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Abstract
This work proposes an efficient analytical design procedure for elliptical and circular 2D digital filters with an adjustable 
response. The design relies on a 1D low-pass prototype filter with a specified bandwidth, to which a particular frequency 
mapping is applied. The prototype can be scaled in frequency, having adjustable selectivity. This analytical procedure 
yields 2D filters with accurate shape even near the frequency plane margins, very low distortions and steep transition at a 
relatively low order, thus being very efficient. The elliptical filters can be tuned to a desired orientation angle and can be 
used as directional filters. Also an uniform circular filter bank with a specified number of bands is designed. The frequency 
response results directly factored, and the corresponding filter matrices result as a convolution of small size matrices, which 
simplifies implementation and allows for a sequential filtering, in several steps. The proposed method is based entirely on 
accurate approximations and frequency mappings, without using any numerical optimization algorithms. Several examples 
of filtering on various test images are provided, to illustrate the capabilities of this class of filters.

Keywords  2D filters · Filter banks · Analytical design · Frequency mapping · Directional filtering · Approximations

1  Introduction

Ever since the expansion of digital signal processing field, 
two-dimensional filters have been extensively studied by many 
researchers, due to the their essential applications in image pro-
cessing, and many design techniques have been developed [1]. 
While algorithms involving numerical optimization generally 
yield optimal 2D filters, ensuring the best trade-off between 
accuracy and complexity, analytical design methods based on 
various transformations have also become popular due to their 
obvious advantages. The frequency response of the designed 
filter results in closed form, and it can be also made adjustable 
through specified parameters, when necessary. Generally, ana-
lytical methods are based on 1D prototypes with imposed shape 
and specifications, which then generate the desired 2D filters by 
applying various frequency mappings.

Researchers have developed a large variety of 2D filters, both 
of FIR and IIR type, with frequency response of various shapes, 
each finding specific applications in image processing. A widely-
used technique for designing 2D FIR filters with various shapes is 
the McClellan transform [2, 3]. A particular class are elliptically-
shaped filters, approached in works such as [4, 5, 6, 7]. In [4], 
design of oriented 2D filters with elliptical magnitude response 
is proposed, while [5] describes a multiscale region detector, 
based a set of elliptical Gaussian filters for low-level image anal-
ysis. Elliptical symmetry in 2D filters by adjusting parameters 
is studied in [6], and image filtering with a variable Gaussian 
elliptic window is investigated in [7]. Elliptical filters found use-
ful applications in iris recognition [8], fingerprint enhancement 
[9] etc. Filters with circular symmetry are also widely used for 
their capabilities in image analysis; many design methods have 
been developed in papers such as [10–15]. Many works approach 
circular filters (CF) design using various methods. In the early 
papers [10, 11], 2D recursive filters with circular symmetry are 
designed. Wide-band FIR CFs using McClellan transform are 
studied in [12, 13], linear-phase CF using semi-definite program-
ming in [14]. An efficient method to accelerate design of FIR 
CFs, using B-spline, piecewise Lagrange interpolation and non-
linear optimization is proposed in [15]. An interesting application 
of Gabor CFs in invariant texture segmentation is given in [16].
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The author has also proposed various analytical design 
procedures for 2D filters with elliptical symmetry [17–19] 
and also with circular shape, in particular circular filter 
banks [20, 21, 22], useful in image analysis.

This work proposes an analytical design procedure for zero-
phase 2D filters with elliptical and circular symmetry of their fre-
quency response. They are derived applying a specific frequency 
transformation to the response of an adjustable 1D prototype. The 
filters result very selective at a relatively low order, inheriting the 
steepness from the corresponding prototypes. Their frequency 
responses have a very accurate shape in the frequency plane, 
and result directly in a factored form, which is a major advan-
tage in implementation. Design examples are provided and also 
applications in image filtering are given, in order to illustrate 
their capabilities.

This work continues and expands the previous paper [22] 
which treated only circular filters. It extends the design procedure 
to the more general case of 2D filters with elliptically-shaped 
frequency response (low-pass, band-pass and directional) and 
includes circular filters as a particular case. Many typical design 
examples of 2D elliptical filters for various specifications were 
added. Several simulation results of filtering with elliptical and 
circular filters on several test images were included. 

2 � Low‑pass and band‑pass zero‑phase 
prototypes

2.1 � Low‑pass zero‑phase prototype

In the field of image processing, zero-phase filters are com-
monly used, as they do not introduce phase distortions in the 
filtered image. Let us consider the following real function, 
regarded as a simple, convenient approximation of a zero-
phase low-pass (LP) filter with cut-off frequency �0 = �∕2:

In order to achieve more selective filters, the constant a 
should be larger. However, for larger values of parameter 
a, the prototype order will increase. Let us take the value 

(1)
HP0(�) = 0.5 ⋅ (tanh (a ⋅ (� + �∕2)) − tanh (a ⋅ (� − �∕2)))

a = 10 ; next we need to find an accurate rational approxi-
mation of the prototype function HP0(�) , within a specified 
error, valid at least along the frequency interval [−�,�] . We 
use for this purpose the efficient Chebyshev-Padé expan-
sion, yielding a low-order, uniform rational approximation 
of a function on a specified range. It is easily derived using 
a symbolic calculation software like MAPLE. Thus, the fol-
lowing 8-th order rational approximation of HP0(�) results:

where � = 0.010179 ; here P(�) and Q(�) are even polynomi-
als in factored form:

Thus, HP(�) in (2) is the frequency response of a zero-
phase low-pass filter (LPF) with cut-off frequency �0 = �∕2 
(shown on the range [−�,�] in Fig. 1(a)).

