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Abstract
Nowadays, wireless communications at frequencies of gigahertz have an increasing demand due to the ever-increasing

number of electronic devices that uses this type of communication. However, the design of Radio Frequency (RF) circuits

is difficult, time-consuming and based on designer knowledge and experience. This work proposes an interactive evolu-

tionary approach based on genetic algorithm, implemented in the in-house iMTGSPICE optimization tool, to perform the

optimization process of a Low-Power Low Noise Amplifier (LNA) dedicated to Wireless Sensor Networks (WSN), which

is robust through the corner and Monte Carlo analyses and implemented in two Bulk CMOS technology nodes: 130 nm and

65 nm. Regarding each technology node, we performed two experimental studies to optimize the LNA. The first one used

the conventional non-interactive approach of iMTGSPICE, which was not assisted by a designer during the optimization

process. The second one used the interactive approach of iMTGSPICE, which was monitored and assisted by a beginner

designer during the optimization process. The obtained results demonstrated that the interactive approach of iMTGSPICE

performed the optimization process of the robust LNA from 16 to 94% faster than the non-interactive evolutionary

approach. The design regarding the technology node of 130 nm took 341 min for the non-interactive and 20 min for the

interactive optimization process, whereas the design in the 65 nm took 537 min for the non-interactive and 454 min for the

interactive approach.

Keywords Electronic design automation (EDA) � Interactive genetic algorithm � Design of robust analog CMOS ICs �
Low noise amplifier (LNA)

1 Introduction

The demand for applications using wireless communica-

tion has grown significantly. Recent concepts such as

Internet of Things (IoT) and Industry 4.0 are very

promising due to the possibility of monitoring and con-

trolling applications without using wire connections. In a

wireless communication network, radio frequency (RF)

Complementary Metal–Oxide–Semiconductor (CMOS)

Integrated Circuits (ICs) are essential elements. As a front-

end of wireless transceivers, RF circuits are responsible by

processing the analog signal in order to ensure the integrity

of information exchanges between electronic devices.

Unlike digital CMOS ICs, RF circuits are traditionally

designed by hand, based on circuit behavioral equations,

followed by an iterative manual process using classical

electrical circuit simulators. This process is often very

laborious, costly and time-consuming [1], [2], [3]. Besides,
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the optimization processes of CMOS RFICs are performed

by manual methods and need much knowledge and expe-

rience of the designers to reach the additional metrics

required by this kind of ICs. Therefore, the complexity

presented by CMOS RFICs complicates its automation

task, and, consequently, its design has remained dependent

on the expertise of RF designers.

In this scenario, evolutionary computation techniques to

solve multi-objective problems in the artificial intelligence

area are appropriate and have been successfully used in the

optimization processes of analog and CMOS RFICs robust

through corner and Monte Carlo analyses[1], [4], [5]- [8].

Despite the recent advances in tools to assist the design of

analog and RF ICs, the design of these ICs has depended on

the designer’s experience. Thus, one of the ways to

increase the effectiveness of optimization tools is to inte-

grate the artificial and human intelligences to perform the

optimization process. The artificial intelligence area that

incorporates interaction between the humans and the

computational tool is the interactive evolutionary compu-

tation (IEC) [9]. The IEC approach is typically applied

when an analytical fitness function is very difficult or

impossible to be elaborated, as for example in several

areas, such as musical [10], aesthetic [9], ergonomic [11],

automotive, graphic art and animation, food engineering

[12], among others, in which subjective evaluations are

applied. However, this technique have not been explored

for the CMOS RFICs optimization. To overcome this

complex and challenging issue, this work proposes the use

of an in-house electronic design automation (EDA) tool to

optimize CMOS RFICs, named iMTGSPICE [13], [14],

[15]. It is capable of reducing the optimization cycle times

of these circuits due to its heuristic processes of artificial

intelligence and IEC techniques. Therefore, designers can

optionally interact with the optimization process at any

time to stop and change design parameters, such as bias

conditions, transistors sizes, specifications to be achieved,

etc., and evolutionary process parameters, which are usu-

ally the priorities of searching, sigma of the fitness func-

tions, number of iterations, etc., inserting the designers’

