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Abstract
Support vector machine (SVM) is a widely used machine learning method in analog circuit fault diagnosis. However, SVM 
parameters such as kernel parameters and penalty parameters can seriously affect the classification accuracy. The current 
parameter optimization methods have defects such as slow convergence speed, easy falling into local optimal solutions, and 
premature convergence. Because of this, an improved grey wolf optimization algorithm (GWO) based on the nonlinear con-
trol parameter strategy, the first Kepler’s law strategy, and chaotic search strategy (NKCGWO) is proposed to overcome the 
shortcomings of the traditional optimization methods in this paper. In the NKCGWO method, three strategies are developed 
to improve the performance of GWO. Thereafter, the optimal parameters of SVM are obtained using NKCGWO-SVM. To 
evaluate the performance of NKCGWO-SVM for analog circuit diagnosis, two analog circuits are employed for fault diag-
nosis. The proposed method is compared with GA-SVM, PSO-SVM and GWO-SVM. The experimental results show that 
the proposed method has higher diagnosis accuracy than the other compared methods for analog circuit diagnosis.

Keywords  Analog circuit diagnosis · Support vector machine (SVM) · Grey wolf optimization (GWO) · First Kepler’s law · 
Chaos search strategy · Parameter optimization · Nonlinear control parameter

1  Introduction

With the rapid development of modern electronic technol-
ogy, analog circuits are widely used and play a vital role 
in various electronic systems. An unexpected failure of the 
analog circuit may lead to sudden breakdown of the entire 
equipment, resulting in huge economic losses or even casual-
ties [1–3]. However, analog fault diagnosis is still a challeng-
ing task because of poor fault models, component tolerances 
and nonlinear effects of analog circuits [4, 5]. Consequently, 

effective fault detection and isolation for analog circuits to 
avoid system failure has become an active research field, and 
many different methods have been proposed [6–9]. Analog 
diagnosis approaches are usually classified into two main 
categories: simulation before test (SBT) and simulation after 
test (SAT) [4, 10–12]. The SAT method is limited by com-
putational time in the testing process. In contrast, the SBT 
method is more acceptable because only off-line computa-
tion is needed before testing [13]. Among all SBT meth-
ods, data-driven methods, such as artificial neural networks 
(ANNs) and support vector machines (SVMs), are very 
popular and more suitable for analog fault diagnosis because 
they do not need an explicit model [6–9, 14, 15]. Consider-
ing the trade-off between the global optimizing solution and 
generalizing ability, SVM has been regarded as an effective 
tool for fault diagnosis of analog circuits [16–20].

Support vector machine (SVM) is a machine learning 
method based on statistic learning theory and has good clas-
sification ability for small-sample, nonlinear, high-dimension 
problems [21]. However, SVM classification accuracy heavily 
depends on the SVM parameters, such as the penalty param-
eter C and the kernel parameter γ the RBF kernel function, and 
it is very difficult to determine the optimal SVM parameters. 
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Currently, different optimization algorithms are used to select 
the optimal SVM parameters. A straightforward method, the 
exhaustive grid search (GS), is proposed to optimize the SVM 
parameters [22]. Li and Zhang [23] used a genetic algorithm 
(GA) to optimize the SVM parameters. Sun et al. [24] success-
fully used the particle swarm optimization (PSO) method to 
obtain the optimal SVM parameters. Soroor and Hossein [25] 
presented an SVM parameters optimization method based on 
a gravitational search algorithm (GSA). However, the afore-
mentioned methods are not ideal. GS is time-consuming and 
difficult as the optimization parameters increase. GA and PSO 
easily fall into local optima and exhibit premature convergence 
in the search space.