In order to obtain an adjustable LPF, we simply make 
prototype HP(�) scalable on the frequency axis, by making 
the frequency scaling (substitution) � → p ⋅ � , where p > 0 
is the scaling parameter; for p > 1 the filter will be narrower, 
and for p < 1 it will be wider. Thus the adjustable prototype 
has the frequency response:

2.2 � Design of band‑pass prototype filters

Since we envisage to design next (in sub-Sect.  2.3) a uni-
form filter bank, we need to obtain a band-pass filter (BPF) 
with a specified central frequency and bandwidth from the 
designed parametric LPF. In general, shifting the LPF fre-
quency response HLP(�) = � ⋅ P0(�)

/
Q0(�)  to the frequen-

cies ±� 0 , we obtain the following BPF:

(2)HP(�) ≅ � ⋅ P(�)∕Q(�)

(3)
P(�) = (�2 − 4.099)(�2 − 5.8922)(�2 − 8.1354)(�2 − 9.5965)

(4)
Q(�) = (�4+0.2777 ⋅ �2 + 3.501)(�4 − 4.50512 ⋅ �2 + 5.51545)

(5)
HP(�)

≅ � ⋅
(p2�2 − 4.099)(p2�2 − 5.8922)(p2�2 − 8.1354)(p2�2 − 9.5965)

(p4�4+0.2777 ⋅ p2�2 + 3.501)(p4�4 − 4.50512 ⋅ p2�2 + 5.51545)

Fig. 1   (a) Zero-phase LP proto-
type filter frequency response; 
(b) Parabolic function (blue) 
and its approximation (red)
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It can be shown that HBP(�) results even, so it can always 
be expressed as a function of squared frequency variable �2.

Substituting now the shifted numerator PP(� ± �0) and 
denominator QP(� ± �0) from (2) to (4) into (6), after doing 
the calculations, finally the BP filter frequency response 
HBP(�) results as a ratio of two even polynomials of degree 
16, where the numerator HN(�) and denominator HD(�) are 
even polynomials of the form:

The coefficients of the above polynomials are found by 
simple identification and have the following expressions 
depending on the scaling parameter p and specified central 
frequency �0 of the BP prototype, where x = p2 ⋅ �2

0
:

Thus, for any specified selectivity given by the scaling 
parameter p and a central frequency �0 , the BPF coeffi-
cients result directly using expressions (8).

(6)

HBP(�) = HLP(� − �0) + HLP(� + �0)

= � ⋅
P0(� − �0)Q0(� + �0) + P0(� + �0)Q0(� − �0)

Q0(� − �0)Q0(� + �0)
=

HN(�)

HD(�)

(7)
HN(�) = a8 ⋅ �

16 + a7 ⋅ �
14 + ... + a2 ⋅ �

4 + a1 ⋅ �
2 + a0 =

8∑
k=0

ak ⋅ �
2k

HD(�) = b8 ⋅ �
16 + b7 ⋅ �

14 + ... + b2 ⋅ �
4 + b1 ⋅ �

2 + b0 =

8∑
k=0

bk ⋅ �
2k

(8)

a0 = 2(x − 4.099)(x − 5.8922)(x − 8.1354)(x − 9.5965)(x2 + 0.2777x + 3.501)

⋅(x2 − 4.50512x + 5.51545)

a1 = −16p2(x + 9.1163)(x − 1.75455)(x − 5.05279)(x − 7.56525)

⋅(x − 14.09504)(x2 − 0.6177x + 0.7279)

a2 = 56p4(x − 6.72613)(x − 14.55081)(x2 + 12.13664x + 38.1214)

⋅(x2 − 1.12951x + 0.356516)

a3 = −112p6(x + 8.11544)(x − 0.3055)(x − 12.85724)(x2 + 2.19457x + 12.25043)

a4 = 140p8(x − 0.69527)(x − 7.03916)(x2 + 10.01661x + 27.95546)

a5 = −112p10(x + 6.0369)(x2 − 0.902x + 7.7467)

a6 = 56p12(x2 + 5.70545x + 14.441)...a7 = −16p14(x + 3.99381)...a8 = 2p16

b0 = (x2 + 0.277753x + 3.5010423)(x2 + 0.277647x + 3.50096)

⋅(x2 − 4.5051x + 5.515525)(x2 − 4.505134x + 5.5153753)

b1 = −8p2(x + 3.10388)(x − 1.65803)(x − 3.0089)(x2 − 0.677743x + 0.413973)

⋅(x2 − 3.043441x + 10.724225)

b2 = 28p4(x − 0.3087653)(x − 0.770433)(x2 + 3.7212x + 6.536534)

⋅(x2 − 5.35963x + 11.546055)

b3 = −56p6(x + 2.0229)(x − 0.2743)(x − 2.808246)(x2 + 0.30475x + 4.40546)

b4 = 70p8(x2 + 2.307184x + 2.91129)(x2 − 1.703266x + 1.076225)

b5 = −56p10(x + 1.304226)(x2 + 0.0545871x + 1.2889)

b6 = 28p12(x2 + 1.5098x + 1.1929)...b7 = −8p14(x + 1.056855)...b8 = p16

2.3 � Design of a 1D uniform filter bank prototype

For an uniform filter bank (FB) with N components, the 
range [0,�] will be divided into N equal frequency inter-
vals corresponding to the pass bands of the component 
filters. In this way, the cut-off frequency of first compo-
nent filter (LPF) decreases to � 1 = �∕N  , so the proto-
type frequency response will be compressed along the 
frequency axis by a factor p = � 0

/
� 1 = N∕2 . The other 

BP filter bank components will have bandwidths equal to 
BW = �∕N , being derived from a LPF prototype with cut-
off frequency � 2 = �∕(2N) by shifting it along the fre-

quency axis. Thus the k-th BPF is centered at frequency 
� 0k = (2k − 1)�∕(2N) [22].