expertise to reach robustness in desired specifications. It is

important to highlight that iMTGSPICE is capable of

producing robust solutions of analog and CMOS RFICs in

hours. Moreover, it performs the corner and Monte Carlo

analyses in the loop of optimization process without

reducing the sample space of searching. Interestingly, by

the proposed approach, the optimization cycle time is

feasible, taking into account all time considered for the

optimization of these types of circuits. Therefore, by using

iMTGSPICE, the designers are able to meet severe speci-

fications in a reduced optimization cycle time, while

guaranteeing the robustness of analog and CMOS RFICs,

taking into account the manufacturing process, supply

voltage and temperature variations.

In order to demonstrate the proposed computational

tool, a classical RF IC is designed: the low-noise amplifier

(LNA). The LNA is the first active building-block in a

reception chain [16], [17]. It is responsible for amplifying

the small RF input signal from the antenna and for assuring

a low noise factor for the remaining blocks of the receiver.

The main metrics of the ultra-low power LNA for wireless

sensor network applications [17], such as power con-

sumption, area, impedance matching, gain and noise figure,

are optimized by using the proposed design automation

tool (iMTGSPICE). Two experiments are performed for

the optimization process of this LNA using the GA. The

first one uses the conventional non-interactive approach

and the second uses the proposed interactive evolutionary

approach, which is compared to the conventional non-in-

teractive approach. These experiments are also performed

considering two Bulk CMOS technology nodes: 130 nm

and 65 nm. The obtained results are compared in terms of

robustness, regarding the manufacturing process, supply

voltage and temperature variations, and optimization cycle

time.

This paper is organized as follows: Sect. 2 presents the

interactive evolutionary approach proposed in this work.

Next, in Sect. 3, the LNA topology used in this work is

presented. The LNA specifications and configuration

parameters of the optimization EDA tool and robustness

analyses are provided in Sect. 4. Section 5 discusses the

results obtained by the proposed approach. Finally, Sect. 6

concludes this paper.

2 Interactive evolutionary approach
of the optimization tool

Fig. 1 illustrates the block diagram of the interactive evo-

lutionary approach with the GA implemented in the opti-

mization tool [13], [14], [15]. It is developed in

C ? ? language and manages the Spice Opus simulator

[18]. Moreover, it performs robustness analyses through

corner analysis and Monte Carlo analysis in the loop of the

optimization process [19].

Designers need to configure the iMTGSPICE before

starting the optimization process (Block A) [14], [20]: the

description of the circuit (SPICE netlist); input variables

with their specified ranges, such as the transistors sizes

(channel width, W, and channel length, L), bias conditions

(voltage and current sources), values of passive compo-

nents (resistors, capacitors and inductors); the output

variables, which are the desired specifications or figures of

merit (FoMs) with their respective tolerance ranges, such

as the forward gain (S21), input reflection coefficient (S11),
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output reflection coefficient (S22), noise figure (NF), power

consumption (PTOT), and total gate area of MOSFETs (AG);

the GA parameters, such as population size (NP), crossover

and mutation rates (PC and PM), the weight (priority)

applied for each FoM of the fitness function (Wei), where

i is an index that represents a FoM, the standard deviation

of the Gaussian fitness functions (r) [20], and NRob is the

desired number of solutions contained in the population

that fully meet the design specifications taking into account

the robustness analyses, which is used as the stop criterion.

