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Abstract
A low power analog integrated image edge detector is proposed consisting of Gaussian function and threshold circuits. 
The operating principle of this architecture is based on a hardware-friendly approximation of the Robert’s Cross operator. 
The system level implementation can be easily modified to account for various image resolutions. Therefore, the proposed 
architecture can be used as a building block in larger smart sensor systems. The edge detector was evaluated using 3 medium 
resolution images, achieving average Peak Signal-to-Noise-Ratio of 27.7 dB and Structural Similarity Index Metric of 0.81, 
while consuming only 33 nW per pixel. To demonstrate the performance and accuracy of the proposed architecture, Monte-
carlo simulation results are provided. Both schematic and post-layout simulations are carried out in 90 nm CMOS process, 
using the Cadence IC suite.

Keywords  Analog integrated implementation · Bump circuits · Edge detector · Low-power design · Robert’s Cross operator

1  Introduction

Internet-of-things (IoT) is a combination of sensor-based 
devices and systems which have the ability to collect and 
transfer data over a network without the need of manual 
control [1]. There are many cases in which power hungry 
devices are used in order to connect the node of a system’s 
data with data centers [2]. In order to reduce the unnecessary 
data transferring and the high power consumption new com-
puting paradigms are applied. Edge computing is a solution 
which brings computation and data storage closer to data 
sources. In the case of remote sensor systems, where online 
recharging capabilities are unavailable, power consumption 

is a vital factor. As a result edge computing should utilize 
power efficient devices.

A potential approach to minimize such systems’ power 
consumption involves analog integrated architectures, 
especially with transistors that operate in the sub-threshold 
region [3]. A particular field which can benefit from the 
advantages of analog computing and hardware paralleliza-
tion is image processing, since it is usually computation-
ally expensive. A popular image processing method is edge 
detection, which can be used in various applications, includ-
ing medical diagnosis [4], real-time object recognition [5], 
navigation systems [6] and more [7, 8].

In the literature only a few works that involve analog inte-
grated-based image edge detection exist. In particular, [9] 
demonstrates a two-stage network, in which the first stage 
detects the edges by applying a series of filters and thresh-
olding circuits. Then, the second stage reconstructs the origi-
nal image based on the edges that are previously detected. 
[10] presents a morphological edge-detector which estimates 
the images’ erosion and dilation. In addition, [11] and [12] 
propose an analog implementation of the Sobel operator 
[13], achieving high quality results at the cost of chip area 
and power consumption. Another existing approach is to 
combine current [14] or voltage mode [15, 16] mixed-signal 
circuitries that employ convolution filters.
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Despite the fact that the aforementioned works are char-
acterized by lower power consumption compared to their 
digital counterparts, the growing need in higher image reso-
lutions requires even greater power management, especially 
for battery-dependent IoT devices. In this direction, the work 
presented in [17] utilizes a compact Gaussian function cir-
cuit, reducing the circuit’s power dissipation to 0.9 μW per 
pixel. Nonetheless, this reduction was achieved, using a cus-
tom edge-detection algorithm, at the cost of performance in 
accuracy.

In this work, motivated by the challenges related to the 
trade-off between power efficiency and performance, we 
propose a high-performance compact analog integrated 
edge-detector that takes advantage of an ultra-low power 
current-mode Gaussian function circuit. Its architecture is 
directly integrated on a photodiode sensor array and pro-
duces a digital output without the need of any data convert-
ers. The proposed design can be used in various different 
applications without any significant modifications. This arti-
cle extends the authors’ previous work [18] which shares a 
low-power, low area and fast analog Bayesian classifier for 
thyroid disease detection, based on a low-power current-
mode Gaussian function circuit. In particular, we present 
a hardware-friendly implementation of the Robert’s Cross 
operator (RCO) to structure an analog edge-detector, using 
the same building blocks as in [18]. The implemented archi-
tecture achieves a low power dissipation of 33 nW per pixel, 
Peak Signal-to-Noise-Ratio (PSNR) value of 27.7 dB and 
Structural Similarity Index Metric (SSIM) of 0.81.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the mathematical foundations of the RCO. 
The proposed implementation and its basic building blocks 
are analyzed in Sect. 3. Section 4 presents the experimental 
results of the proposed edge detector and compares them 
with a software-based model. A comparison and discussion 
are provided in Sect. 5. Section 6 concludes the article.

2 � Mathematical background

The RCO is one of the first and simplest edge detectors in 
the literature [19, 20]. It is a computationally efficient differ-
ential operator that, despite the approximations considered, 
achieves impressive results. The RCO detects regions with 
high spatial frequency in the diagonal direction and therefore 
produces results that mimic to the human perception’s ones.