Next the components of a uniform FB are derived, 
based on the chosen prototype. Considering a uniform 
FB with 8 components, it divides the frequency inter-
val [−�,�] into 8 equal sub-bands, each of bandwidth  
�B = �∕8 [22]. The first component is a LPF with cutoff 
frequency �C = �∕8 (in Fig. 2(a)). Since the cutoff fre-
quency is �∕2 , in order to obtain a LPF with �CLP2 = �∕8 , 
the former filter is compressed four times on the frequency 
axis, therefore in the frequency response we will impose 
the scaling � → 4� , thus obtaining the LPF HP1(�) shown 
in Fig. 2(a), with cutoff frequency �C = �∕8 [22]:

The BP components of the FB will result by shifting the 
LPF frequency response. However, to obtain a bandwidth 
of �∕8 , the LPF must have a cutoff frequency of �∕16 . 
Applying the scaling � → 8� to prototype HLP(�) given 
by (2)–(4), we obtain the LPF frequency response, where 
� = 0.010179 (shown in Fig. 2 (b)) [22]:

(9)

HP1(�) = 0.010179 ⋅ (�
2 − 0.256187) ⋅ (�2 − 0.036826)
(�4+0.1736 ⋅ �2+0.13676)

⋅
(�2 − 0.508463) ⋅ (�2 − 0.59978)
(�4 − 0.28157 ⋅ �2+0.215447)

(10)
HLP(�) =� ⋅

(�2 − 0.06405) ⋅ (�2 − 0.092066)

(�4+0.00434 ⋅ �2+0.0008547)

⋅

(�2 − 0.12712) ⋅ (�2 − 0.14995)

(�4 − 0.070393 ⋅ w + 0.001346)
= � ⋅

P0(�)

Q0(�)
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For example, the second FB component is the first BP filter, 
with central frequency �P2 = �0 = 3�∕16 . Using coefficients 
expressions (8), after algebraic calculations, we obtain the fre-
quency response HP2(�) shown in Fig. 2(c):

where � = 0.020358 . Similarly, we obtain the BPF HP3(�) , 
shown in Fig. 2(d). The entire uniform FB prototype com-
posed of the 8 filters is shown in Fig. 2(e). As an important 
remark, by scaling (compressing) along frequency axis the 
original LPF prototype HP(�) from (2), the steepness of 
resulting filter increases accordingly, but without increas-
ing the order, which is an advantage.

(11)
HP2(�) = � ⋅

(
�4 − 0.06687 ⋅ �2+0.00777

)(
�4 − 0.23189 ⋅ �2+0.01375

)
(
�4 − 0.31754 ⋅ �2+0.02569

)(
�4 − 0.41541 ⋅ �2+0.05718

)

⋅

(
�4 − 1.38799 ⋅ �2+0.4835876

)(
�4 − 1.58783 ⋅ �2+0.721

)
(
�4 − 0.963444 ⋅ �2+0.26331

)(
�4 − 1.21107 ⋅ �2+0.368513

)

3 � Design of elliptically‑shaped filters

Next we propose an efficient design technique for 2D 
elliptically-shaped filters, based on 1D filters, considered 

as prototypes.
The specified parameters are the values of the ellipse 

semi-axes and the orientation, described by the angle 
formed by the large axis with frequency axis � 1 . From 
the frequency response (5) of the adjustable 1D prototype, 
a 2D filter with elliptical shape results using the frequency 
mapping �2

→ E�(�1,�2) , where [18]:

Fig. 2   (a) LPF component of the prototype FB; (b) LPF which generates BP components; (c) first BPF component; (d) second BPF component; 
(e) uniform filter bank prototype
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The parameters E and F are the ellipse semi-axes, where 
usually E > F . Thus, starting from a 1D prototype, a 2D 
elliptical filter results, described by E, F and � . Using the 
identity � 1� 2 = 0.5 ⋅

(
(� 1 + � 1)

2 − �2
1
− �2

2

)
 , we get the 

mapping [18]:

With notations q = 1
/
E2 + 1

/
F2 , r = 1

/
E2 − 1

/
F2 , 

coefficients a, b and c result as:

To find a rational trigonometric approximation for �2 
on the range [−�,�] , we use the change of variable [18]:

First we find a rational approximation for function 
(arccos(x∕�))2 , applying (15). Thus, we obtain using 
MAPLE the first-order Chebyshev-Padé approximation in x:

Substituting back in (16) x = � cos� , we get the 
approximation for �2 (Fig. 1(b)):

This approximation turns out to be accurate for 
� ∈ [−�,�] , with visible errors only near the margins, 
where it diverges; being of minimum order, it is also very 
efficient. A circular filter obviously results using the map-
ping (12), taking equal semi-axes, E = F . Thus we get the 
well-known mapping which yields circular filters:

Writing approximation (17) for frequency variables �1 , 
�2 and their sum � 1 + � 2 , the expressions of �2

1
 , �2

2
 and 

(� 1 + � 2)
2 are then replaced into (13), giving:

Making the calculations we obtain the numerator and denominator as:

(12)E�(�1,�2) = �2
1

(
cos2 �

E2
+

sin2 �

F2

)
+ �2

2

(
sin2 �

E2
+

cos2 �

F2

)
+ �1�2 sin(2�)

(
1

F2
−

1

E2

)

= a0 ⋅ �
2
1
+ b0 ⋅ �

2
2
+ c0 ⋅ �1�2

(13)�2
→ E�(�1,�2) = a ⋅ �2

1
+ b ⋅ �2

2
+ c ⋅ (�1 + �2)

2

(14)

a = a0 − 0.5 c0 = q + r ⋅ cos(2�) + r ⋅ sin(2�)

b = b0 − 0.5 c0 = q − r ⋅ cos(2�) + r ⋅ sin(2�)

c = 0.5 c0 = −r ⋅ sin(2�)

(15)� = arccos (x∕�) ↔ x = � cos�

(16)
(arccos(x∕�))2 ≅ (2.35065 - 0.7066 ⋅ x)∕ (1 + 0.149263 ⋅ x)

(17)
�2 ≅ 2.3969 ⋅ (1 − cos�)∕ (1 + 0.364286 ⋅ cos�) = P(�)∕Q(�)

(18)�2
→ �2

1
+ �2

2

(19)
�2

→ E�(�1
,�

2
) = a ⋅

P(�
1
)

Q(�
1
)
+ b ⋅

P(�
2
)

Q(�
2
)

+ c ⋅
P(�

1
+ �

2
)

Q(�
1
+ �

2
)
=

M(�
1
,�

2
)

N(�
1
,�

2
)

Using the expressions P(�) , Q(�) from (17) and substitut-
ing them in (20), using also (14), the parametric expression of 
the numerator M(�1,�2) can be written as:

Using the trigonometric identities cos� 1 = 0.5 ⋅ (z1 + z−1
1
)

,cos�2 = 0.5 ⋅ (z2 + z−1
2
) , in complex frequency variables 

z1 = ej�1 , z2 = ej�2 and taking into account (17) and (19)–(21), 
the mapping (19) is expressed in matrix form as:

where  t he  vec to r s  a re :  �1 = [1 z−1
1
... z−4

1
] and 

�2 = [1 z−1
2
... z−4

2
] . Matrix � corresponding to numerator 

M(�1,�2) in (19) is given by the linear combination:

where the component matrices �0,�1,�2 of size 5 × 5 
have constant elements and result through identifying cor-
responding coefficients from terms M0(�1,�2),M1(�1,�2) , 
M2(�1,�2) of (22), interpreted as Discrete Space Fourier 
Transforms (DSFT), in frequency variables �1 and �2 , of 
the matrices �0 , �1 and �2 , respectively. The denominator 
N(�1,�2) in (19) corresponds to a 5 × 5 matrix N with con-
stant elements, resulted similarly by identifying coefficients 
of the terms of N(�1,�2) in (21), regarded as DSFT. The 
matrices �0 , �1 , �2 and � are displayed below:

(20)

M(�1,�2) = a ⋅ P(�1) ⋅ Q(�2) ⋅ Q(�1 + �2)
+ b ⋅ Q(�1) ⋅ P(�2) ⋅ Q(�1 + �2)
+ c ⋅ Q(�1) ⋅ Q(�2) ⋅ P(�1 + �2)

(21)N(�1,�2) = Q(�1) ⋅ Q(�2) ⋅ Q(�1 + �2)

(22)

M(�1,�2) = q ⋅M0(�1,�2) + r ⋅ (cos 2�) ⋅M1(�1,�2)
+ r ⋅ (sin2�) ⋅M2(�1,�2)

(23)�2
→

(
�1 ×� × �

T
2

)/(
�1 × � × �

T
2

)

(24)� = q ⋅�0 + r ⋅ (cos 2�) ⋅�1 + r ⋅ (sin2�) ⋅�2

(25)

�0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.07952 −0.13877 −0.07952 0 0

−0.13877 0.43658 −0.90064 −0.43658 0

−0.07952 −0.90064 4.63476 −0.90064 −0.07952

0 −0.43658 −0.90064 0.43658 −0.13877

0 0 −0.07952 −0.13877 −0.07952

⎤⎥⎥⎥⎥⎥⎦
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As can be noticed, the matrices �0 , �1 , �2 and � have a 
“band” structure along the main diagonal, being symmetric 
with respect to the central element. Once specified the semi-
axes E and F of the ellipse and the orientation angle � , the 
matrix � is determined from (24), using (25)–(27). Substi-
tuting mapping (19) into the expressions (7), the frequency 
response of the 2D elliptical filter can be written:

This can be written in the complex frequency variables z1 
and z2 , in matrix form:

where × is inner product and the vectors �
�
 , �2 are:

The matrices V and U from (30) result as weighted sums 
of multiple convolutions of the 5 × 5 matrices M and N:

In (32), the notation �(k) ∗ �(8−k) means convolution 
between matrix M convolved with itself k-1 times, and 
matrix N convolved with itself 7-k times, thus in each term 
of (32) there are k matrices M and (8-k) matrices N (in our 
case, 7 convolutions of 8 matrices). For instance, for k = 3 , 
we get the following term in the sums of (32):

(26)

�1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0.29781 0 0 0

−0.29781 0 1.33722 0 0

0 −1.33722 0 −1.33722 0

0 0 1.33722 0 −0.29781

0 0 0 0.29781 0

⎤⎥⎥⎥⎥⎥⎦

(27)