The grey wolf optimization (GWO) algorithm was first 
proposed by Seyedali et al. [26] as a novel heuristic optimi-
zation method based on the leadership behavior and hunting 
mechanism of grey wolves. GWO can avoid local optima to 
some extent. The performance of GWO is superior to that of 
PSO, GA, and GSA on twenty-nine benchmark test functions. 
However, in some cases, GWO also suffers from premature 
convergence and fails to find a global optimal solution. This 
may be attributed to the fact that the wolves lack informa-
tion sharing among them [27]. GWO needs a better trade-off 
between exploitation and exploration. Hence, it cannot always 
deal with optimization problems successfully.

In this paper, an improved GWO is introduced to optimize 
the penalty parameter C and the kernel parameter γ of SVM. In 
this method, the nonlinear control parameter strategy can gen-
uinely reflect the actual search process of the GWO algorithm. 
Since the search process of the GWO algorithm is nonlinear 
and highly complicated, the first Kepler’s law strategy can 
better balance the exploration and exploitation of the GWO 
algorithm, and the chaos search strategy is introduced to avoid 
falling into a local optimum. These improvements evidently 
enhance optimization efficiency.

The rest of this paper is organized as follows. In Sect. 2, the 
principle of SVM is briefly introduced. In Sect. 3, the concepts 
of GWO are described, and NKCGWO is proposed. In Sect. 4, 
the proposed NKCGWO-SVM is put forward in detail. The 
experimental research is presented in Sect. 5. In Sect. 6, the 
conclusions are given.

2 � The principle of SVM

Support vector machine (SVM) was first proposed by Vapnik 
based on the principle of structural risk minimization, with 
good classification ability [28]. the purpose of SVM is to iden-
tify hype-plane to separate different classes by maximizing the 
distance between classes. the basic principle of SVM is briefly 
described as follows.

Assume we have training sample sets X = {xi, yi}
n

i=1
 , where 

xi ∈ Rd represents the i-th training sample and yi is the class 

label of xi . If the training samples can be separated linearly, 
the hyper-plane is defined as follows:

where wrepresents a weight vector, and b is a bias value. 
The hyperplane can correctly separate training samples 
belonging to different categories, and it is satisfactory that 
the margin between the two classes that point closest to 
the hyperplane is the largest. The hyperplane is called the 
optimal separating hyperplane. The problem of the optimal 
separating hyperplane based on the principle of structural 
risk minimization can be described as the following convex 
quadratic programming problem:

If the training samples are linearly non-separable, the pen-
alty parameter and the slack variable must be introduced. 
Hence, the SVM classification optimal problem can be 
found after resolving the following constrained optimization 
problem:

where, C is the penalty parameter and �i represents the slack 
variable.

If the training samples are nonlinearly separable, a ker-
nel function is used to transform the training samples into 
a high-dimensional dot product space using a nonlinear 
function Φ, where the data can be separated linearly. The 
definition of the kernel function is shown in formula (4). 
The convex quadratic programming problem of the SVM 
classifier is given in formula (5).

To solve the optimal problem of Eq. (5), the Lagrange 
multiplier is used. Then, the quadratic programming (QP) 
problem can be transformed into the dual problem as 
follows:
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where, �i is the Lagrange multiplier. The final optimal clas-
sification surface function can be given as follows:

From Eqs. (5) and (6), we can see that the performance 
of SVM largely depends on the type of kernel function, the 
parameter of the kernel function, and the penalty parameter C.

In this paper, we choose the RBF kernel as the kernel func-
tion of SVM, which is shown in the following formula:

where γ is inversely proportional to the width of the kernel.
Traditionally, the SVM classifier uses a default set of C and 

γ in solving the pattern classification problems, which usu-
ally cannot obtain a satisfactory classification result because 
the SVM classifier with a different set of C and γ has a dif-
ferent performance. Finding an effective way to obtain the 
optimal parameters C and γ is crucial for improving the SVM 
performance.

3 � Improved GWO

3.1 � Classical grey wolf optimization algorithm

The grey wolf optimization algorithm (GWO) is a new 
metaheuristic algorithm inspired by the social hierarchy and 
hunting strategies of grey wolves in nature [26].

