s position at the (n + 1)th

iteration.
The local and the global best position are written as pni

and png  correspondingly. Constants c1 and c2 stand for the 
individual and social dimensions, respectively.

3.5 Evaluate the suggested method

We used two benchmark measures for evaluating the 
designed denoising algorithms. These are RMSE and SNR 
[28]. The root of the squared error difference in the denoised 
and raw ECG readings is the RMSE. It is used to calculate 
the difference between the denoising model’s anticipated 
and the real signal. A lower RMSE number indicates that 
the model performed better. SNR is the difference in SNR 
values between the input and output. The evaluation mea-
sure is built around the RMSE and SNR, which are defined 
as follows:

RMSE =

√√√√1

i

I∑

i=1

(S′
i − Si)

2  (28)

SNR = 10log

∑I
i (Si)

2

∑I
i=1 (S

′
i − Si)

2  (29)

Si  is the actual clean ECG signal, S′
i  is the ECG signal 

followed by noise reduction, and i  is the total amount of 
sample points. The RMSE measures the degree of similarity 
between two sets of data. The shorter the gaps between the 
two, the lower the RMSE score. The SNR is the ratio of the 
signal to the noise in the signal. The greater the SNR, the 
more effective the noise reduction mechanism.

3.6 Deploy in FPGA

In real-time deployment, the FPGA is a critical platform for 
hosting the proposed ECG denoising model [29]. Two dif-
ferent FPGA boards, Virtex [30] and Zedboard [31] were 
used for simulation and comparison to evaluate the perfor-
mance and viability of the proposed architectures. FPGA-
based applications place priority on the efficient use of 
resources and low on-chip power consumption, therefore 
these simulations were designed with those goals in mind. 
The effectiveness of the proposed model was thoroughly 
assessed by using two different FPGA boards (Virtex and 
Zedboard). For this investigation, we employed the widely-
known FPGA design and analysis program VIVADO [32]. 
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noise levels. It allows for a direct comparison of the per-
formance of the optimized and non-optimized models for 
each type of noise and at various noise levels. For ECG 
signals affected by MA noise, the results demonstrated a 
significant improvement in denoising accuracy when using 
the HSST-DFA-PSO-NLM model. The RMSE values were 
notably lower across all noise levels. Specifically, for − 20 
dB, -10 dB, 0 dB, 10 dB, and 20 dB of MA noise, the HSST-
DFA-PSO-NLM model produced RMSE values of 0.0158, 
0.015, 0.0144, 0.0141, and 0.0171, respectively. In contrast, 
the non-optimized HSST-DFA-NLM model yielded higher 
RMSE values, ranging from 0.0908 to 0.7701. Similar to the 
results for MA noise, the RMSE analysis for ECG signals 
corrupted by EM noise showed a marked improvement in 
denoising accuracy with the HSST-DFA-PSO-NLM model. 
The RMSE values for the optimized model ranged from 
0.0181 to 0.0304 at different EM noise levels, spanning − 20 
dB to 20 dB. In contrast, the non-optimized HSST-DFA-
NLM model resulted in higher RMSE values, ranging from 
0.0779 to 0.1843. When denoising ECG signals affected by 
BW noise, the HSST-DFA-PSO-NLM model consistently 
outperformed the non-optimized version in terms of accu-
racy. The RMSE values for the optimized model ranged 
from 0.0332 to 0.0485 for different BW noise levels (-20 
dB to 20 dB). Conversely, the non-optimized model resulted 
in higher RMSE values, ranging from 0.1399 to 0.15488. 
These results emphasize the importance of employing opti-
mization techniques to enhance the accuracy of the denois-
ing process for ECG signals affected by BW noise.

