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memories with better data storing capacity were introduced 
such as PCRAM, STTRAM, STTMRAM, Ferroelectric FET 
Memory and RRAM. Amid RRAM is capable of replacing 
the conventional memory in future computers by incorporat-
ing nanotechnology core intrinsic properties which has most 
promising features like easy cell structure, express speed for 
program/erase (P/E), exceptional scalability, very less util-
ity of operational power, fine compatibility with standard 
CMOS process [26], [27], [28], [29], 30], [31], [46] and high 
data retention i.e., ability to save its own data till the lifetime 
without any corruption in it [10], [22], [51]. Various device 
structures and storage materials (shown in Table 1) were 
proposed [12], [13], [13], [25], [33], [34], [36], [37], [38], 
[39] to build RRAM. Hence it is used in numerous trending 
applications like parallel computing (data storage and com-
putation can be done in single device hence it reduces the 
data traffic) [9], neural network [21], [30], [49], [52] mixed-
signal computing [24]. To avoid data shuttling problem in 
logic computation, all memristor cell in the crossbar array is 
assigned as input, output, assistance, and memory element 
at different stages [5], [6] which is used to transmit data 
between the processing unit and primary memory [47].

1 Introduction

The core memory for an entire computer is Random Access 
Memory. At present, flash memory technology is employed 
to transmit data between digital systems and computers 
which is efficient than DRAM and SRAM. Though it is 
an efficient replacement, it comes with very slow writing 
speed and constrained endurance. As a consequence, every 
electronic industry wants to find an alternative for flash 
technology [19], [20] to attain faster writing & reading capa-
bility, good scalability, maximized memory performance 
and higher endurance with compact cell size. Therefore 
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In bipolar RRAM, the resistance of dielectric varies by 
applied voltage at when the functional voltage goes beyond 
the threshold voltage that will result in SET operation (tran-
sition from HRS - logic 0 to LRS - logic 1 / OFF state to 
ON state) which is responsible for a write operation. Sim-
ilarly, detachment of CF between the (BE) & (TE) layer 
results in RESET operation (transition from LRS - logic 1 
to HRS - logic 0 / ON state to OFF state). In 3D crossbar 
RRAM to avoid sneak current problem, RESET and read 
operation is performed concurrently along with entire row 
of cells, to read the data both (BE) & (TE) are applied with 
small amount of voltage difference for little span of time, 
the conducted current is sensed and measured by a sense-
amplifier to find whether the cell’s state is in low resistance 
(logic 1) or high-resistance (logic 0) which is known as 
read operation.

3 RRAM Testing Methods

RRAM inherits a lot of defects due to its non-determinis-
tic character and nanoscale fabrication. Classification and 
definition of defects were proposed in [16]. Physics-based 
investigation of the memristor such as physical form and 
its fault models are studied in [18], [50] that symbolize all 
possible defects and extensive fault models. To find open 
defects and Undefined State Fault (USF) a Design-For-Test 
(DFT) approach is proposed in [23] and a fast march algo-
rithm was proposed in [35] that speed-up the testing process 
(approximately 70%) with reduced energy consumption 
(approximately 40%). In the divide and conquer technique 
[4] all kinds of stuck-at faults are detected by measuring 
the summation of individual memristor current. New-fan-
gled fault models such as Over-Forming (OF) fault and the 
Read-One-Disturb (R1D) faults are precise to RRAM which 
is described in [3], [14] and a customized testing approach 
is introduced based on the March algorithm [45]. Tradi-
tional March algorithms are used in most of the memory 
testing schemes shown in Table 2. Its write and read actions 
are done through unchangeable patterns which thoroughly 
check the memory with certain sort of faults in a series 
manner.