�2 =

⎡
⎢⎢⎢⎢⎢⎣

−0.03976 0.07952 −0.03976 0 0

0.07952 1.55551 −1.11893 −0.51610 0

−0.03976 −1.11893 2.31738 −1.11893 −0.03976

0 −0.51610 −1.11893 1.55551 0.07952

0 0 −0.03976 0.07952 −0.03976

⎤⎥⎥⎥⎥⎥⎦

(28)� =

⎡
⎢⎢⎢⎢⎢⎣

0.00604 0.03318 0.00604 0 0

0.03318 0.21532 0.21532 0.03318 0

0.00604 0.21532 1.01209 0.21532 0.00604

0 0.03318 0.21532 0.21532 0.03318

0 0 0.00604 0.03318 0.00604

⎤
⎥⎥⎥⎥⎥⎦

(29)
HEBP(�1,�2) = HN(�1,�2)

/
HD(�1,�2)

=

8∑
k=0

ak ⋅
(
M(�1,�2)

)k(
N(�1,�2)

)8−k
/

8∑
k=0

bk ⋅
(
M(�1,�2)

)k(
N(�1,�2)

)8−k

(30)HEBP(z1,z2) =
(
�1 × � × �

T
2

)/(
�1 × � × �

T
2

)

(31)�1 = [1 z−1
1
... z−32

1
] �2 = [1 z−1

2
... z−32

2
]

(32)� =

8∑
k=0

ak ⋅�
(k) ∗ �

(8−k)
� =

8∑
k=0

bk ⋅�
(k) ∗ �

(8−k)

Let us consider the particular case of an elliptically-shaped 
filter with the following specifications:� 0 = 9�∕16,� = �∕3

,E = 2,F = 0.5,p = 6 . From the values E and F , the values q 
and r result, then using � , the specific mapping matrix M results 
from (24). Then from the specified values � 0 and p, the coef-
ficients ak and bk are calculated from (8). If the polynomials 
HN(�1,�2) and HD(�1,�2) are factored (e.g. in MAPLE), after 
algebraic calculations we finally obtain the filter matrices V and 
U as the convolutions:

Therefore ,  the  matr ix  V  can be general ly 
expressed as a convolution of 4 matrices of the form 
� = 2 ⋅ �1 ∗ �2 ∗ �3 ∗ �4 , where the 4 components have 

the general form:

and the matr ix U  is  expressed similarly as 
� = �1 ∗ �2 ∗ �3 ∗ �4 , where

The frequency responses of the 2D LP elliptical and 
circular filters are obtained more easily than for BP filters.

From expression (5), applying the mapping (23), we 
get the two filter matrices corresponding to numerator and 
denominator, given by the following convolutions:

(33)�
(3) ∗ �

(5) = � ∗ � ∗ � ∗ � ∗ � ∗ � ∗ � ∗ �

(34)

� = 2 ⋅ (� ∗ � − 3.52959 ⋅� ∗ � + 3.49381 ⋅ � ∗ �)

∗ (� ∗ � − 4.16118 ⋅� ∗ � + 4.33978 ⋅ � ∗ �)

∗ (� ∗ � − 8.74286 ⋅� ∗ � + 19.1324 ⋅ � ∗ �)

∗ (� ∗ � − 9.43632 ⋅� ∗ � + 23.25748 ⋅ � ∗ �)

(35)

� = (� ∗ � − 4.58378 ⋅� ∗ � + 5.26499 ⋅ � ∗ �)

∗ (� ∗ � − 5.14149 ⋅� ∗ � + 6.89897 ⋅ � ∗ �)

∗ (� ∗ � − 7.33421 ⋅� ∗ � + 13.86033 ⋅ � ∗ �)

∗ (� ∗ � − 8.15781 ⋅� ∗ � + 16.65925 ⋅ � ∗ �)

(36)�j = � ∗ � + cj1 ⋅� ∗ � + cj2 ⋅ � ∗ �

(37)�j = � ∗ � + dj1 ⋅� ∗ � + dj2 ⋅ � ∗ �

(38)
�ELP =

(
p2 ⋅� − 4.099 ⋅ �

)
∗
(
p2 ⋅� − 5.8922 ⋅ �

)

∗
(
p2 ⋅� − 8.1354 ⋅ �

)
∗
(
p2 ⋅� − 9.5965 ⋅ �

)

(39)

�ELP =
(
p4 ⋅� ∗ � + 0.2777p2 ⋅� ∗ � + 3.501 ⋅ � ∗ �

)

∗
(
p4 ⋅� ∗ � − 4.50512p2 ⋅� ∗ � + 5.51545 ⋅ � ∗ �

)
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The proposed design procedure (for elliptical BPF) is next 
presented in a synthetic form (the sequence of design steps 
can be regarded as an associated pseudo-code):

(a)	 Calculate the parameters q and r, from the specified semiaxes values, E and F;
(b)	 Read matrices �0 , �1 , �2 , � with constant elements 

from (25)-(28);
(c)	 Calculate the frequency mapping matrix �(being 

known q, r, � ), using (24);
(d)	 Calculate using (8) the set of coefficients a0, ..., a8 , 

b0, ..., b8 , for given p and peak frequency �0;
(e)	 Calculate the overall 2D filter matrices V and U, using 

(32) and the coefficients found at step (d);
(f)	 Factoring the numerator HN(�) and denominator HD(�) 

given by (7) with coefficients (8), the filter matrices 
V and U are decomposed into convolutions of 5 × 5 
matrices as in (34), (35).