We assume an image with a N ×M resolution, xi,j denotes 
the light intensity of a pixel (i, j), for each i < N  , j < M . 
First, consider yi,j as the root square of xi,j:

(1)yi,j =
√
xi,j,

then, the approximation of the image’s gradient zi,j is cal-
culated as:

This gradient is in fact a grayscale image in which the 
detected edges are characterized by a high intensity value, 
whereas flat areas by a low one.

In practice, the RCO is calculated by convolving the 
given image with two 2 × 2 diagonal matrices �x and �y , 
given by:

Through the convolution of �x and �y with the image con-
sidered, the two components �x and �y are calculated as:

where ∗ denotes the convolution operator. The calculation 
process for both �x and �y can be simplified as:

In this case, the approximation of the image’s gradient 
∇I(i, j) is calculated as:

for each pixel (i,  j) for i < N  , j < M . Finally, one could 
optionally use a threshold on the the gradient ∇I(i, j) to pro-
duce a binary image bin(i, j) that indicates the edges:

where, Ith is a parameter threshold value.

3 � Proposed analog edge detector

A hardware-friendly modification of the RCO as well 
as the proposed analog edge detector’s building blocks 
and operation are explained in this section. We note 
that, all transistors in the following design operate in 
the sub-threshold domain with power supply rails set to 
VDD = −VSS = 0.3V  in order to reduce the power consump-
tion of the entire circuitry.

(2)zi,j =

√
(yi,j − yi+1,j+1)

2 + (yi+1,j − yi,j+1)
2.

(3)�x =

[
+1 0

0 − 1

]
and �y =

[
+1 0

0 − 1

]
.

(4)�x =����� ∗ �x,

(5)�y =����� ∗ �y.

(6)Gx(i, j) =yi,j − yi+1,j+1,

(7)Gy(i, j) =yi+1,j − yi,j+1.

(8)∇I(i, j) =

√
Gx(i, j)

2 + Gy(i, j)
2,

(9)Ibin(i, j) =

{
0 if ∇I(i, j) < Ith
1 if ∇I(i, j) ≥ Ith

,
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3.1 � Hardware‑friendly Robert’s cross operator

In the literature, Bump circuits are used to implement Bell-
like curves, that greatly resemble the Gaussian curve [21]. 
Despite being less accurate than the other Gaussian func-
tion circuit implementations, their low power consumption 
and compactness makes them preferable in various applica-
tions that require simultaneous operation of multiple Gauss-
ian function circuits [21]. Their vast range of applications 
includes RBF-based classifiers [22], neuromorphic circuits 
[23], fuzzy and neuro-fuzzy controllers [24] and smart sen-
sor systems like anomaly [25] and edge detection [17] cir-
cuits. In this work, we propose a hardware-friendly modi-
fication of the RCO (see Sect. 2) which facilitates a simple 
implementation of the analog edge detector by using Bump 
circuits as basic computational blocks. This is preferable 
to implementing the original RCO using squaring and root 
square circuits that, typically, are more challenging and 
power expensive than Bump circuits [21].

We assume the aforementioned image with a N ×M reso-
lution. In our hardware-friendly implementation we make 
use of the following mapping ẑi,j of the RCO zi,j using a 
Gaussian Kernel transformation:

where the variance � acts a parameter that controls the sen-
sitivity of the edge detection operator. This equation can be 
expressed as follows:

where N(x‖�, �2) is the univariate Gaussian function and 
is given by:

Here, μ denotes the mean value of the Gaussian function. 
In practice, for the hardware implementation of (11), 2��2 , 
for a given � , is a scalar constant and can be ignored. Also, 
unlike the original RCO, here, the edges are characterized 
by a low intensity value and the non-edges by a high one.

3.2 � Edge detector architecture

In this paper, the basic building block is the Bump circuit 
introduced in our previous work [18], depicted in Fig. 1. It 
is composed of two neuron cells and a symmetrical current 

(10)

ẑi,j ≜ e
−

1

2𝜎2
(zi,j)

2

= e
−

1

2𝜎2

�√
(yi,j−yi+1,j+1)

2+(yi+1,j−yi,j+1)
2

�2

= e
−

1

2

(yi,j−yi+1,j+1)
2

𝜎2 e
−

1

2

(yi+1,j−yi,j+1)
2

𝜎2 ,

(11)ẑi,j = 2𝜋𝜎2N(yi,j‖yi+1,j+1, 𝜎2)N(yi+1,j‖yi,j+1, 𝜎2),

(12)N(x‖�, �2) =
1

√
(2�)�2

e
−

1

2

(x−�)2

�2 .

