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Abstract
In this paper, a simple memcapacitors-based oscillator, set up from the Colpitts' LC tank circuit is presented. The oscillator 
is designed by replacing the two normal capacitors of Colpitts’ tank circuit with two nonlinear memcapacitors. The new 
resulting nonlinear circuit consists of only three dynamic elements, including two memcapacitors blocks and an inductor. 
The model is described as a continuous-time three-dimensional autonomous system with cubic nonlinearities. The structure 
of the equilibrium points and the discrete symmetries of the model equations are discussed. One of the key contributions 
in this area is the introduction of a simple circuit presenting peculiar behaviors such as offset bossing and coexisting of 
multiple attractors. An appropriate electronic circuit (analog simulator) is proposed to investigate the dynamic behavior of 
the proposed system and prove its feasibility. The proposed oscillator enriches the literature on simple memcapacitor-based 
circuits with complex dynamic behavior.

Keywords Memcapacitor · Colpitts circuit · Multistability · Offset bossting · Analog circuit

1 Introduction

Recently, increasing efforts have been made to construct 
new chaotic dynamics from simple models playing on the 
equilibrium types [1, 2] that can be without equilibrium 
points [3, 4], with equilibrium surfaces [5], equilibrium 
curves [6] with only stable equilibrium Points [7], or even 
non-hyperbolic curves. Many of these examples belong to a 
new category of dynamic systems known as hidden attrac-
tors [3, 8, 9]. This type of dynamics is very recent and the 
causes are not yet well defined in the literature. However, all 
of the work above has focused mainly on the structure and 

characteristics of equilibrium points, while there are other 
important features in chaotic systems and one of them is 
innovation as ruled by Sprott [10]. So, new chaotic systems 
are created without reference to the equilibrium points and 
with particularly rich dynamics: with multi-scroll attractors 
for example [11–15] or even with the simplest equations 
possible and imaginable [16–20]. Other new systems are 
obtained by modifying a famous oscillator and underlining 
the richness of its dynamics such as Chua circuit [21, 22], 
Colpitts oscillators [23], Lorenz system [24], Rössler system 
[25], and Van der Pol-Duffing circuit [26]. The oscillator 
known as Colpitts was reported in 1918 by Edwin H [27]. 
Colpitts. This oscillator has been widely used in electronics 
and its related fields due to its characteristics of frequency 
stability, wide frequency range, simple circuit and even in 
generating undistorted sine wave signals. It was in 1994 that 
Kennedy reported that the Colpitts oscillator can generate 
chaotic behavior [28]. Chaos then became a reference in 
nonlinear research and widely exploited in various fields 
of engineering. An ontological review of possible topolo-
gies over the 100 years of the Colpitts oscillator is recently 
reviewed by Azadmehr and colleagues [29]. In this work, 30 
different types of circuits related to the Colpitts oscillator 
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are listed. The authors showed the different variations and 
improvements undergone by Colpitts oscillators ranging 
from vacuum tube bipolar to modern CMOS. Thus, Col-
pitts oscillators can be made using different types of gain 
stages including common source, common gate, common 
drain, and common emitter as well as their equivalents in 
bipolar technology and many other techniques. Similarly, 
the main characteristics of Colpitts oscillators are analyzed 
by Hemmati and Dehghani [30]. These authors investigated 
the different CMOS Colpitts oscillator topologies, including 
single-ended and differential configurations. Thus, different 
coupling methods, used for the coupling of VCOs and clas-
sification of Colpitts QVCOs have been introduced.

There is little knowledge about the specific characteristics 
of memory element-based chaotic oscillators; so, a rarer but 
very interesting perspective of innovation is to study the 
impact of the addition of nonlinear memory elements on the 
dynamics of some existing system.

Chua and colleagues have proposed the concept of 
meminductor and memcapacitor generalized from the mem-
ristor in 2009 [31], whose properties depend on the history 
of the device; this property makes them be very special 
components. Although actual memcapacitors have not been 
manufactured so far, potential importance has attracted more 
and more attention. Unlike the hysteresis loop of the mem-
ristor which is done according to the charge and voltage, a 
memcapacitor appears as a hysteretic loop between current 
and voltage.