All test algorithms suffer by reading operation than 
the write operation since the read circuit requires several 
subcircuits to carry the intended operation which auto-
matically increases the test complexity & time (shown in 
Fig. 2). So based on the number of operations, the effi-
ciency of test algorithms is assessed by test complexity and 
test time [48] (shown in Fig. 3). Moreover, for every read 
operation certain amount of voltage/current (based on the 
reading scheme) is applied to the target cell, such external 
influence will affect the system functionality and lead to 

2 General structure & operational 
conditions of RRAM

According to the array structure, RRAM is categorized into 
two types: (i) 1T1R RRAM (ii) Crossbar RRAM. In 1T1R 
structure, each cell consists of a keen MOSFET transistor 
which is used to avoid interrupts during RRAM operation. 
But, these transistors will make a rise in cell area that leads 
to further expenses. To defeat this hitch, Crossbar RRAM 
is proposed [1] which has a good density with accurate 
performance compared to 1T1R RRAM. Moreover, in 
crossbar RRAM structure, all cells are interconnected to 
each other and the memristor is directly attached between 
word-line and bit-line without any access transistor [15], 
[17] thus it occupies 4F2 area (F-feature size). In addition, 
several layers of the crossbar can be stacked by 3D inte-
gration technology that results in high density due to its 
nonlinear characteristics [7], [8], [11] that form an array 
structure [44]. While coming for operational conditions, 
an established connection between the top electrode (TE) 
and bottom electrode (BE) by means of the conductive fila-
ment (CF) is called as forming operation (shown in Fig. 1). 

Table 1 Various material for RRAM and its outstanding properties
Material Properties Application
TiO2 High stability, low cost, non- toxic-

ity, realistic surface modification and 
non-corrosiveness

RRAM 
fabrication

NiO Huge band gap (3.6 eV to 3.8 eV), an 
antiferromagnetic TMO semiconduc-
tor with exceptional electrochemical 
permanence, highly transparent and it 
lows down the material cost.

p-type semi-
conductor

ZnO Cost-effective (due to the natural 
resource), high quantum efficiency, 
better bandgap (3.2–3.37 eV) and non-
toxic effects

Wurtzite 
structured 
n-type semi-
conductor

TaX2 Less utility of operating voltage, fast-
est switching process, excellent ther-
mal stability, unique retention ability, 
admirable homogeneity and extremely 
good endurance paves the way for 
reliable storage application.

3D vertical 
RRAM

HfO2 Vertical switching capability and 
cost-effective

3D Crossbar 
array

Fig. 1 RRAM basic operations
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low power adaptive write circuit is used due to its attractive 
features such as fast operation, less power utility and higher 
accuracy of write operation than different write schemes 
like Fixed-Length Pulse (FLP) [40], Adaptive 1T1R [41], 
Adaptive Single Cell [42] and High Precision Tuning [43]. 
For example, the test complexity of the March 1/0 algorithm 
is 14n (shown in Fig. 4) and it is reduced to 10n by the 
self-checking method. Thus the write operation is verified 
devoid of a separate read circuit.

For March 1/0 algorithm self-check method is applied 
and test complexity is optimized, but it is ideal (i.e., no opti-
mization in operational function) for MATS, MATS + and 
March C* algorithms (shown in Fig. 5.represented as a,b,c 
and a*,b*,c*). To rise above this consequence a novel march 
algorithm with ‘wr’ element is used without separate read 
operation by March WR test algorithm and the test complex-
ity is also reduced (shown in Fig. 5.represented as a*,b*,c*) 
to 2n ({↨(wr0), ↨(wr1);}) which is very less compared to all 
other existing testing algorithms. Hence it is mentioned as 
March 2n. ‘.

Pseudo code for the algorithm.
for (i = 0; i←(n-1); i++).
{m(i) = 0;}
for (i = 0; i←(n-1); i++).
{if (m(i) = 0) (m(i) = 1);}
else {return WDF & RDF;}
Step 1: Initially write ‘0’ operation is performed (w0) it 

is checked by inherited read ‘0’ (r0) using write verification 
signal.

performance failure. Hence an optimized test method and 
reliability assessment scheme is required to enhance the 
testing process.