To establish a social hierarchy of grey wolves, all grey 
wolves are categorized into four groups according to the fitness 
value: alpha ( � ), beta ( � ), delta ( � ), and omega ( � ) wolves. 
The best solution in the population is denoted as alpha ( � ). 
Similarly, the second and third best solutions are named beta 
( � ) and delta ( � ), respectively. The remaining solutions are 
considered as omega ( � ). In GWO, the � wolves are mainly 
guided by � , �, and � toward promising areas of the search 
space. The social hierarchy of grey wolves is shown in Fig. 1.

The hunting behavior of the grey wolf is mainly divided 
into three steps: tracking, encircling and attacking the prey. 
Encircling the prey can be mathematically expressed as 
follows:

where t represents the current iteration. D is the distance 
between the position of the prey and the grey wolf. Xp and 
X denote the position vectors of the prey and a grey wolf, 
respectively. A and C are coefficient vectors that are calcu-
lated as follows:

(7)f (x) = sgn
(∑n

i=1
�∗
i
yiK

(
xi, x

)
+ b∗

)

(8)K
(
xi, xj

)
= exp

(
−�xi − x2

j

)

(9)D =
|||C ⋅ Xp(t) − X(t)

|||

(10)X(t + 1) = Xp(t) − A ⋅ D

where r1 and r2 are random variables in [0,1]. au is a con-
trol parameter, called the convergence factor, whose value 
linearly decreases from 2 to 0 during the iteration process. 
tmax is the maximum number of iterations. The exploration 
and exploitation decisions are made based on the value of A.

The positions of � are updated according to the positions 
of � , �, and � as follows:

The GWO algorithm begins with the initialization of the 
grey wolf population. The search process is mainly guided 
by � , � and � . When |A| > 1 , they diverge from each other to 
search for prey. When |A| < 1 , they converge to attack prey. 
Finally, the optimal solution is obtained if the maximum 
number of iterations is reached.

The pseudo code of the GWO algorithm is presented in 
Fig. 2.

The grey wolf optimization algorithm.

(11)A = 2au ⋅ r1 − au

(12)C = 2r2

(13)au = 2 − 2t∕tmax

(14)

⎧⎪⎨⎪⎩

D� = ��C1 ⋅ X� − X��
D� =

���C2 ⋅ X� − X
���

D� =
��C3 ⋅ X� − X��
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��X� − A1 ⋅ D�

��
X2 =
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���
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��X� − A3 ⋅ D�
��

(16)X(t + 1) =
X1 + X2 + X3

3
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β

δ

ω

Fig. 1   The social hierarchy of grey wolves
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3.2 � The proposed NKCGWO

To prevent the GWO algorithm from premature conver-
gence and falling into a local optimal solution, enhance 
the abilities of exploration and exploitation and improve 
the performance of the GWO algorithm, the nonlinear con-
trol parameter strategy, the first Kepler’s law strategy and 
the chaotic search strategy are simultaneously embedded 
into the GWO algorithm, which is called NKCGWO. The 
NKCGWO algorithm can simulate the grey wolf preda-
tion process more realistically. The construction of the 
NKCGWO will be introduced in this section.

3.2.1 � Nonlinear control parameter strategy

In the GWO algorithm, au plays an important role in the 
trade-off between exploration and exploitation. A smaller 
au is conducive to local exploitation, while a larger au is 
beneficial to global exploration. However, in the classical 

GWO algorithm, the linearly decreasing au strategy cannot 
truly reflect the search process because the search process 
of grey wolves is nonlinear and highly complex. The value 
of au should be a nonlinearly decreasing value rather than 
being a linearly decreasing quantity. As a result, a nonlin-
ear control parameter strategy is presented [29]. The au is 
modified as follows:

where e is the base of the natural logarithm. The t is the cur-
rent iteration. The tmax is the maximum number of iterations. 
The k is the adjustment parameter. The k is set to 2 [29]. The 
auinit and aufin are the initial value and final value of control 
parameter au, respectively. The variation trend of au with 
increasing iteration is shown in Fig. 3.