Nowadays, potential research based on memory compo-
nents is growing. These components should be memory stor-
age devices useful in the design of computers. This implies 
low energy consumption and less thermal design to man-
age. Memory elements like the memristor, meminductor, 
and memcapacitor are typically nonlinear and easy to use 
as generators of chaotic vibration signals [32, 33]. Several 
challenge situations arise in particular, investigating chaotic 
systems/circuits in order to better master them, to develop 
nonlinear science. Prevent damage from chaotic phenomena 
in various applications. Produce chaotic signals using mem-
ory components like memcapacitor which are useful and 
potential in many applications such as aerospace industry, 
secure communications, and many others [34, 35]. Memory 
elements (commonly referred to as mem-elements) includ-
ing the memristor, memcapacitor, and meminductor are 
considered as key to the development of new generation of 
intelligent and neuromorphic devices [36–38]. These mem-
elements can also be used to mimic biological neural syn-
apses, describe electromagnetic induction effects, and simu-
late neuronal magnetic coupling. Dynamic circuits based on 
Memcapacitors also find their applications in an adaptive 
learning circuit because these circuits perform satisfactorily 
for a wide frequency range and pass the non-volatility test 
[39]. Memcapacitive systems can be used in information 

security because they can resist various attacks including 
brute force attacks due to the high number of state variables 
of nonlinear systems corresponding to the large space of the 
secret key [40, 41]. Memory elements also find their applica-
tions in biology in neural synapses. In this application, these 
elements can be used to reinforce the memory of synapses 
thus increasing the autonomous capacity of artificial intel-
ligence [42–44].

The Colpitts oscillator is widely investigated in the litera-
ture starting from the standard transistor oscillator circuit, 
with operational amplifier but very little work on the Colpitts 
oscillator with memcapacitor [9, 23, 45–49]. In this paper, 
the appealing aspect of memcapacitor due to its functional 
and dynamic similarities to the memristor but with much 
lower power requirements is used to give new life to the clas-
sic and well-known Colpitts oscillator. From this alliance 
was born a new chaotic circuit based on memcapacitors. The 
memcapacitor-based oscillator presented in [50] has only 
two components compared to the one proposed in this work 
which has rather three components; but it is good to note that 
in the present work, the novelty is not mainly to propose a 
circuit with the smallest possible number of components as 
in [50]. The objective of this work is to modify Colpitts’ LC 
tank circuit by replacing its two normal linear capacitors 
with two nonlinear memcapacitors blocks, in order to obtain 
a new simple architecture of the Colpitts oscillator based on 
memcapacitors and thus to enrich the literature with a new 
type of Colpitts circuit with very interesting properties.

Another contribution of this work is the choice of mem-
capacitors with respect to the nature of memcapacitance (its 
nonlinearity). The memcapacitance used in [50] has a non-
linear function of degree 4 whereas that used in the present 
work is quadratic and therefore simpler. A quadratic non-
linearity is recommended compared to others (hyperbolic, 
trigonometric, exponential, and other functions) that take 
enough execution time in encryption processes [51–53]. As a 
result, the chaotic system-based encryption techniques with 
the proposed circuit will have a reasonable runtime and be 
sufficiently robust against brute-force, known-plaintext, and 
chosen-plaintext attacks.

Compared to the standard chaotic Colpitts circuit, 
which usually consists of an active component (bipolar 
junction transistor, field effect transistor, operational 
amplifier, etc.) connected to an LC tank oscillator circuit, 
the Colpitts oscillator based on memcapacitors proposed 
in this work is much simpler, since it does not need either 
the capacitors or any active component based on a bipolar 
junction transistor, field-effect transistor, or operational 
amplifier to operate. This simplicity comes to the fact that 
the two introduced memcapacitors blocks perform three 
functions simultaneously, namely amplification, nonlin-
earity, and capacitance. To the best of our knowledge, the 
structure of the electrical circuit proposed in this work 
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is different from all the circuits with two memcapacitors 
proposed in the literature. The particularities of the pro-
posed circuit are summarized as follows:

• The simple circuit proposed is designed from the LC-
tank circuit of Colpitts. It consists only of three dynamic 
elements, including two memcapacitors blocks and an 
inductor;

• The proposed circuit although simple presents chaos 
and very complex dynamic behaviors including, offset-
boosting, multistability, and many others;

• The mathematical model resulting from the proposed cir-
cuit is a simple third-order equation system that is easy 
to manipulate both analytically and numerically;

• Multistability in this circuit gives rise to the coexistence 
of two, three, and four, attractors, which is usually dif-
ficult to find in such circuits.

• It is suitable for engineering applications such as secur-
ing communications

• The memcapacitors-based Colpitts oscillator introduced 
in this work has not yet been presented and explored in 
the literature.