4 Optimized Test Algorithm

A self-verification write scheme is adopted in this paper con-
sequently, the accuracy of every write operation is verified 
at the end of each write cycle by means of a write complete 
signal. It results in a combined “write & read” (“wr”) opera-
tion, that will detect faulty write operation and avoid the 
read disturbance and corruption in memory elements. Here 

Table 2 Traditional March algorithms with testing sequence
March 
algorithm

Marching Sequence

March 1/0
MATS
March A
March B
March C
MATS+
March C-
MATS++
March AB
March AB1
March MSL
March-12n
March AB2
March C*

{↨(w0);↑(r0,w1,r1); ↓(r1,w0,r0); ↨(w1);↑(r1,w0,r0); 
↓(r0,w1,r1);}
{↨(w0);↨(r0,w1);↨(r1);}
{↨(w0);↑(r0,w1,w0,w1); ↑(r1,w0,w1); 
↓(r1,w0,w1,w0);↓(r0,w1,r0);}
{↨(w0);↑(r0,w1,r1,w0,r0,w1); ↑(r1,w0,w1); 
↓(r1,w0,w1,w0);↓(r0,w1,r0);}
{↨(w0);↑(r0,w1);↑(r1,w0);↨ (r0);↓(r0,w1);↓(r1,w0
);↨(r0);}
{↨(w0);↑(r0,w1);↓(r1,w0);}
{↨(w0);↑(r0,w1);↑(r1,w0);↓(r0,w1);↓(r1,w0);↨(r0);}
{↨(w0);↑(r0,w1); ↓(r1,w0,r0);}
{↨(w1);↓(r1w0r0w0r0); 
↓(r0w1r1w1r1);↑(r1w0r0w0r0); ↑(r0w1r1w1r1); 
↨(r1);}
{↨(w0);↨(w1r1w1r1r1); ↨(w0r0w0r0r0);}
{↨(w0);↑(r0,w1,w1,r1,r1,w0); ↑(r0,w0); ↑(r0);↑( 
r0,w1); ↑(r1,w0,w0,r0,r0,w1); ↑(r1,w1); 
↑(r1);↓(r1,w0);}
{↨(w0);↑(r0,w1,r1); ↑(r1,w0,r0); ↓(r0,w1); 
↑(r1,w0);↨(r0);}
{↨(w1);↨(w1r1w0r0w1r1);}
{↑(r0,w1);↑(r1,r1,w0);↓(r0,w1);↓(r1,w0);↑(r0);}

Fig. 2 Effect of read and write operation to the original test complexity

 

Fig. 4 Application of self check method to March 1/0 algorithm

 

Fig. 3 Test complexity and test time of various testing algorithms
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time for the above-mentioned algorithms using self-check 
method (marked as x, y and z) while using March 2n it is 
well optimized (marked as x*, y* and z*).

5 Proposed Reliability Assessment Scheme 
for RRAM Testing

A range of testing algorithms was introduced to check the 
intended functionality of the memory device still, there is a 
research gap in reliability analysis. In most of the testing, 

Step 2: Similarly write ‘1’ operation is performed (w1) it 
is checked by inherited read ‘1’ (r1) using write verification 
signal.

Self-check method reduces the test complexity for vari-
ous existing test algorithms although there is no optimiza-
tion for a few test algorithms such as MATS, MATS + and 
March C* algorithms (marked as a, b and c) shown in Fig. 5. 
Whereas in the March 2n test algorithm, there is notice-
able test complexity optimization for the same algorithms 
(marked as a*, b* and c*). Similarly, the effect of test time 
reduction is shown in Fig. 6. There is no optimization in test 

Fig. 6 Test time reduction by 
self check method and March 
2n

 

Fig. 5 Complexity reductions by 
self check method and march 2n
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6 Reliability Assessment Parameter & 
Reliability Curve

Queuing theory parameters (average waiting time, probabil-
ity of a memristor cell waiting in the test queue, test server 
idle time, test server utilization) are calculated for vari-
ous testing methods (shown in Table 3) and the reliability 
assessment curve is plotted for various RRAM (4*4 cross-
bar array) testing methods (shown in Fig. 8).

The reliability assessment curve (shown in Fig. 8) clearly 
shows that the March 2n test for crossbar RRAM is highly 
reliable than traditional and row reading testing methods. 
When the RRAM crossbar size increases, the number of 
waiting cells also increases (crossbar size 4*4 to 64*64 
is shown in Fig. 9a) which has a direct impact on various 
parameters like service rate, service interruption and quality 
of service (shown in Fig. 9b).