4 � Design of circular filters

In order to generate circular filters from a given prototype, 
we apply the mapping �2

→ �2
1
+ �2

2
 . Writing (17) for fre-

quency variables �1 and �2 , we get:

Using the identities cos�1 = 0.5 ⋅ (z1 + z−1
1
) and 

cos�2 = 0.5 ⋅ (z2 + z−1
2
) , in complex frequency variables 

z1 = ej�1 , z2 = ej�2 , the mapping (40) in matrix form results 
as:

whe re  t he  vec to r s  a r e :  �
�
= [ 1 z−1

1
z−2
1

] and 
�
�
= [ 1 z−1

2
z−2
2

] . The numerator MC(�1,�2) and denom-
inator NC(�1,�2) in (40) are the Discrete Space Fourier 
Transforms (DSFT) of the 3 × 3 centrally-symmetric matri-
ces �C and �C:

Once found the frequency mapping for circular filters, 
the next steps of the design process are similar to those for 

(40)
�2

→ 2.3969 ⋅

[
1 − cos� 1

1 + 0.36429 ⋅ cos� 1

+
1 − cos� 2

1 + 0.36429 ⋅ cos� 2

]

=
MC(� 1,� 2)

NC(� 1,� 2)

(41)
�2

→ MC(�1,�2)
/
NC(�1,�2) =

(
�1 ×�C × �

T
2

)/(
�1 × �C × �

T
2

)

(42)

�C =

⎡
⎢⎢⎣

−0.4366 −0.7618 −0.4366

−0.7618 4.7938 −0.7618

−0.4366 −0.7618 −0.4366

⎤
⎥⎥⎦
,

�C=

⎡⎢⎢⎣

0.03317 0.18214 0.03317

0.18214 1 0.18214

0.03317 0.18214 0.03317

⎤⎥⎥⎦

elliptical filters, described in Sect. 3. A generic rational factor 
HBj(�) of the BP frequency response of type (11) is:

and applying the mapping (41), we obtain the transfer 
function of corresponding 2D circular filter factor, in 
matrix form:

where �1 = [1 z−1
1
... z−4

1
] and �2 = [1 z−1

2
... z−4

2
] . The 5 × 5 

matrices �Cj , �Cj result as a weighted sum of convolutions 
of the 3 × 3 matrices �C,�C in (42):

Using (45), we calculate the matrices �Cj , �Cj ( j = 1...4 ) 
for all 4 factors in (11); then, the matrices �C and �C of the 
overall circular filter HC(z1,z2) will result by convolution:

so the designed circular filters can be implemented 
sequentially.

5 � Design examples of elliptical LP and BP 
filters

In this section a few relevant design examples for elliptically-
shaped LP and BP filters are provided, in order to illustrate 
the proposed analytical design method. For each filter with 
given parameters, its frequency response and associated con-
tour plots are displayed in Fig. 3. Two wide-band, elliptical LP 
filters are shown in Fig. 3(a), (b). The filters (c–f) are a special 
case of LP filters, namely very selective (narrow) directional 
filters. They have a high ratio E∕F(typically > 10) and also a 
large value of the scaling parameter p. Several elliptical BP 
filters are (g–j). These filters have the pass bandwidth adjust-
able through the parameters E, F and p.

The BP filters (h), (i) are rather selective ( p = 9 ), and 
filter (j) is extremely selective ( p = 30 ). It can be noticed 
that all filters have an accurate elliptical shape, even for large 
values of semi-axes, without any visible distortions even 
near the margins of the frequency plane (as for filters (a), (g), 
(i)). The filters also have a very steep transition, and the pass 
region has a little ripple, while they have no visible ripple in 
the stop region. These features are directly inherited from 
its 1D prototype.

(43)HBj(�) = (�4 + �1j ⋅ �
2+�0j)

/
(�4 + �1j ⋅ �

2+�0j)

(44)HBCj(z1,z2) =
(
�1 × �Cj × �

T
2

)/(
�1 × �Cj × �

T
2

)

(45)
�Cj = �C ∗ �C + �1j ⋅�C ∗ �C + �0j ⋅ �C ∗ �C

�Cj = �C ∗ �C + �1j ⋅�C ∗ �C + �0j ⋅ �C ∗ �C

(46)
�C = �C1 ∗ �C2 ∗ �C3 ∗ �C4;�C = �C1 ∗ �C2 ∗ �C3 ∗ �C4
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6 � Uniform circular filter bank design 
example

In this section a design example for the components of a 
uniform CFB is provided [22]. The frequency responses 
and corresponding contour plots of the 8 components of the 
uniform CFB are displayed in Fig. 4. The first component 
is the circular LPF HCLP(�1,�2) based on prototype HP1(�) 
in (9), shown in Fig. 2 (a). The other frequency responses 
and constant level contours correspond to BP filters, denoted 
HCBPk(�1,�2) with k = 1, ..., 7 . All filters have a bandwidth 
equal to �∕8 and central frequencies �0k = (2k + 1) ⋅ �∕16 . 
We notice that they are very selective, with a steep transition 
region, inherited from their prototypes, shown in Fig. 2(a)-
(d). As can be noticed from the constant level contours, the 
first 7 components of the FB have an accurate circular shape, 
while filter HCBP7(�1,�2) has the inner contour still circular 
and outer contour distorted, an effect of periodicity in the 
frequency plane, due to marginal distortions of approxima-
tion (17), visible in Fig. 1(b). Such a circular FB may have 
applications in a multi-resolution analysis of images [22].