From Fig. 3, it can be seen that when k = 2, the improved 
control parameter au nonlinearly decreases from 2 to 0 dur-
ing the iteration process. At the beginning of the iteration, 

(17)au =
(
auinit − aufin

)
−
(
auinit − aufin

)(e
t

tmax − 1

e − 1

)k

Fig. 2   Pseudo code of the GWO 
algorithm
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the decay rate of the improved au is slower than that of the 
original au, which can better find the global optimal solution. 
At the end of the iteration, the decay rate of the improved 
au is faster than that of the original au, in order to make the 
search for the local optimal solution more accurate. There-
fore, the nonlinear control parameter strategy is more prac-
tical, ensuring the abilities of exploration and exploitation, 
balancing global and local search performance, and further 
enhancing the algorithm’s global optimization ability.

3.2.2 � The first Kepler’ law strategy

The first Kepler’s law is that the orbits of the planets revolv-
ing around the Sun are ellipses [30]. In other words, the dis-
tance between the planets and the Sun is different in different 
times. The concept is introduced into the GWO algorithm. 
This means that grey wolves (the planets) move around the 

prey (the Sun) in an elliptical orbit. The first Kepler’s law 
strategy can make a good trade-off between exploration 
and exploitation. Meanwhile, it also makes exploration and 
exploitation more efficient. The steps of the first Kepler’s 
law strategy are described as follows:

Suppose the group size of the grey wolf pack is N, and 
K grey wolves (K < N) are randomly selected from the grey 
wolf pack. The new positions of K grey wolves (Xi,new, 
i = 1, …, K) are calculated by Eq. (18). Meanwhile, the new 
position of �

(
X�,new

)
 is changed by Eq. (19) as follows [31]:

where, U (− 2,2) is a uniformly distributed random number 
in the interval [− 2,2]. t is the current iteration. Ri,� is the 
Euclidean distance between Xi and X� . If the return value 
of U (− 2,2) is close to 1, the proposed algorithm performs 
exploration; otherwise, it executes exploitation.

Only when the fitness values of the new positions are bet-
ter than those of the original positions can the positions of K 
grey wolves be updated for the next iteration. It is described 
as follows:

The pseudo code of the first Kepler’s law strategy is given 
in Fig. 4.

The first Kepler’s law algorithm.

(18)Xi,new(t + 1) = X�(t) + Ri,� ⋅ U(−2, 2)

(19)X�,new(t + 1) = X�(t) + U(−2, 2)

(20)Xi(t + 1) =

{
Xi,new(t + 1), if fit

(
Xi,new

)
< fit

(
Xi

)
Xi(t), otherwise

Fig. 3   The variation trends of au during the iteration process

Fig. 4   Pseudo code of the first 
Kepler’s law algorithm
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3.2.3 � Chaotic search strategy

The lack of ergodicity in the entire search space can make 
the GWO algorithm easily fall into a local optimum. Chaos 
is a nonlinear phenomenon, and it is stochastic, regular 
and ergodic. Based on the ergodicity of chaos, the chaotic 
search strategy and the GWO algorithm are combined to 
prevent the GWO algorithm from falling into a local opti-
mum and to improve the overall searching ability of the 
algorithm.

A typical chaotic map, called a logistic map is used in this 
paper, and the logistic map is defined as follows [32, 33]:

where the value of a is set to 4 [34], the chaotic behav-
ior of logistic map besprinkles between intervals of [0,1]. 
xi ∈ [0, 1] , i = 1, 2,⋯ ,Max_iter , x1 ∉ [0.25, 0.5, 0.75].

The steps of the chaotic search strategy are described as 
follows:

Step 1: Assume that xi(t) represents the i-th dimension 
value of x(t) in the current iteration. t is the current itera-
tion. Min_xi and Max_xi are the upper and lower bounds of 
xi, respectively. Set t = 0.