The rest of the paper is structured as follows: In 
Sect. 2, circuit design and mathematical model of the 
modified memcapacitor-based Colpitts oscillator are 
proposed. Based on the mathematical model of the pro-
posed circuit, its dynamics analysis is performed. Basic 
properties of the system are also explored analytically. In 
Sect. 3, the effect and influence of parameters through 
bifurcation diagrams, Lyapunov exponents, stability, 
and system influence diagrams are explored. Phenomena 
like multistability and offset-boosting are also observed. 
In addition, a PSpice study based on the corresponding 
analog computer of the dynamic system is made for elec-
tronic validation. The last section concludes the paper.

2  Circuit and mathematical model

2.1  Circuit description

The idea of designing the memcapacitors-based chaotic cir-
cuit is inspired by the standard chaotic Colpitts circuit which 
consists of an active component (bipolar junction transistor, 
field-effect transistor, operational amplifier, etc.) acting as 
an amplifier and also as a non-linear element responsible 
for the chaotic behavior due to their intrinsic non-linearity; 
its output is linked to an oscillatory circuit, also called LC 
circuit (two capacitors and an inductor). As shown in Fig. 1, 
the objective of this work is to propose a simple oscilla-
tor designed from the Colpitts’ LC tank circuit by replac-
ing the two normal capacitors C1 and C2 by two nonlinear 
memcapacitors Cm1 and Cm2 , in parallel with conductances 
G1 and −G2 respectively. Compared to the standard Col-
pitts oscillator, the proposed circuit does not need either 
the two capacitors ( C1 and C2 ) or any active component 
based on a bipolar junction transistor, field-effect transistor, 
or operational amplifier to work properly. The simplicity 
of the proposed circuit comes from the fact that the two 
memcapacitors simultaneously perform three functions in 
particular: amplification, nonlinearity, and state variables 
( x1 and x2 ). Therefore, the circuit in Fig. 1 can be seen as 
a simple oscillator composed of three dynamic elements, 
including an inductor and two memcapacitors blocks. The 
first block which is a passive capacitive circuit, includes a 
memcapacitor in parallel with a positive conductance, while 
the second block which is an active capacitive circuit [54], 
instead includes a memcapacitor in parallel with a nega-
tive conductance that provides energy to the whole circuit 
in order to maintain a continuous oscillation. The complex 
dynamics of the circuit result from the nonlinearities of the 
two memcapacitors which play a central role in the genera-
tion of chaotic behavior. To the best of our knowledge, the 
structure of the electrical circuit proposed in Fig. 1 is differ-
ent from all the circuits with two memcapacitors proposed 
in the literature.

Fig. 1  Simple memcapacitor-
based oscillator, designed from 
the Colpitts’ LC tank circuit. It 
is composed of three dynamic 
elements, including two memca-
pacitors blocks and an inductor.
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2.2  Memcapacitors and oscillator’s mathematical 
model

The charge-controlled memcapacitor equation considered in 
this work is defined by referring to the work carried out in 
[31]. The generalized form for a system made up of several 
memcapacitors is defined by Eq. (1).

where uc(t) and q(t) are the voltage and charge across the 
memcapacitor at time t  , C−1 the inverse memcapacitance 
and �(t) the integral of q(t) . The inverse memcapacitance of 
the two memcapacitors in the proposed circuit in Fig. 1 is 
defined as follows [55, 56]:

From Eq. (2) and Eq. (1), the model of the two memca-
pacitors is described as (for simplicity, we have omitted time 
dependence):

where mi and ni are real constants. Due to the existence of 
only three dynamical energy storage elements, and con-
sidered the same approach of made in Refs. [55, 56], the 
proposed circuit can be simply modeled by a third-order 
system. Thus, by the volt-ampere characteristics of each 
element and the Kirchhoff's current law, we obtain the dif-
ferential equation:

By applying integral operation to Eqs. (3) and (4) directly 
with respect to time t , the following equations with variables 
qL , �1 and �2 can be obtained by Eq. (5).

where �c1 and �c2 are the time integrals of voltage uc1 and 
uc2 respectively. �1 and �2 are the integrals of charge q1 and 
q2 respectively. qL is the time integral of current IL . Based 
on Eq. (5), �ci can be provided by Eq. (6).