The comparison of our proposed ECG denoising method 
with previous research works, as detailed in Table 8, reveals 
the remarkable effectiveness of our approach. In contrast to 
existing studies, our method consistently attains superior 
results in terms of SNR and RMSE across various types of 
noise. Specifically, we achieved an average SNR of 29.56, 
29.68, and 28.86 and RMSE values of 0.0153, 0.0249, and 
0.04159 when denoising ECG signals affected by MA, EM, 
and BW noise. These results surpass the SNR and RMSE 
values reported in the referenced studies ( [33, 34], and 
[35]), demonstrating the substantial enhancements our pro-
posed method brings to ECG signal denoising.

From Table 9, a clear inference can be made regarding the 
power consumption of the two boards under consideration. 
The Virtex board utilizes 3% of LUTs, 6% of Flip Flops, 
and 11% of DSPs. The dynamic and static power consumed 
by the Virtex board is 32mW and 103mW, respectively. On 
the other hand, the Zedboard utilizes 9% of LUTs, 19% of 
Flip Flops, and 48% of DSPs. The Zedboard’s power con-
sumption is notably lower, with dynamic and static power of 
28mW and 96mW, making it a more power-efficient choice 
when compared to the Virtex board. The FPGA performance 
can be visualized in Fig. 4.
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utilization, as well as its signal quality increases, which are 
all critical for practical application. This study sheds light 
on the effectiveness of FPGA-based solutions as well as 
their potential for wider adoption in healthcare settings. The 
FPGA technology not only permits real-time processing but 
also enhances the portability of ECG monitoring devices, 
making them ideal for telemedicine and remote patient care.

Adding blockchain technology to our future work on 
FPGA-based ECG denoising systems will improve the 
privacy and security of patient data. This requires the use 
of stringent data encryption, the creation of immutable, 
tamper-proof records via blockchain, and the development 
of permissioned access mechanisms via smart contracts. 
Interoperable data standards and secure communication 
protocols are essential for protecting information dur-
ing transmission. By combining FPGAs and blockchains, 

5 Conclusion

The investigation of FPGA-based denoising techniques for 
improving signal quality in ECGs yielded promising results 
and insights. The accuracy of cardiac diagnosis and moni-
toring are directly related to the quality of the ECG data, 
making denoising the signal essential. In this research, we 
studied an iterative procedure that includes data acquisition, 
HSST-based decomposition, DFA-based noise reduction, 
NLM-based denoising with PSO optimization, and sig-
nal reconstruction. Our method was shown effective by a 
thorough analysis of the denoised signals utilising standard 
performance metrics like SNR and RMSE. The proposed 
method archives SNR values of 29.56 dB, 29.68 dB, and 
28.86 dB and RMSE values of 0.0153, 0.0249, and 0.04159. 
The ECG denoising technique ran smoothly on an FPGA. 
We assessed the FPGA’s power consumption and resource 

Table 8 Comparison of the proposed method with the existing methods
Model Noise SNR RMSE
Hybrid MLPT-EEMD (Multi-scale Local Polynomial Trans-
form and Ensemble Empirical Mode Decomposition) [33]

White Gaussian Noise 25.93 0.0012

Disentangled Autoencoder [34] Muscle Artefacts 27.64 0.0189
Electrode Motion 28.31 0.0183
Baseline Wander 24.30 0.0307

Recursive Least Square Adaptive filter [35] Baseline Wander 23.7 0.0717
Proposed Model Muscle Artefacts 29.56 0.0153

Electrode Motion 29.68 0.0249
Baseline Wander 28.86 0.04159

Table 9 Resource utilization and power consumption of FPGA
Board Resource Utilization Power

LUT Flip Flop DSP Dynamic 
Power 
(mW)

Static 
Power 
(mW)

Available Used (% 
Utilization)

Available Used (% 
Utilization)

Available Used (% 
Utilization)

Virtex 46,560 1254 3 93,120 5345 6 288 32 11 32 103
Zedboards 14,400 1254 9 28,800 5345 19 66 32 48 28 96

Fig. 4 FPGA performance 
evaluation
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healthcare apps can more effectively empower patients, and 
protect their data.
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