Step 2: Map xi(t) to the chaotic variable cxi(t) using the 
following equation [35].

Step 3: Calculate the next iteration cxi(t + 1) of cxi(t) 
using Eq. (21).

Step 4: Transform the chaotic variable cxi(t + 1) to the 
original space xi(t + 1) using the following equation.

Step 5: Assess xi(t + 1) according to the decision function 
fit(xi(t + 1)).

Step 6: If the value of fit(xi(t + 1)) is better than that of 
fit(xi(t)), the offspring will be preserved; otherwise, the value 
of xi(t) is kept unchanged. t = t + 1 and go back to Step 2 to 
continue searching until the maximum number of iterations 
is reached.

3.2.4 � The NKCGWO algorithm

Combining the advantages of the nonlinear control param-
eter strategy, the first Kepler’s law strategy and the chaotic 
search strategy, an improved GWO algorithm is proposed, 
which is NKCGWO. The pseudo code of NKCGWO is 
described in Fig. 5. The changes from GWO are underlined.

The NKCGWO algorithm.

(21)xi+1 = axi
(
1 − xi

)

(22)cxi =
xi −Min_xi

Max_xi −Min_xi

(23)xi(t + 1) = Min_xi + cxi(t + 1)
(
Max_xi −Min_xi

)

4 � SVM parameter optimization 
by the proposed NKCGWO

In this section, we describe the proposed NKCGWO algo-
rithm to optimize the penalty parameter C and the kernel 
parameter γ of SVM. The detailed process of SVM param-
eter optimization based on NKCGWO is illustrated in Fig. 6. 
The implementation steps of the NKCGWO are described 
as follows:

Step 1: Preprocess the dataset: Extract the feature value of 
the dataset, and scale each feature to the range [0,1]. Divide 
the dataset into training set and testing set.

Step 2: Initialize the parameters of NKCGWO: Set the 
maximum number of iterations, population size and dimen-
sion number of the particle. Initial au, A and C. Finite the 
upper and lower bounds of C and γ for SVM. Generate the 
initial position of every particle.

Step 3: Optimize the SVM parameters: Input the train-
ing set into the SVM classifier, which is trained with each 
parameter combination (C, γ). The SVM classifier is evalu-
ated by using the five-fold cross-validation average error as 
the objective function of NKCGWO. The best solution (Copt, 
γopt) is obtained when the termination condition is satisfied.

Step 4: Test classification: Input the testing set into the 
trained SVM classifier with the optimal parameters Copt 
andγopt. Get the classification results.

5 � Experiments circuits and simulation 
results

In this section, we consider two example circuits, includ-
ing a video amplifier circuit and an active band-stop filter 
circuit, to demonstrate the effectiveness of the proposed 
method. OrCAD 16.6 software is implemented to simulate 
circuits, and the NKCGWO-SVM algorithm is programmed 
in Matlab2016b. The steps of analog fault diagnosis based 
on NKCGWO-SVM are given in Fig. 7.

5.1 � Example circuits and fault type

5.1.1 � CTSV filter circuit

The first CUT used in this paper is a CTSV filter circuit. A 
CTSV filter circuit with nominal values of all the compo-
nents is shown in Fig. 8. The tolerance of the resistors and 
capacitors are set to 5% and 10%, respectively. An excita-
tion sinewave voltage source with an amplitude of 5 V and 
a frequency of 100 Hz is loaded as the input of the circuit, 
and the test node, labelled Vout in Fig. 8, is chosen to acquire 
the fault voltage signal.
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Fig. 5   Pseudo code of the 
NKCWGO algorithm
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In this paper, the fault modes of the CTSV filter circuit 
include 5 hard faults, 8 soft faults, and a fault free to be 
diagnosed, as shown in Table 1. Here, soft faults indicate 
that the actual value of the component is higher and lower 
than its nominal value by 50%. Hard faults are caused by 
components that are short or open. In the simulation cir-
cuit, hard faults (open and short faults) are modelled by 
connecting a 100 MΩ resistor in series and paralleling a 
0.01Ω resistor.