The iMTGSPICE performs the evolution process in two

stages [20], [21], which are based on the procedure com-

monly adopted by the analog CMOS IC designer. The first

stage is responsible for evolving functional constraints of

the analog IC, such as the direct current (DC) bias condi-

tions of the MOSFETs to ensure that all of them operate in

the desired saturation region. The second stage is respon-

sible for making the evolution process of the alternating

current (AC) analysis of the analog CMOS IC with the aim

of obtaining the final required solutions. It is important to

emphasize that the DC stage is performed before the AC

stage and they follow the same general block diagram

illustrated in Fig. 1. The first stage (DC stage) starts gen-

erating randomly a set of potential solutions (Block B),

which evolve to obtain one or more solutions, defined by

the designer, that meet the functional constraints. The

second stage (AC stage) also starts generating randomly a

set of NP potential solutions (defined by the designer) and

then one or more of them are replaced by the best solutions

found in the first stage of the evolution process.

Next, in Block C, each potential solution is simulated in

SPICE [20]. Then, the FoMs (desired specifications) of

each potential solution (S21, S11, S22, NF, PTOT, AG) are

obtained and evaluated by minimization, center value, and

maximization fitness functions [20] considering a range

from 0 to 100 and the value of the fitness function of a

potential solution is represented by EvalSol, which is the

weighted sum considering the values of the FoMs.

Afterwards, in Block D, the robustness of the best

potential solutions evaluated by the fitness functions are

calculated, until the evolution process find the NRob robust

potential solutions. The robustness calculation regarding a

potential solution is performed as follows:

I- The minimum and maximum performance values of

each FoM are obtained through robustness analyses

(corner or Monte Carlo). The deviations of the different

FoMs found are determined considering their minimum

and maximum values relative to the desired

specifications;

II- The average value of the deviations found of item I

(esol) is calculated regarding the worst performance of

each FoM, considering their minimum and maximum

performance values [19]. Next, the value of the fitness

function of each potential solution is calculated consid-

ering the value of its esol. Afterwards, the population is

reordered, giving the highest priority for the most robust

potential solutions, which are identified by those that

improve more the FoMs (highest esol values).

Moreover, the relative deviations are calculated

depending on the profile type of the fitness function (cen-

tral value, minimization, and maximization [20]):

I- ‘‘central value’’: as this specification is defined by the

minimum, nominal, maximum values, two deviations are

calculated. The first (second) one is calculated consid-

ering the maximum (minimum) FoM value subtracted

from the nominal desired specification;

II- ‘‘maximization’’: this specification is defined by only

one value (value of the desired minimum specification);

III- ‘‘minimization’’: this specification is defined by only

one value (value of the desired maximum specification).

In addition, the relative deviation can be positive or

negative, when the performance of the FoM is higher or

lower in relation to the desired specification, respectively.

Therefore, in the case of the ‘‘central value’’ profile of the

fitness function, the relative deviation considered for the

FoM (worst case) is the one that presents the smallest value

between the two relative deviations found.

The FoMs, MOSFETs’ sizes, values of bias voltages,

and values of the passive components of the most robust

potential solution obtained are displayed in the screen of

iMTGSPICE (Block E). Fig. 2 presents one of the screens,

New solutions 
(new generation)

Interactive Process

No
Is stop criterion 

reached?

Yes

( )H

Specifications achieved?

( )F

( )G

End

( )D SPICE simulations regarding the corner 
analysis and Monte Carlo analysis

Selection, crossover, and mutation processes

( )C Typical SPICE simulations for each potential solution 
of the population to subsequently evaluate them

Update the graphs and logs regarding the most 
robust potential solution of the current generation( )E

ECIPi SGTMehtfonoitarugifnoC( )A

Evolution process

Random generation of the population( )B First generation

Fig. 1 Block diagram of the interactive evolutionary process imple-

mented in the iMTGSPICE
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which monitors the EvalSol and FoMs found (S21, S11, S12,

S22, NF, PTOT), taking into account the corner analysis and

Monte Carlo analysis in the loop of the optimization pro-

cess as a function of the number of iterations (generations).