(1)
{

uc(t) = C−1(𝜎(t))q(t),

�̇�(t) = q(t),

(2)C−1
i

= mi + ni�
2

i
, i = 1, 2

(3)
{

uci =
(
mi + ni𝜎

2

i

)
qi,

�̇�i = qi,
, i = 1, 2

(4)

⎧⎪⎨⎪⎩

L
diL

dt
= uc1 − uc2

dq1

dt
= iL − G1uc1

dq2

dt
= iL + G2uc2

(5)

⎧⎪⎨⎪⎩

L
dqL

dt
= �c1 − �c2,

d�1

dt
= −qL − G1�c1,

d�2

dt
= qL + G2�c2,

(6)�ci = mi�i +
(
ni�

3

i
∕3

)
= ai�i + bi�

3

i
i = 1, 2

By exploiting the following changes qL = x1 , �1 = x2 , 
�2 = x3 , c = 1∕L , d = G1 , e = G2 and substituting Eq. (6) 
into (5), the dynamics of the model of Fig. 1 is expressed 
by Eq. (7).

where a1 , b1 , a2 and b2 are considered as the intrinsic param-
eters of the two memcapacitors. Obviously, the designed 
new nonlinear circuit is a three-dimensional system whose 
cubic nonlinearities are x3

2
 and x3

3
.

2.3  Symmetry and fixed points

The transformation 
(
x1, x2, x3

)
⇔

(
−x1,−x2,−x3

)
 leaves 

invariant system (7). It means that all of the assymetrical 
attractors appear in pair (with their symmetrical twins) in the 
system. Hence, each asymmetric attractor in this oscillator 
coexists with its asymmetric twin which will be obtained by 
algebrical inversion of the initial conditions. The fixed points 
are obtained solving Eq. (8).

This resolution allows us to assert that the system has 
nine equil ibr ium points  namely:  E0 = (0, 0, 0) , 
E1,2 =

(
0, 0, ±

√
−

a2

b2

)
 , E3,4 =

(
0, ±i

√
a1

b1

, 0

)
, E5,6 =

(
0, ±i

√
a1

b1

,

√
−

a2

b2

)
 , 

and E7,8 =
(
0, ±i

√
a1

b1
, −

√
−

a2

b2

)
 . The analysis of the 

dynamics cannot be done without a prior analysis of the 
stability of these nine fixed points of the system. Thus, at 
any fixed point E =

(
x1, x2, x3

)
 the Jacobian matrix of sys-

tem (7) is follows:

(7)

⎧
⎪⎨⎪⎩

ẋ1 = c
�
a1x2 + b1x

3

2
− a2x3 − b2x

3

3

�
,

ẋ2 = −x1 − d
�
a1x2 + b1x

3

2

�
,

ẋ3 = x1 + e
�
a2x3 + b2x

3

3

�
,

(8)

⎧⎪⎨⎪⎩

a1x2 + b1x
3

2
− a2x3 − b2x

3

3
= 0

−x1 − d
�
a1x2 + b1x

3

2

�
= 0

x1 + e
�
a2x3 + b2x

3

3

�
= 0

Table 1  Fixed points and eigenvalues of system (5) for a1 = 0.38 , 
b1 = 1 , a2 = −1 , b2 = 1 , c = 2 , d = 1 , and e = 0.45

Equilibrium points Eigenvalues

E0 = (0, 0, 0) �1 = 0.8925 , �2 = −0.3384,�3 = −1.3840

E1,2 = (0, 0, ±1) �1 = −0.1838

�2 = 0.3519 ± 2.1030i

E3,4 = (0, ±0.6164i, 0) �1 = −1.9240,�2 = 0.2153,�3 = 2.0180

E5,6 = (0, ±0.6164i, 1) �1 = 0.6685

�2 = 0.4958 ± 1.5020i

E7,8 = (0, ±0.6164i, −1) �1 = 0.6685

�2 = 0.4958 ± 1.5020i
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(9)JE =

⎡⎢⎢⎢⎢⎣

0 c
�
a1 + 3b1x

2

2

�
c
�
−a2 − 3b2x

2

3

�

−1 −d
�
a1 + 3b1x

2

2

�
0

1 0 e
�
a2 + 3b2x

2

3

�

⎤⎥⎥⎥⎥⎦

The eigenvalues of fixed points are solution of the char-
acteristic equation det

(
JE − �I4

)
 where I4 is the 4 × 4 iden-

tity matrix. These eigenvalues for the set of system param-
eters a1 = 0.38 , b1 = 1 , a2 = −1 , b2 = 1 , c = 2 , d = 1 , and 
e = 0.45 are listed in Table 1. It should be noted that all 

Fig. 2  Effect of parameter c on the dynamics following the control parameter e . Other parameters and initial conditions with values are 
a1 = 0.38 , b1 = 1 , a2 = −1 , b2 = 1 , d = 1 , x1(0) = 0.1 , x2(0) = 0.0 , and x3(0) = 0.0
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fixed points are unstable. Therefore, system (7) may exhibit 
self-excited attractors [8, 20, 57].