7 � Applications in image filtering

In this section, simulation results are provided of image fil-
tering applications of the designed elliptical and circular LP 
and BP filters. Consider first the binary test image in Fig. 5 
(a), containing various geometric shapes (circles, rings, 
ellipses, squares etc.) of various size and thickness. This 
image is first filtered with a circular LPF with two selectivi-
ties ( p = 3,p = 6 ), resulting in the blurred images (b), (c), 
depending on value p, in which the larger and thicker objects 
are more visible, while thinner and smaller ones are very 
blurred. If this LP filtering is followed by thresholding with 
various threshold values, we get the binary images (d), (e), 
(f) in which some objects from original image are preserved, 
while others vanish (like thinner rings), depending on the 
degree of blurring and threshold value. Therefore, this LPF 
can be used to select objects in images. The images (g), 
(h) result through elliptical LP filtering with the indicated 
parameters.

Next, consider the binary image in Fig.  5(a) of size 
399 × 399 pixels, containing straight lines with gradually 

varying orientation. It is known that the spectrum of a 
straight line also looks as a straight line in frequency plane 
(�1,�2) , perpendicular to the line direction. For a speci-
fied orientation angle, only the lines whose spectra overlap 
with filter characteristic are preserved in the output image, 
while the rest are more or less blurred, practically wiped out 
through directional LP filtering. The images filtered with 
a narrow elliptical filter (similar to the ones in Fig. 3(c)-
(f)), choosing E = 9,F = 1,p = 12 and a specified filter ori-
entations, are displayed in Fig. 6(b–d). If the orientation 
angle is precisely chosen, the line appears sharply detected 
against the background, while the other lines are more or 
less blurred.

The third example is also a directional filtering, on tex-
ture-type image (590 × 590) in Fig. 6(e), containing rice 
grains, oriented randomly. Using an elliptical LPF with vari-
ous specified parameters, the directionally filtered images 
(f–j) are obtained, in which only rice grains with selected 
orientation are visible, while others are more or less blurred. 
Images (k) and (l) result through BP elliptical and circular 
filtering. Another filtering example is a “real-life” grayscale 
image of 600 × 900 pixels, in Fig. 7(a), showing a low-angle 
view (from ground level) of some high buildings (skyscrap-
ers). This image is convenient for testing directional filtering 
as it contains straight lines oriented under various angles, 
marking the building structure. The images in Fig. 7(b–f) 
result from selective directional filtering, using an ellipti-
cal LPF, with parameter values: E = 9 , F = 1 , p = 6 and 
various orientation angles. The directional filtering effect is 
clearly visible; for a specified filter orientation, some straight 
lines (contours or other details) are outlined, while others are 
more or less blurred, each depending on its orientation. Such 
directional filtering can be applied in detecting and selecting 
objects with various orientations from images.

8 � Comparative discussion

The aim of this work was to propose an efficient analyti-
cal design procedure for a class of zero-phase 2D filters, 
namely elliptically-shaped, including circular filters as a 
particular case. Unlike the more traditional design based 
on global numerical optimization, the proposed analytical 
technique yields the desired 2D filter (in our case ellipti-
cal or circular LP/BP filter) with closed-form frequency 
response which results directly factored. In this method, 
the specific 1D-2D mapping is applied to each factor of the 
1D prototype, thus yielding the corresponding factor of the 
desired 2D filter. This factorization is a major advantage, 
allowing for a sequential implementation. Correspond-
ingly, filter matrices result as convolutions of smaller size 
(5×5) matrices. By comparison, global numerical optimi-
zation may lead to 2D frequency responses (two-variable 

Fig. 3   Frequency responses and contour plots for various elliptical 
filters (a–f LP; g–j BP) with specified parameters: (a) � = 0.25� , 
E = 3 , F = 1 , p = 1.1 ; (b) � = 0.15� , E = 4 , F = 1 , p = 2 ; (c) 
� = 0.1�,E = 9,F = 1,p = 9 ; (d) � = 0.15� , E = 9 , F = 1 , p = 9 ; 
(e) � = 0.2� , E = 25 , F = 0.8 , p = 8 ; (f) � = 0.25� , E = 25 , 
F = 1 , p = 9 ; (g) �

0
= �∕3 , � = 0.15� , E = 3 , F = 1 , p = 3 ; 

(h) �
0
= �∕3 , � = 0.15� , E = 3 , F = 1 , p = 9 ; (i) �

0
= �∕3 , 

� = 0.25� , E = 4 , F = 1 , p = 9 ; (j) �
0
= �∕3 , � = 0.2� , E = 4 , 

F = 1 , p = 30

◂
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polynomials for FIR filters, or rational functions for IIR 
filters) which in general cannot be factored, thus making 
the implementation more difficult.

Another advantage is that the original LP prototype 
can be scaled on frequency axis, yielding a LP prototype 
with adjustable selectivity, but keeping the same order. By 
shifting it along the frequency axis, we derive FB filters, 
which in turn generate the elliptical or circular 2D filter 
by applying specific frequency mappings.

The 2D filters inherit the characteristics of their 1D pro-
totype (bandwidth, selectivity, steepness, ripple); by scal-
ing (compressing) the LPF prototype along the frequency 

axis, the steepness of resulting filter increases accordingly, 
but without increasing the order, which is a useful advan-
tage. For instance, all the components of the designed cir-
cular filter bank result or the same order.