Next, in Block F, the interactive procedure can be car-

ried out by the designer. Then, based on the real-time

monitoring of the design variables and FoMs displayed in

the iMTGSPICE screen, optionally, the designer can pause

the evolution process and interact with it. The interaction

with the system can be performed by changing the

dimensions and values ranges regarding the design vari-

ables, such as the channel width and length of the MOS-

FETs, bias conditions of the LNA, passive components

(resistors, capacitors and inductors), as well as parameters

of the evolution process.

Furthermore, in Block G, genetic operators are applied

to generate a new population to be evolved. Each potential

solution in iMTGSPICE is represented by a binary chro-

mosome [21]. Each chromosome contains the design

variables (transistors dimensions, bias conditions and val-

ues of resistors, capacitors and inductors), in which the

length of the chromosome is calculated according to the

accuracy required for the design variables [21]. The

selection process of the best robust potential solutions is

performed by the binary tournament. The reason for

choosing this method is that it demonstrated to be faster

and more effective than other methods, such as the roulette

wheel in the experiments performed in this work. After-

wards, the single-point crossover is applied for the selected

individuals in population to generate a new set of

individuals for the next generation. The use of this type of

crossover is due to the best average performance achieved

in several experiments considering other types of cross-

over, such as two points and uniform. Finally, a bit flip

mutation is applied for this new generation to further

explore the search process of potential solutions [14, 21],

which was chosen due to the binary chromosome repre-

sentation of the GA. The stop criterion is verified in Block

H. If the desired number of robust solutions (NRob) is

achieved the optimization process finalizes, otherwise it

continues until reaching NRob or the maximum number of

iterations defined by the designer [19].

3 Topology of the LNA

Among the RF receiver building-blocks, the LNA is one of

the most critical. In addition to increase the amplitude of

the weak incoming signal from the antenna, this circuit

needs to operate with severe targets of noise figure and

linearity. Focusing in Wireless Sensor Network (WSN)

applications, the power consumption of such RF circuit is

also a crucial objective. For comparison reasons, the LNA

proposed in this work was designed in two different tech-

nological nodes: 65 nm and 130 nm CMOS. The LNA

topology used is presented in Fig. 3. It is based on an ultra-

low power LNA first presented by [17]. Targeting low-

power applications, topologies using active load are pre-

ferred. So, the proposed circuit presented in Fig. 3 imple-

ments a modified self-biased inverter [17]. It is composed

Fig. 2 Screen of iMTGSICE showing the monitoring of the the EvalSol and FoMs obtained by the best potential solution in each iteration of the

optimization process

310 Analog Integrated Circuits and Signal Processing (2021) 106:307–319

123



of two stages: amplification stage and buffering stage. The

amplification stage is the LNA core, designed to amplify

the input signal linearly using M1 (nMOSFET), M2

(pMOSFET), inductor Lg, capacitor C1 and resistor RF. In

order to improve gain and reduce noise figure, a biasing

voltage Vpol1 is applied to M1 through resistor Rpol1. The

buffering stage, composed by M3 (nMOSFET) and the

inductor Lpk, is used for measurement purposes, in order to

comply with 50 Ohms input impedance of test equipment.

The required output matching (50 Ohms) is obtained

thanks to the capacitive divider of Cm2 and Cm3. On the

other hand, Cm1 contributes to the inter-stage impedance

matching, as well as to allow the biasing of transistor M3

through Vpol2 connected to the resistor Rpol2. Two different

supply voltages are presented in Fig. 3: VCC and VDD. For

the LNA designed in a 65 nm technology, the VDD is

reduced to 0.5 V, while the VCC is kept in the nominal

voltage of 1 V. The main goal is to reduce the power

consumption of the LNA core. However, for the LNA

designed in a 130 nm technology, VCC and VDD are con-

nected to the same voltage of 1.2 V. In the next section,

based on the proposed LNA topology, an interactive evo-

lutionary approach is applied in order to best define the

biasing voltages and devices sizing, according to required

specifications.

In addition, the input terminal is represented by in node

and the output terminal by the out node. Finally, the large

decoupling capacitor, Cdec, ensures AC ground at the

source of M2.