3  Numerical results

This section is devoted to investigatigations on the dynamic 
phenomena in the new memcapacitors-based Colpitts circuit 
using quantitative and qualitative nonlinear tools such as Lya-
punov exponents computation, bifurcation plots, cross-section 
of basin of attraction, phase portrait, two-parameter diagram, 
and frequency spectra in specific range of system parameters.

3.1  Influence of system parameters on the dynamic

When we consider the parameter e as bifurcation control 
parameter and for some discrete values of the parameter 
c , the dynamics of the system change considerably. Thus, 

Fig. 2 presents some bifurcation diagrams as well as their 
corresponding graphs of maximum Lyapunov exponents.

These bifurcation diagrams are obtained by plotting the 
maxima of the variable x3 as a function of the parameter e 
in the 0.25 ≤ e ≤ 0.55 interval. For each discrete value of 
the parameter c , there is a period-doubling road to chaos. 
In light of Fig. 2, the data in green are obtained by continu-
ously increasing the values of the bifurcation parameter and 
those in red by similarly decreasing the values of the same 
bifurcation parameter. The color difference highlights the 
phenomenon of hysteresis for a coexistence of two types of 
behavior for a given set of initial conditions.

Another route to chaos is observed when varying the 
control parameter d as shown in Fig. 3. The bifurcation 
method of Fig. 2 is exploited to obtain the two diagrams 
(green and red) of Fig. 3. Through careful observation, a 
window of hysteresis phenomenon is also observed in 
1.173 ≤ d ≤ 1.189 and 1.383 ≤ d ≤ 1.385 intervals. This 
bifurcation change can be observed or some discrete value 
for parameter d. As a result, we can have a pair of Period-1, 
Period-2, and Period-4 limit cycles for d = 0.8 , d = 1 , and 
d = 1.09 respectively; a pair of single band chaotic attractors 
for d = 1.14 , a symmetric Period-5 limit cycle for d = 1.3 , a 
double band chaotic stange attractor for d = 1.45 ; and a sym-
metric Period-3 limit cycle for d = 1.7 . A sample of phase 
portraits of this road to chaos is presented in the next section 
for comparative purposes.

Noted that if the intrinsic parameter a > 0 we have a 
positive memcapacitor, while for a < 0 we have a nega-
tive memcapacitor. When we consider a change of the 
intrinsic parameters of the memcapacitors of Fig. 1.i.e. the 
parameters a1 , b1 , a2 , and b2 , the dynamics of system (7) 
change considerably. A sample of this change in dynamics 
is shown in Fig. 4 by the bifurcation diagram (Fig. 4(a)) 
and Lyapunov maximal exponent graph (Fig. 4(b)).

Fig. 3  Bifurcation diagrams highlighting the route to double-band 
chaos by variation of the control parameter d in the 0.8 ≤ d ≤ 1.7 
range for a1 = 0.3 , b1 = 1 , a2 = −1 , b2 = 1 , c = 2 , e = 0.45 , and 
x1(0) = 0.1 , x2(0) = 0.0 , and x3(0) = 0.0

Fig. 4  Bifurcation diagram (a) and graph of maximum Lyapunov (b) exponents when changing the intrinsic parameters
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With regard to these figures, the dynamics do not follow 
any classic bifurcation, hence the importance of choos-
ing the parameters and initial conditions. The importance 
of this choice of parameters is especially crucial in the 
encryption process because the dynamics are almost 
chaotic.

As a result, the complex shape of the chaotic behavior 
for the set of parameters a1 = −0.4 , b1 = 0.6 , a2 = −1.2 , 
b2 = 0.6 , c = 10 , d = 1 , and e = 0.46 , is presented in 
Fig. 5 on all coordinate planes of the system and their 
corresponding frequency spectrum and time series. Ini-
tial conditions are x1(0) = 0.1 , x2(0) = 0.0 , and x3(0) = 0.0 . 

Fig. 5  Projection on the different coordinate planes of the phase portrait as well as the corresponding frequency spectrum and time series of the 
chaotic attractor when changing the intrinsic parameters
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For a global view of the influence of system parameters, 
standard Lyapunov stability diagrams are drawn show-
ing this mutual influence between parameters. Thus, the 
mutual influence of the parameters ( e, c ) and ( c, d ) and the 
intrinsic parameters of the memcapacitors ( a1, a2 ), ( b1, b2 ), 
( b1, a1 ), and ( b2, a2 ) on the system dynamics are plotted 
and presented in Fig. 6. We can observe this influence 

by the color differences. The diagrams of Fig. 6(a and 
b) are obtained for the set of fixed parameters a1 = −0.4 , 
b1 = 0.6 , a2 = −1.2 , b2 = 0.6 , d = 1 , and e = 0.45 respec-
tively. Similarly, the intrinsic parameter diagrams of 
Fig. 6(c–f) are obtained for the fixed parameters c = 10 , 
e = 0.46 , d = 1 but mutually varying a1 , b1 , a2 , and b2 as 
shown in the stability diagrams.