To derive the quality of service, (i) service interruption 
which results in server breakdown (ii) server utilization is 
taken in account. A higher probability of service interrup-
tion directly affects the quality of service. As a consequence 
lower service interruption and high quality of service result 
in good reliability. In March 2n test method, test server is 
utilized to the fullest (shown in Fig. 8). Where the memris-
tor cells are tested irrespective of the remaining cells in the 
crossbar array (i.e., no waiting cell) and so there is no service 
interruption. Thus it results in good quality of service (shown 
in fig 0.10).

efficiency is measured by the testing parameters like com-
plexity of the test algorithm, test time, fault coverage, fault 
escape and false fault detection are made in the account. 
But it is equally important to check the reliability (qual-
ity of test over time) of the test server. Hence a novel reli-
ability assessment scheme is proposed in this article using 
queuing theory. Here two parameters are considered (i) the 
number of cells under testing at a particular time (ii) the 
number of waiting for cells for testing. In the traditional 
march method, entire array is taken for the testing process 
and a single memristor cell, remaining memristor cell waits 
in test queue i.e., (n2 - (n2–1)) memristor cells are tested 
and (n2–1) cells waits in the test queue. For example, in 4*4 
crossbar RRAM out of 16 memristor cells single memristor 
cell is tested (4*4 crossbar - shown in Fig. 7a, red circle) 
and the remaining 15 cells in the array waits for the testing 
process (shown in Fig. 7a - green box). This results in a 
higher probability of waiting cells in the test queue and the 
least server utilization. Whereas in row reading method [32] 
at a time single cell is tested in a particular row i.e., (n - (n 
− 1)) and (n – 1) cells waits in the test queue, thus for taken 
example single memristor cell in a row is tested (shown in 
Fig. 7b, red circle) and the remaining 3 cells wait for the 
testing process (shown in Fig. 7b, green box). But in the 
March 2n method at a time, single memristor cell is tested 
devoid of any waiting cells by auto write verification with-
out separate read operation. Hence the number of waiting 
cells is completely avoided by this method.

Fig. 7 (a) Traditional march 
algorithm (b) Row reading 
method
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Table 3 Reliability assessment parameters for various testing methods
Reliability assessment parameters Traditional 

march method
Row testing 
method

Optimized 
March 2n

Average waiting time (ns)
Average waiting time of a particular memristor cell in the test queue (Wq).
Wq == λ/µ(µ− λ)Where λ is the arrival rate (number of memristor cell that arrives for the testing 
process at a particular time) and µ is the service rate (number of memristor cell tested).

6.6 3.3 0

Probability of a memristor cell waiting in the test queue (%)
The probability of a memristor cell waiting in the test queue is the ratio between the numbers of 
waiting for cell to the total number of cells.

93 18 0

Test server Idle time (ns)
The Proportion of time the test server is idle in row testing method = 1- ρ,  
where ρ = λ/µ

0.9375 0.75 0

Test server utilization (%)
Server utilization (ρ) is the ratio between the number of memristor cell that arrives for the testing 
process and the number of memristor cell tested i.e., ρ = λ/µ

6.25 25 100

Fig. 10 Quality of service for RRAM testing methods (with respect to 
server utility & server breakdown)

 

Fig. 9 Relationship between 
number of waiting cell & test 
quality parameters

 

Fig. 8 Reliability assessment curve by queuing theory
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Conclusion

This article addresses the reliability issues of memory 
testing algorithms. Here various memory testing algorithms 
are taken and the reliability is analyzed in a mathematical 
way using queuing theory parameters such as average wait-
ing time, probability of a memristor cell waiting in the test 
queue, idle time of the test server and test server utiliza-
tion. This is completely a new dimension in the memory 
testing field to analyze the nano memory testing algorithm 
with a reliability curve by the above parameters rather than 
conventional methods. In addition, the quality of service is 
assessed by server utility & server breakdown along with 
above mentioned queuing parameters. Hence the proposed 
novel reliability assessment scheme paves a new way to the 
nano memory testing field.
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