4 LNA Specifications and configuration
parameters of iMTGSPICE and robustness
analyses

In this work, we have considered the required specifica-

tions of the LNA according Table 1.

Table 1 presents the seven different figures of merit

(specification parameters) considered for the LNA design.

Moreover, all MOSFETs (M1, M2 and M3) are set to

operate in the saturation region (functional constraints).

Two CMOS Bulk manufacturing technologies are used

to design the LNA: the 130 nm technology from the

GlobalFoundries [22], which will be referred to as

LNA_130, and the 65 nm technology from TSMC [23],

which will be identified as LNA_65. The standard supply

voltage of both technologies (GlobalFoundries and TSMC)

used in this work is 1.2 V. The LNA_130 operates at

2.4 GHz and supply voltages VCC and VDD of 1.2 V. The

LNA_65 operates at the same frequency, but different

VDD

Out

Cm3

Cm2

M3

Lpk

Rpol2

M2

M1

Cm1

Cdec

1µF

VCC

RF

C1
Lg

In

Rpol1 Vpol2

Vpol1

Fig. 3 Topology of the LNA

Table 1 The desired specifications of the LNA

Figures of merit Specifications

Forward gain (|S21|) C 15 dB

Input reflection coefficient (|S11|) B -10 dB

Reverse isolation (|S12|) B -20 dB

Output reflection coefficient (|S22|) Minimize (dB)

Noise figure (NF) B 4 dB

Power consumption (PTOT) B 6 mW

Gate area of the MOSFETs (AG) B 1500 lm2

Analog Integrated Circuits and Signal Processing (2021) 106:307–319 311

123



supply voltages VCC and VDD, which were fixed in 1 V and

0.5 V, respectively. For the LNA_130 the standard supply

voltage of the technology was applied, which enabled the

optimization process to achieve the desired specifications.

However, for the LNA_65, supply voltages below the

maximum allowed by the technology were applied due to

power consumption constraints. Additionally, the nominal

operating temperature of the LNAs is 27 �C.
Table 2 presents the ranges of values adopted for the

design parameters (minimum, maximum, and step size

values) for the evolution processes of the LNA_130 and

LNA_65. Furthermore, W and L represent the channel

width and channel length of the MOSFETs, respectively,

and m1, m2, m3 represent the multiplicity of each transistor,

that is, the number of parallel transistors regarding each

MOSFET (M1, M2 and M3). It is important to mention that

no expert knowledge was used to define the ranges of

values adopted for the design parameters. The range of

values of the parameters in Table 2 are based on the lit-

erature [17]. For instance, the minimum value of a given

parameter can be adopted smaller than that of the reference

and the maximum value can be adopted greater than that of

the reference.

Initially, regarding both LNAs, the default values for the

weights (Wei) of the fitness function of all FoMs were

considered the same to perform the evolution process

regarding the DC evolution process (first stage), that is,

50% for PTOT and AG. Similarly, for the AC evolution

process (second stage), we considered the same weights

(14.3%) for the FoMs (|S21|, |S11|, |S12|, |S22|, NF, PTOT, and

AG). Moreover, the r parameter of the Gaussian fitness

function was set to 0.2 for all profiles considered (mini-

mization and maximization) and the two evolution pro-

cesses, which is related to a maximum tolerance of 25% for

the desired specifications [20].

Regarding the LNA_130, the parameters related to the

DC and AC evolution processes initially are set as follows:

NP is set to 50, the maximum number of iterations (NIter)

was set to 3,000, however, the number of iterations used in

each optimization run is not fixed due to the other applied

stop criterion (NRob) considered in this work, which is set to

2 (number of robust solutions to be found by the opti-

mization process by using the corner analysis and Monte

Carlo analysis), regarding the DC and AC evolution pro-

cesses. For the LNA_65, the initial parameters are set as

follows: NP are set to 50 and 100, regarding the DC and AC

evolution processes, respectively; NIter was set to 10,000

(DC and AC evolution processes); NRob is set to 1 for the

DC and AC evolution processes.