Fig. 6  Standard Lyapunov Stability diagram highlighting the complexity of the system. Note that the black shading reflects areas of no oscilla-
tion. Lyapunov's exponent bands justify the color difference and corresponding behavior
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The overall observation on these influences is the 
impact that each parameter brings to the dynamic behavior 
of the system. The parameters e, c, a1, b1, and d cause var-
ied dynamics while the other parameters a2 and b2 have a 
weak influence on the dynamics of the system. This influ-
ence is strongly observed through the band of Lyapunov 
exponents which shows some correspondence between 
the types of behavior represented with the colors of each 
diagram. It is important to mention that the black shading 
observed on the influence of the intrinsic parameters to 
the memcapacitors ( a1 , b1 , a2 , and b2 ) reflects the zones 
without oscillation. From a design point of view, it is pref-
erable to make a choice for positive set of parameter b1 and 
b2 because the dynamics are greater (chaotic tendency) 
when these intrinsic parameters are positive, whereas the 
suitable choice of the intrinsic parameters a1 and a2 can be 
positive or negative.

3.2  Coexisting bifurcations and multistability

Coexistence is the presence of totally different dynamics 
for the same rank parameters, depending on the initial state 
of the system [58–61]. In this section, we highlight some 
ranges of parameters for which several different dynam-
ics coexist. For this purpose, a bifurcation diagram and 
its enlargement are computed. By considering the param-
eter c as a bifurcation control parameter, the bifurcation 

Fig. 7  Bifurcation diagram following the control parameter c show-
ing the coexistence of two different types of dynamics. This graph is 
obtained by keeping the other parameters at constant values: a1 = 0.3 , 
b1 = 1 , a2 = −1 , b2 = 1 , d = 1 , and e = 0.45

Fig. 8  Coexistence of four 
different attractors (a pair of 
period-4 and a pair chaotic 
attractors and their cross-
sections of basin of attraction 
(for x2(0) = 0 and x1(0) = 0 
respectively). See the text for 
more details
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Fig. 9  The coexisting phase 
portraits (a) and (b) as well 
as the set of initial conditions 
giving rise to these attractors 
(c) and (d) for the parameters 
a1 = 0.38 , b1 = 1 , a2 = −1 , 
b2 = 1 , c = 1.25,d = 1 , and 
e = 0.39

Fig. 10  The coexisting phase 
portraits (a) and (b) as well 
as the set of initial conditions 
giving rise to these attractors 
(c) and (d) for the parameters 
a1 = 0.38 , b1 = 1 , a2 = −1 , 
b2 = 1 , c = 1.2,d = 1 , and 
e = 0.45 . See in text for more 
detail
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diagrams in the 1 ≤ c ≤ 2.5 range of Fig. 7 are observed. 
From the first diagram, a parallel branch of bifurcation 
is observed in black. To better observe the phenomenon 
produced, a widening of the diagram in the 1.8 ≤ c ≤ 2 
range is also drawn (as indicated by the second diagram 
in Fig.  7). In the first diagram, the green and magenta 
curves are plotted backward starting from c = 2.5 with 
initial conditions 

(
x1(0), x2(0), x3(0)

)
= (±0.1, 0, 0) respec-

tively. The black 4-branch bifurcation is obtained plotting 
upward starting from c = 1.847 with initial conditions (
x1(0), x2(0), x3(0)

)
= (−0.35, 0, 0) . The rest of the setting 

parameters are a1 = 0.3 , b1 = 1,a2 = −1 , b2 = 1,d = 1 and 
e = 0.45 . In these diagrams of Fig. 7, the memcapacitor-
based Colpitts system admits a coexistence of a pair of 
asymmetric attractors in the 1.847 ≤ c ≤ 1.87 range show-
ing coexistence of four attractors.

These four coexisting attractors are highlighted by the 
phase portraits in Fig. 8 where a pair of chaotic attractors 
(Fig. 8(a)) coexists with a pair of Period-4 limit cycles 
(Fig. 8(b)). These attractors are obtained for c = 1.848 with 

the initial conditions (±0.44, 0, 0) for chaotic attractors and 
(±0.2, 0, 0) for periodic attractors.