The resulted 2D filters are parametric, since the design 
parameters (bandwidth, peak frequency, orientation angle) 
appear explicitly in the frequency response expression. Thus, 
when changing the specifications, the design process does 
not need to be resumed from the start, since the 2D fre-
quency response is already determined by a simple substitu-
tion. The orientation angle, peak frequency and selectivity 

Fig. 4   Frequency responses and contour plots of the FB components
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of the designed 2D filters can be adjusted independently 
through the imposed parameters.

As regards a comparison to other design methods for 
similar filters, available in the literature, this approach is 
substantially simpler, yielding filters with an accurate shape, 
even near frequency plane margins.

For a comparison with existing works, other analyti-
cal techniques for designing 2D elliptical and circular fil-
ters have been previously proposed by the author. The fil-
ters from [17] are based on zero-phase prototypes, being 
somewhat related to the ones proposed here; however, the 
frequency mapping uses Euler approximation and bilinear 
transform, which are known to introduce shape distortions. 
The filters in [18] rely on digital LP prototypes and the fre-
quency mapping is more complicated, yielding LP elliptical 
filters with complex coefficients, more difficult to imple-
ment. In [19], a class of elliptical Gaussian FIR filters is 
proposed, for directional filtering of images; the filters are 
efficient, using three axis decomposition, but the method is 
more difficult to apply and the resulted filters cannot have a 
large bandwidth. Thus, the method proposed here is more 

convenient and easier to apply, yielding efficient, accurate 
elliptical filters, either wide-band or very selective. To 
the best of author’s knowledge, such filters have not been 
approached before by other researchers. Also the circular 
filters designed here (also as FB components) have better 
performances compared to previous approaches [20, 21]. 
Thus, the circular FB in [20] is based on digital prototypes 
and has complex coefficients, while in [21] it has a zero-
phase prototype, but the frequency mapping is more compli-
cated, increasing filter order. Some results of [22] have been 
included in this article, which approaches the more general 
case of the elliptical filter.

A rigorous comparison in terms of performance with fil-
ters of this shape proposed previously by other authors is 
quite difficult to be made, due to the large variety of filters 
and methods found in literature. Design techniques like [4] 
(using McClellan transform for magnitude approximation), 
[5] (a set of filters which use multiscale techniques), [6] 
(obtaining near-elliptical symmetry by adjusting param-
eters), or [7]9, as well as the circular filters in [10]15 are 
conceptually very different from the ones proposed here; 

Fig. 5   (a) Binary test image; image filtered with circular LPF: (b) 
p = 3 , (c) p = 6 ; (d) image (b) thresholded with th = 0.75 ; (e) 
image (b) thresholded with th = 0.5 ; (f); image (c) thresholded 

with th = 0.5 ; (g, h) images resulted through elliptical LP filtering 
with:E = 9 , F = 1 , p = 6 and angle � = 0.3� and � = 0.8�
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they lead to filters with other purposes, specifications and 
characteristics, rather difficult to compare with the filters 
discussed here.

We may conclude that the proposed analytical design 
procedure is convenient, relatively easy to apply and yields 
efficient and accurate zero-phase 2D filters with elliptical 
and circular symmetry, which inherit the features of the cho-
sen prototype. The orientation angle, peak frequency and 
selectivity of these filters can be adjusted independently 
through the imposed parameters. Following the steps of the 
design algorithm given in Sect. 3, the filter matrices result 
directly, in the form of sums of convolutions of small-size 
( 5 × 5 ) matrices (as in (34–39)), which allows for a conveni-
ent, sequential implementation. Because the filter matrices 

depend explicitly on the imposed specifications, they result 
by simply substituting parameter values.

9 � Conclusions

The proposed analytical design technique is simple and 
efficient. The design starts from a parametric LP prototype, 
which is scalable along frequency axis, thus having adjust-
able selectivity. Also, BP filters result by shifting the LP 
prototype to a given central frequency. Applying frequency 
scaling, we can obtain filters with steep transition and high 
selectivity, while keeping the same relatively low order. In 
order to derive 2D elliptical or circular filters, a specific 

Fig. 6   (a) Binary test image; (b–d) filtering results with an elliptical 
LPF with E = 9 , F = 1 , p = 12 and orientation angles: (b) � = 0.1� ; 
(c) � = 0.26� ; (d) � = 0.4� ; (e) test image “rice”; (f–j) results 
of directional filtering with an elliptical LPF with E = 9 , F = 1 , 

p = 6 and orientation angles: (f) � = −0.1� ; (g) � = −0.15� ; (h) 
� = −0.25� ; (i) � = 0.25� ; (j) � = 0.1� ; (k) filtered with elliptical 
BPF ( �

0
= �∕3 , � = 0.25� , E = 9 , F = 1 , p = 6 ); (l) filtered with 

circular BPF ( �
0
= 0.8� , E = F = 1 , p = 6)
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frequency mapping was determined, using Chebyshev-Padé 
approximation. This mapping is applied to the factored LP or 
BP prototype, leading directly to the closed-form frequency 
response of the desired 2D filter, which results factored, an 
advantage for implementation. The overall filter matrices 
result directly as a convolution of smaller size matrices. 
Various elliptical filters with specified parameters have 
been designed, including selective directional filters, useful 
in extracting oriented straight lines and details from a given 
image. The circular filters were designed as components of 
an uniform filter bank. Due to the accurate approximations 
used, the designed filters result with a precise shape, with-
out visible distortions even near the frequency plane limits. 
Further research may envisage an efficient implementation 
of this class of filters.
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