correlator biased by a cascode current mirror. The two 
neuron cells operate as a differential pair, where the dif-
ferential voltage input is replaced by two input currents. 
Unlike a typical Bump circuit [21, 26, 27], where one of 
the differential pair’s voltage inputs acts as a constant 
parameter, here, based on (11) both Iin1 and Iin2 are in fact 
inputs to the circuit. The two neurons produce two drain 
currents I1 and I2 , which consist of two complementary 
sigmoidal curves. Given these sigmoidal currents, the 
correlator’s output current resembles a Gaussian curve. 
The voltage parameter Vc and the bias current Ibias con-
trol the variance and the height of the Gaussian curve, 
respectively. In particular, as shown in Fig. 2 by increasing 
the absolute value of Vc , the Gaussian curve’s width also 
increases. Furthermore, the output current’s maximum 
value Iout,max is approximately equal to the bias current 
value Ibias . All transitors’ dimensions are summarized in 
Table 1.

Bump circuits can efficiently perform multiplication with-
out the use of additional components. In particular, let us 
consider two Bump circuits. If we bias the second Bump 
circuit (Ibias2) with the first Bump circuit’s output current 
(Iout1), the output current of the second Bump equals the 
product of their respective Gaussian curves [27]. In this con-
figuration, only the first Bump circuit is biased with a speci-
fied external bias current ( Ibias ). This topology constitutes 
the analog implementation of the RCO, depicted in Fig. 3 
and its output current approximates a 2 × 2 image’s gradient.

Mn3 Mn6

Mn1VSS

Iin1

VDD

Iin2

VDD

Mn8Mn7

Ibias

VDD

VSS

Mn10Mn9

VS

Mp4
Mp1

Mp3

Iout

Mp2

VDD

I1 I2

Mp5 Mp6

Mn2Vc

Mn4
VSS

Mn5 Vc

Fig. 1   The proposed analog architecture implementing a Bump cir-
cuit. I

in1 , Iin2 , Vc
 and I

bias
 are the 2 input currents, the voltage con-

trolling the variance and the bias current controlling the height of the 
Gaussian curve, respectively. [18]
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In the literature, Winner-Take-All (WTA) circuits are 
used to implement the argmax operator [28]. In particular, 
a N-input N-output WTA circuit, is composed of N neu-
rons, each one associated with one input and one output. 
If a given input Iinj , j ≤ N  , is larger that the rest, then the 
respective output Ioutj has a high value, whereas the rest are 
zero. A 2-neurons Lazzaro WTA circuit example, shown in 
Fig. 4 can also be used as a simple threshold circuit, where 
its second input is the threshold value Ith . To counter the 
fact that in the analog implementation, edges have a low 
intensity value, whereas in the software implementation 
they have a high one, the overall output of the circuit is 
the output of the neuron with the Ith as its input. There-
fore, this topology operates complementary to a threshold 
circuit. The analog implementation of the RCO with the 
threshold circuit is depicted in Fig. 5.

Fig. 2   Left: Parametric analysis 
over I

bias
 , for I

in1 ∈ [0, 10] nA, 
I
in2 = 5 nA, V

c
= 0 V. Right: 

Parametric analysis over V
c
 , for 

I
bias

= 12nA, I
in1 ∈ [0, 10] nA 

and I
in2 = 5 nA. [18]

Table 1   MOS transistors’ dimensions (Fig. 1)

Differential 
block

W/L (�m∕�m) Current correla-
tor

W/L (�m∕�m)

M
n1–Mn6 0.4/1.6 M

p1–Mp6 0.4/1.6
M

n7,Mn8 0.4/1.6 – –
M

n9–Mn10 0.8/1.6 – –
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Fig. 3   A 2-D Bump circuit that implements the analog Robert’s Cross 
operator

Mn2 Mn3

Mn1

VSS

Iin1

VDD
Iout1 Iout2

Mn4

VSS

Iin2

VDD

Ibias

VSS

VDD VDD

Fig. 4   A two neurons NMOS Lazzaro WTA circuit
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3.3 � System‑level architecture

The proposed circuitry can be used on multiple high-level 
architectures in order to regulate the trade-off between the 
area, power consumption and operation speed. The straight-
forward solution, also proposed in [11] and shown in Fig. 6, 
is to construct a N ×M grid which is directly integrated on 

the photodiodes. This approach is suitable for accelerator 
circuits since it offers very high operation speeds at the cost 
of increased chip area and power consumption. On the other 
hand, a more area and power efficient configuration (shown 
in Fig. 7), consists of a single RCO cell, which is sequen-
tially shifted throughout to the entire image. This approach, 
requires significantly more computation time (proportionally 

Fig. 6   Conceptual system-level 
architecture, where multiple 
analog edge detector cells 
directly integrated on the pho-
todiodes Robert's 
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analog edge detector cell is 
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to the size of the image) in comparison to the previous one, 
as well as memories and digital circuitry to synchronize the 
whole procedure.