Furthermore, it is important to emphasize that after the

DC optimization process is ended, the best DC potential

solutions, given by NRob, are used to compose the initial

population that will be used to perform the AC evolution

process of the LNA. Consequently, at the end of the AC

evolution process, NRob robust potential solutions are

generated, which are obtained from each optimization run.

The most robust potential solutions are identified by the

highest average deviations regarding all deviations of each

FoM in relation the desired specifications, that is, the most

robust solution is the one which maximizes the desired

specifications. In the iMTGSPICE implementation, PC is

set to 70%, and PM is set to 3% for both (DC and AC)

evolution processes and both LNAs.

It is important to highlight that all the initial values of

the iMTGSPICE configuration parameters can be changed

by the designer during the iMTGSPICE search process.

In the experiments carried out in this work, the robust-

ness analyses are performed by both, the corner analysis

and Monte Carlo analysis. It is important to mention that

the corner analyses are performed first, and subsequently,

the Monte Carlo analyses are performed only for those

potential solutions that met all desired specifications found

by the corner analyses. This procedure is performed to

avoid waste of time in the Monte Carlo analysis when a

certain potential solution is not robust by the corner anal-

ysis, considering that the aim of the optimization process is

to ensure the design robustness by both analyses simulta-

neously (corner analysis and Monte Carlo analysis).

During the optimization process, the robustness of the

LNA_130 in relation to global process variations is verified

by the corner analysis. Regarding the corner analysis, we

Table 2 Design parameters of the LNA_130 and LNA_65

Design Parameter Range

LNA_130 LNA_65

W [0.13, 100, 0.1] lm [0.6, 6, 0.065] lm

L [0.13, 50, 0.1] lm [0.06, 0.24, 0.01] lm

RF [100, 20 k, 1] X [1 k, 100 k, 10] X

Rpol1 [100, 30 k, 1] X [1 k, 100 k, 10] X

Rpol2 [100, 15 k, 1] X [1 k, 100 k, 10] X

Lg [5, 20, 0.1] nH [5, 20, 0.1] nH

Lpk [1, 10, 0.1] nH [1, 10, 0.1] nH

Cm1 [0.1, 5, 0.05] pF [0.1, 5, 0.05] pF

Cm2 [0.5, 5, 0.05] pF [0.5, 5, 0.05] pF

Cm3 [0.5, 5, 0.05] pF [0.5, 5, 0.05] pF

C1 [5, 20, 0.05] pF [5, 20, 0.05] pF

Vpol1 [0.4, 1.2, 0.05] V [0.3, 1, 0.05] V

Vpol2 [0.4, 1.2, 0.05] V [0.3, 0.5, 0.05] V

m1 [1, 1, 1] [1, 30, 1]

m2 [1, 1, 1] [1, 30, 1]

m3 [1, 1, 1] [1, 30, 1]

The ranges of the parameters means [minimum value, maximum

value, and step size value].
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have considered the threshold voltages (Vth) and mobility

of the charge carriers along the channel length (l0) of

MOSFETs. These parameters are responsible for affecting

the main analog parameters of the MOSFETs, such as the

transconductance (gm). The extreme global variations of

Vth and l0 were set to ± 10% and ± 6%, respectively, for

the nMOSFETs, and ± 12% and ± 10%, respectively, for

the pMOSFETs [24]. Therefore, the extreme operating

conditions of the nMOSFETs and pMOSFETs were con-

sidered during the corner analysis. In the operating con-

dition named Fast–Fast (FF), the nMOSFETs and

pMOSFETs operate at the maximal gm. In the operating

condition named Slow-Slow (SS), the nMOSFETs and

pMOSFETs operate at the minimal gm. In the operating

condition named Fast-Slow (FS), the nMOSFETs operate

at the maximal gm and the pMOSFETs at minimal gm.