In each fault mode, Monte Carlo analysis based on time 
domain transient analysis is run 80 times, and 80 origi-
nal samples of each fault class are obtained. The original 
samples are divided into 50 training sets and 30 testing 
sets. Then, wavelet packet analysis is used to extract fault 
features.

5.1.2 � Active band‑stop filter circuit

The second CUT is an active band-stop filter circuit, as 
shown in Fig. 9. The tolerance of the resistors and capaci-
tors are set to 5% and 10%, respectively. A single pulse 
with a height of 5 V and a duration of 10 us is adopted as 
the input of the circuit. The fault modes of the active band-
stop filter circuit include 5 hard faults, 8 soft faults, and a 
fault free to be diagnosed, as shown in Table 2.

5.2 � Simulation results

To demonstrate the advantage of the proposed method in 
Sect. 4, the proposed method is compared with the follow-
ing three methods: the GA-SVM [36], PSO-SVM [37], and 
GWO-SVM [38]. The parameter settings of the above-men-
tioned methods are listed in Table 3.

Fig. 6   Flowchart of the NKCGWO-SVM
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The Figs. 10 and 11 show the iterative curves of the best 
classification accuracy with the four involved methods for 
hard faults and soft faults in the first CUT, respectively. Fig-
ures 12 and 13 show the best fitness curves for hard faults 
and soft faults in the second CUT, respectively. In Fig. 10, 
the best classification accuracy of NKCGWO-SVM for 

hard faults reach 97.6% in the seventh iteration. The maxi-
mum classification accuracies of the other three methods, 
GWO-SVM, PSO-SVM, and GA-SVM, are 96.6%, 94.5%, 
and 93.6%, respectively. NKCGWO-SVM has a faster con-
vergence rate than the other three methods. In Fig. 11, the 
maximum classification accuracy of NKCGWO-SVM for 
soft faults is 95.1%, which is higher than the other three 
methods, but it is lower than the maximum classification 
accuracy of the method for hard faults in Fig. 10. The rea-
son is that fault diagnosis for hard faults is easier than fault 
diagnosis for soft faults. In Figs. 12 and 13, the same results 
can be obtained; that is, for the second CUT, the proposed 
method has better recognition ability than GA-SVM, PSO-
SVM, and GWO-SVM.

The average diagnosis results of two CUTs using the four 
involved methods are shown in Tables 4 and 5, respectively. 
It is shown that NKCGWO-SVM has higher average recog-
nition capability than the other methods in the two CUTs.

To further study the diagnosis performance of the pro-
posed method in the analog circuit, the detailed misclas-
sification analyses of the four involved methods for the 
second CUT are shown in Figures. 14, 15, 18, 17. Fig-
ure 14 shows that 31 of 420 cases are misclassified using 
GA-SVM. Figures 15, 16, 17 show that 27 of 420 cases 
are misclassified using PSO-SVM, 21 of 420 cases are 
misclassified using GWO-SVM, and 19 of 420 cases are 
misclassified using NKCGWO-SVM. From Fig. 14, 15, 
16, 17, we conclude that NKCGWO-SVM has the smallest 
misclassification compared to GA-SVM, PSO-SVM and 
GWO-SVM in fault diagnosis of analog circuits.