Unfortunately, both of the aforementioned approaches 
are inefficient for large images. Therefore, a middle ground, 
subsequently called the analog hardware-friendly implemen-
tation, that combines elements from both of them and can 
be adjusted in respect to the image’s size, is adopted in this 
work. In particular, an image can be segmented into smaller 
parts in which a single RCO cell is used as explained in 
Fig. 7. Then the processed segments are connected to reform 
the original image. In this topology, the size of each segment 
acts as a hyper-parameter controlling the trade-off between 
efficiency and operation speed. However, a drawback of this 
approach is that additional digital circuitry for reconstructing 

the original image is also required. An explanatory demon-
stration of this approach is depicted in Fig. 8.

4 � Simulation results

In this section, a comparison between the analog hardware-
friendly and software implementations of an RCO approxima-
tion in various different images is provided. The analog edge 
detector has been designed using the Cadence IC suite in a 
TSMC 90 nm CMOS process whereas the software imple-
mentation was evaluated using Python 3.7. All simulations 
presented are conducted on the layout, which is depicted in 
Fig. 9 (post-layout simulations). To avoid mismatches and 
manufacturing considerations, based on the common-centroid 

Fig. 8   Proposed system-level 
architecture, where multiple 
analog edge detector cells are 
shifted along the entire image
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technique extra dummy transistors are used in the implementa-
tion of the layout [29].

In order to import the images in Cadence, the pixel val-
ues were normalized in the range [2, 6] nA. These currents 
are the inputs of the Bump circuit and therefore values lower 
than 2 nA may lead to missleading results. The bias currents 
for the multivariate Bump circuits and the WTA circuit were 
set as Ibias,b = 4 nA and Ibias,wta = 6 nA, respectively. These 
are the minimum recommended current values for the proper 
operation of the edge detector. The hyperparameters Vc and Ith 
directly affect the results of the edge detector. For the simu-
lations in this section their values are set to Vc = 0.3 V and 
Ith = 3 nA.

In order to quantitatively evaluate the edge detector’s per-
formance, three figures of merit, that are widely used in image 
assessment [30], have been applied. Assuming for a reference 
image � and the produced image � . The SSIM is a perceptual 
metric which is calculated according to the following formula 
[31]:

where �� the average of � (similarly for � ), �2
�

 the vari-
ance of � (similarly for � ) and ��� the covariance of � 
and � . Furthermore, for the coefficients C1 and C2 we select 
C1 = (0.01L)2 and C2 = (0.03L)2 , where L is the specified 
dynamic range value of the images ( L = 1 in our case).

The PSNR is given by [32, 33]:

where MSE is the mean squared error between the images � 
and � and is given by [34]:

(13)SSIM(�,�) =
(2���� + C1)(2��� + C2)

(�2
�
+ �2

�
+ C1)(�

2
�
+ �2

�
+ C2)

,

(14)PSNR(�,�) = 20 log10

�
max{�}

√
MSE(�,�)

�
,

for each pixel (i, j) of the denoted images. The Mean Abso-
lute Percentage Error (MAPE), for each of the denoted 
images, is given as:

note that in (16) the mean value terms 1

NM
 cancel each other 

out.
To test the proposed edge detector a typical 512 × 512 

image (see Fig. 10a) is used and the results are presented in 
Fig. 10b, c. The quality of the analog generated images can 
be assessed by a visual inspection in area with high edge 
concentration. Two representative examples are the face 
and the feather; in the former the analog implementation 
adequately captures the basic features of a human face but 
in the latter presents a generic depiction with lesser details. 
This is true for both the images with and without the thresh-
old in Fig. 10b, c, respectively.

These results are also verified by observing the afore-
mentioned metrics. In particular, the PSNR and the SSIM 
between the software and the analog generated images are 
equal to 28.4 dB and 0.85 (values over 0.9 indicate that the 
differences are not detectable by the human eye), respec-
tively. It should be noted that the PSNR is calculated on 
the image without applying any threshold (see Fig. 10b), 
whereas the SSIM is computed on between the binary 
images (see Fig. 10c). To further (qualitatively) verify the 
performance of the proposed edge detector, the produced 
images for 2 additional reference images are provided. The 
results are presented in Fig. 11a, b and the PSNR and SSIM 
metrics for all images are summarized in Table 2.