The corresponding cross-sections of basin of attrac-
tion in the initial condition 

(
x1(0), x3(0)

)
 and 

(
x2(0), x3(0)

)
 

planes leading to each of the four coexisting attractors are 
also depicted in Fig. 8, where magenta colors of initial 
conditions are associated to the asymmetric pair of cha-
otic attractors while the yellow regions lead to trajectories 
associated with the pair of periodic attractors. Divergence 
is associated with red data. Note that several other multi-
stability windows are also observed for other sets of sys-
tem parameters. Thus, the zones of color differences in 
the bifurcation diagrams of Figs. 2 and 3 highlights this 
phenomenon of multistability where a coexistence of two 
and three other attractors which coexist can be observed.

From bifurcations of Fig.  2 for c = 1.25 in the 
0.37 ≤ e ≤ 0.41 interval, a coexistence of three attractors 
is observed including a limit cycle of period 5 which coex-
ists with two asymmetric chaotic attractors. This coexist-
ence is presented in detail in Fig. 9 where the periodic 

Fig. 11  Translational effects of the offset-boosting phenomenon on the bifurcation diagram and the double-scroll strange attractor and qualita-
tive invariability demonstrated by the exponent spectrum. Parameters values are: a1 = 0.3 , b1 = 1 , a2 = −1 , b2 = 1 , c = 2 , d = 1.55 , and e = 0.45



12 Analog Integrated Circuits and Signal Processing (2023) 115:1–19

1 3

attractor obtained by initial conditions (0.28, 0, 0.68) is 
observed in Fig. 9(a), chaotic attractors by initial condi-
tions (±0.7, 0,±0.7) in Fig. 9(b), and their basin of attrac-
tion are also presented in Fig. 9(c, d) for the set of param-
eters. Concerning the basins of attractions, the data in 
blue correspond to all the initial conditions giving rise to 
chaotic attractors, those in cyan to the periodic attractor, 
and the data in red correspond to the zones of divergence.

Another type of coexistence is observed by the color 
difference of the bifurcations of Fig. 2 for c = 1.2 in the 
0.44 ≤ e ≤ 0.47 interval. Thus, coexistence of two different 
symmetric attractors is presented in Fig. 10 where the peri-
odic attractor obtained by the initial conditions (0.9, 0, 0) is 
observed in Fig. 10(a), the chaotic attractors by the initial 
conditions (0.4, 0, 0.95) in Fig. 10(b) and their basin of 
attraction are also presented in Fig. 9(c, d) for the param-
eters a1 = 0.38 , b1 = 1 , a2 = −1 , b2 = 1 , c = 1.2,d = 1 , and 
e = 0.45 . In light of the basins of attractions, the data in 

blue correspond to the chaotic attractors, those in cyan to 
the periodic attractor, and the data in red one to the zones 
of divergence.

3.3  Offset bossting behavior

In system (7), since the variable x1 appears with the low-
est occurrence, it would be convenient to choose it as the 
optimal variable for offset. Thus, the state variable will be 
replaced by its equivalent added to a constant k : x1 → x1 + k . 
This variable change has the effect of translating the con-
trol phase state variable from a bipolar to a unipolar signal. 
Henceforth, the attractors in phase space become either uni-
polar negative or positive, according to the algebraic values 
of the offset boosting constant. Indeed, this particular prop-
erty of translation becomes very important for applications 
that require unipolar signals [57, 62–66].

Fig. 12  PSpice representation of the corresponding analog circuit of the proposed memcapacitors-based Colpitts oscillator
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Fig. 13  Phase portraits showing the road to chaos via Matlab (right) 
and PSpice (left) simulations for discrete values of the parameter d : 
a–c a pair of Period-1, Period-2, and Period-4 limit cycles for d = 0.8 
(R

d
= 12.5 kΩ) , d = 1 (R

d
= 10 kΩ) , and d = 1.09 (R

d
= 9.174 kΩ) 

respectively; d a pair of single band chaotic attractors for d = 1.14 

(R
d
= 8.772 kΩ) , e a symmetric Period-5 limit cycle for d = 1.3 

(R
d
= 7.692 kΩ) , f a double band chaotic stange attractor for d = 1.45

(R
d
= 6.896 kΩ) ; and g a symmetric Period-3 limit cycle for d = 1.7 

(R
d
= 5.882 kΩ)
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Figure 11(d) illustrates the qualitative invariability of the 
attractor across the Lyapunov exponent spectrum plot fol-
lowing k . The bifurcation diagram shows the translation of 
all the attractors of the phase space according to the state 
variable x1 . when the control constant k takes some discrete 
values -1, 0, and + 1. This shift is illustrated in Fig. 11(a–c) 
where we drew three chaotic attractors each in two different 
planes and corresponding to three different values   of the 
offest boosting parameter. In summary for k = 0, the attrac-
tor is unipolar and symmetrical. it is polarized when the 
constant varies (unipolar positively for k = 1 and unipolar 
negatively for k = − 1). these results are obtained when the 
other parameters have the value: a1 = 0.3 , b1 = 1,a2 = −1 , 
b2 = 1,c = 2,d = 1.55 and e = 0.45.