Fig. 7   Flow chart of analog fault diagnosis based on NKCGWO-
SVM

Fig. 8   CTSV filter circuit



506	 Analog Integrated Circuits and Signal Processing (2024) 119:497–510

1 3

Table 1   Fault values for the CTSV filter circuit

Fault ID Fault class Faulty 
value

Fault ID Fault class Faulty 
value

F0 NF – F7 R1↓ 5 kΩ
F1 R5-open Open F8 R2↑ 15 kΩ
F2 R5-short Short F9 R2↓ 5 kΩ
F3 R3- short Short F10 C1↑ 30 n
F4 R7-open Open F11 C1↓ 10 n
F5 R7-short Short F12 C2↑ 30 n
F6 R1↑ 15kΩ F13 C2↓ 10 n

Fig. 9   Active band-stop filter circuit

Table 2   Fault values for the active band-stop filter circuit

Fault ID Fault class Faulty 
value

Fault ID Fault class Faulty 
value

F0 NF – F7 R1↓ 7.5 kΩ
F1 R2-short short F8 R9↑ 15 kΩ
F2 R9-short short F9 R9↓ 5 kΩ
F3 R10-open open F10 R10↑ 15 kΩ
F4 C1-open open F11 R10↓ 5 kΩ
F5 C3-short short F12 C4↑ 15n
F6 R1 ↑ 22.5 kΩ F13 C4↓ 5n

Table 3   Parameter settings of 
the used algorithms

The symbol “–” in Table 2 indicates that the parameter does not exist

Parameter GA-SVM PSO-SVM GWO-SVM NKCGWO-SVM

Population size 100 100 100 100
Maximum number of iterations 100 100 100
Dimension of each particle 2 2 2 2
Crossover probability 0.5 – – –
Mutation probability 0.005 – – –
Inertia weight – 0.72 – –
Cognitive coefficient – 2 – –
Social coefficient – 2 – –
Control parameter (au) – – [2,0] [2,0]
Penalty parameter (C) [10−3,103] [10−3,103] [10−3,103] [10−3,103]
Kernel parameter(γ) [10−3,103] [10−3,103] [10−3,103] [10−3,103]
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For different training sets, training sets and testing sets 
consisting of 20, 40, 60, 80 and 30 samples for each fault 
class are used. Figure 18 shows that the rate of correct 
classification of the proposed method is higher than that 
of the other three methods in different numbers of training 
samples in the first CUT.

Fig. 10   Iterative curves of hard faults in the first CUT​

Fig. 11   Iterative curves of soft faults in the first CUT​

Fig. 12   Iterative curves of hard faults in the second CUT​

Fig. 13   Iterative curves of soft faults in the second CUT​

Table 4   Comparison of diagnosis results with the four involved meth-
ods for the CTSV filter circuit

Algorithms Penalty 
parameter 
(C)

Kernel 
parameter 
(γ)

Accuracy (%)

Method 1 [36] 74.4 1.4 92.6
Method 2 [37] 76.3 1.8 93.4
Method 3 [38] 85.7 2.4 95.6
The proposed method 94.7 3.2 96.7

Table 5   Comparison of diagnosis results with the four involved meth-
ods for the active band-stop filter circuit

Algorithms Penalty 
parameter 
(C)

Kernel 
parameter 
(γ)

Accuracy (%)

Method 1 [36] 76.4 1.9 92.3
Method 2 [37] 78.9 2.1 93.2
Method 3 [38] 87.6 2.7 94.8
The proposed method 99.9 3.6 96.4
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6 � Conclusions

In this paper, the NKCGWO method is used to optimize 
the parameters of SVM for fault diagnosis of analog cir-
cuits. The proposed method has good search and conver-
gence performance. NKCGWO-SVM can improve the 
classification accuracy of SVM by optimizing the penalty 
parameter C and the kernel parameter γ to evaluate the rec-
ognition capability of the proposed method. Experiments 
on two analog circuits, a video amplifier circuit and an 
active band-stop filter circuit, are performed. Other meth-
ods are also used to perform comparisons. The experi-
mental results demonstrate that the proposed method has 
higher performance in terms of fault classification than 
GA-SVM, PSO-SVM and GWO-SVM.

Fig. 14   The classification results based on GA-SVM

Fig. 15   The classification results based on PSO-SVM

Fig. 16   The classification results based on GWO-SVM

Fig. 17   The classification results based on NKCGWO-SVM

Fig. 18   The rate of correct classification of the four methods for dif-
ferent numbers of training samples
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