The proposed edge detector is also tested in terms of cir-
cuit’s sensitivity behavior in PVT variations. Specifically, 
a Monte-Carlo analysis for N = 200 points is conducted 
on 4 random pixels that indicate an edge and on 4 random 
pixels that indicate a flat area. Both Monte-Carlo analysis 
histograms are shown in Fig. 12. Their mean values are 
�edges = 0.55 nA, �flat = 2.66 nA with standard deviation of 
�edges = 0.28 nA and �flat = 0.20 nA, respectively.

5 � Performance summary and discussion

A performance summary in terms of circuit’s specifications 
for existing analog edge detectors is presented in Table 3. 
The aim of this work was to lower the detector’s power 
consumption. By observing Table 3 it is evident that the 
proposed work significantly outperforms the rest in terms 

(15)MSE(�,�) =
1

NM

N,M∑

i,j=1

∣ �(i, j) − �(i, j) ∣2,

(16)MAPE(�,�) =

�∑N,M

i,j=1
∣ �(i, j) − �(i, j) ∣

∑N,M

i,j=1
Xij

�
100%,

54
.4
μm

46.2μm

Fig. 9   Layout of the implemented RCO cell along with the WTA cir-
cuit
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of power consumption per pixel. Additionally, the proposed 
circuit achieves the high computation speed, measured in 
frames per second (FPS), compared to the existing works. 
Nonetheless, this increased performance is area-expensive, 
since the proposed detector requires 2392�m2 per pixel, 
which is among the highest area per pixel values in Table 1.

The proposed analog edge detector targets smart sensor 
IoT devices that involve photodiodes. Its low power con-
sumption and high quality results that match those of digi-
tal and software-based systems, make it suitable for high 
performance systems. For the incorporation of the analog 
edge detector in smart sensor system, except from the digital 
circuitry that synchronizes the shift of the RCO cells along 

Fig. 10   Edge detection on an 
image of Lenna

(a) The original image.

(b) Left: Image provided by the software-based edge detector. Right: Image provided
by the analog circuit-based edge detector.

(c) Left: The binary edge detection image created by the software implementation.
The threshold value is chosen arbitrarily as 0.13. Right: The binary edge detection
image created by the analog circuit, for Ith = 2 nA.
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the photodiode array, (see Fig. 8), additional components are 
also required. In particular, since the RCO suffers from noise 
distortion [19], a filtering circuit should be added between 
the photodiodes and the proposed edge detector. Further-
more, since the output of the circuit is in a binary format, 

no analog-to-digital converters are needed. Nonetheless, a 
digital memory is necessary for the reconstruction of the 
image that indicates the edges after the RCO cells are shifted 
along the entire photodiode array.

6 � Conclusion

An analog edge detector based on a hardware-friendly 
modification of the RCO was presented with the scope of 
increasing the performance of the detector, while main-
taining a low power consumption. This is achieved by 
utilizing a low power, current mode Bump and a Lazzaro 

Fig. 11   Up: Edge detection 
on an image of a cameraman. 
Down: Edge detection on an 
image of a bike

(a) Left: The binary edge detection image created by the software implementation.
The threshold value is chosen arbitrarily as 0.13. Right: The binary edge detection
image created by the analog circuit, for Ith = 2 nA.

(b) Left: The binary edge detection image created by the software implementation.
The threshold value is chosen arbitrarily as 0.13. Right: The binary edge detection
image created by the analog circuit, for Ith = 2 nA.

Table 2   Performance summary for analog edge detectors

Image Resolution PSNR dB SSIM MAPE (%)

Lenna 512 × 512 28.4 0.85 2.65
Cameraman 480 × 640 26.3 0.78 3.86
Bike 490 × 484 28.4 0.82 2.51
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WTA circuit. A single RCO cell, composed of these build-
ing blocks, can receive 100 K inputs per second consum-
ing only 33 nW. To evaluate the proposed architecture 3 
medium resolution images were used. Post-layout simula-
tion results suggest that the produced images achieve an 
average PSNR value of 27.7 db and an average SSIM of 
0.81, indicating an excellent result.

Availability of data and materials  Availability of data and materials: 
Data used in the experiments has been generated through publicly 
available simulators. Related simulation files have been shared through 
the links given in the paper in order to fully reproduce the presented 
results.
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