3.4  PSpice simulations

Previous numerical studies have allowed us to realize that 
the memcapacitors-based Colpitts oscillator is able to show 
complex and varied dynamic behavior. The purpose of this 
paragraph is to confirm the numerical and theoretical results 
obtained by doing a study under Pspice by analog simula-
tions. Since the memcapacitors are components that do not 
yet physically exist, we implement here an analog circuit to 
illustrate the accuracy and feasibility of the theoretical cir-
cuit of the Fig. 1. As shown in Fig. 12, the proposed analog 
circuit is made up of nine operational amplifiers (TL084), 
four multipliers (MULT), three capacitors, and several resis-
tors. The analog circuit described in Fig. 12 is simulated in 
the Orcad PSpice environment with the same component 

Fig. 13  (continued)
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values as listed in the legend of the figure. The following 
equations describes the dynamics of the circuit in Fig. 12.

where VC1 = x1 , VC2 = x2 , VC3 = x3 , a1 =
R

Ra1

 , b1 =
R

Rb1

 , 
a2 =

R

Ra2

 , b2 =
R

Rb2

 , c = R

Rc

 , d =
R

Rd

 and e = R

Re

 . The corre-
spondence of the Matlab time unit according to that of 
PSpice (time scaling) is TPspice = RCTMatlab = 10−4TMatlab , 
with R = 10kΩ and C = 10nF . According to the system 
parameters using in Fig. 3, the values of the components of 
Fig.  12 are chosen as Ra1 = 33.333kΩ , Rb1 = 10kΩ , 
Ra2 = 10kΩ , Rb2 = 10kΩ , Rc = 5kΩ , Re = 22.222kΩ . It is 
important to mention that, the power supply voltage is 
±15Vdc . By varying Rd , i.e. the parameter d , the scenario 

(10)

⎧⎪⎪⎨⎪⎪⎩

V̇C1 =
R

Rc

�
R

Ra1

VC2 +
R

Rb1

V3

C2
−

R

Ra2

VC3 −
R

Rb2

V3

C3

�
,

V̇C2 = −VC1 −
R

Rd

�
R

Ra1

VC2 +
R

Rb1

V3

C2

�
,

V̇C3 = VC1 +
R

Re

�
R

Ra2

VC3 +
R

Rb2

V3

C3

�
,

leading to chaos by period-doubling was found during 
analog simulations as shown by phase portraits in Fig. 13, 
which presents a good agreement between the results 
obtained through Matlab (right) and PSpice (left) simula-
tions. Figures 14, 15 and 16 which correspond to Figs. 8, 9 
and 10, show the coexistence of four, three and two different 
attractors respectively. Herein, a good agreement between 
numerical and analog simulation is also observed.

4  Conclusion

This paper presented the results obtained from the investi-
gations on the new memcapacitor-based Colpitts oscillator 
and related discussions. One of the key contributions in 
this area was the introduction of a simple memcapacitors-
based oscillator, set up from the Colpitts' LC tank cir-
cuit. The proposed circuit is distinguished from the others 
found in the literature primarily by its unique structure 
based on memcapacitors and by the new and innovative 

Fig. 14  Coexistence of four different attractors via PSpice simulations for R
a1 = 33.333kΩ , R

e
= 22.222kΩ , R

c
= 5.411kΩ ; the values of the 

other components remain unchanged
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Fig. 15  Coexistence of three different attractors via PSpice simulations for R
a1 = 26.316kΩ , R

e
= 25.641kΩ , R

c
= 8kΩ ; the values of the other 

components remain unchanged

Fig. 16  Coexistence of two different attractors via PSpice simulations for R
a1 = 26.316kΩ , R

e
= 22.222kΩ , R

c
= 8.333kΩ ; the values of the 

other components remain unchanged
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results in the Colpitts-type oscillators. Numerical, analyti-
cal, and analogical analyses have been carried out. These 
investigations allowed us to highlight some very interest-
ing phenomena such as offset-boosting, single and double-
band chaos, and the coexistence of four different solutions. 
The practice feasibility of this circuit is confirmed by the 
PSpice simulations.
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