Finally, in the operating condition named Slow-Fast (SF),

the nMOSFETs operate at the minimal gm and the

pMOSFETs at maximal gm. Moreover, the lowest value of

the Vth and the highest value of l0 define the maximal gm,

and the highest value of the Vth and the lowest value of l0

define the minimal gm referring to the nMOSFETs and

pMOSFETs. Furthermore, variations of the temperature

(environmental) are taken into account, i.e. 0 �C and

75 �C, respectively. The Monte Carlo analysis is also

performed during the optimization process. It takes into

account the local and global variations of manufacturing

process parameters, besides environmental conditions. As

we considered 50 global variations (NGLob = 50), 50 local

variations (NLoc = 50) and two different temperatures

(0 �C and 75 �C), each Monte Carlo analysis performs

5000 simulations (NGLob�NLoc�2), according to the proce-

dure described in [20]. Moreover, the desired yield value of

the potential solutions by the proposed approach is 100%,

as all the Monte Carlo sample results regarding the desired

specifications must be inside the tolerance ranges, which

are defined by the designer. For the optimization process of

the LNA_65, the corner analysis considered the same set-

tings of the LNA_130, however, an additional environ-

mental variation is considered. For this case, the supply

voltages (VCC and VDD) are varied in ± 3%. The Monte

Carlo analysis performed during the optimization process

of the LNA_65 takes into account only the local and global

variations of manufacturing process parameters. As we

considered 25 global variations (NGLob = 25), 50 local

variations (NLoc = 50), each Monte Carlo analysis performs

1250 simulations, according to the procedure described in

[24].

5 Results

The iMTGSPICE was run in a 3.4 GHz IBM-PC with

24 GB RAM and Windows 10 (operating system). The

optimization processes of the LNA_130 and LNA_65 in

this work were performed regarding two different condi-

tions: (1) Automatic optimization processes by using the

conventional GA (non-interactive) of iMTGSPICE; (2)

Interactive optimization processes by using the

iMTGSPICE assisted by a beginner designer during the

optimization processes. It is important to mention that, in

the case of the interactive approach, the designer’s expe-

rience in analog integrated circuit design is not important

due to the design approach used in the experiment, which

limits the designer’s intervention to only a few basic

optimization parameters, as will be detailed later in this

work. Moreover, both experiments were performed to

optimize the LNAs, considering a single run (number of

times that the iMTGSPICE was run to obtain the results).

Therefore, these experiments with the LNAs are just

examples of application of the interactive approach using

the GA instead of a statistical validation. However, these

experiments are still valid by the usage history of the

iMTGSPICE tool [13], which demonstrate that although

different results are possible, in their average, the interac-

tive approach of iMTGSPICE can reduce significantly the

design cycle time.

The optimization processes can be severely affected by

the random generation of the initial population (set of

solutions) and by the behavior of the selection, crossover

and mutation genetic operators, which are driven by the

random generator used by the GA. Therefore, in order to

perform a fair comparison between the two experiments,

the random generator used by the GA in each experiment

was started with the same seed, so that the same initial

population is used by each experiment, that is, both

experiments have the same starting point. This procedure

ensures that the differences in the performance of the

interactive method in relation to the non-interactive are

only due to the effectiveness of the genetic operators (se-

lection, crossover and mutation) which act with the aid of

human intelligence in the interactive approach.

Regarding the second experimental condition, as the

researcher is not an expert in RF design, he was oriented

not to change the design parameters, which are the MOS-

FETs dimensions (W, L), bias voltages of the LNAs (Vpol1

and Vpol2) and values of passive components (resistors,

indictors and capacitors). The interactive process allowed

changes in design specifications as long as they comply

with the values specified in Table 1. In addition, basic GA

parameters, such as the weights of the design specifications

(Wei) and the standard deviation of the Gaussian fitness
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functions (r) were also allowed to be changed during the

optimization processes.

Table 3 presents the design variables obtained by the

non-interactive and interactive approaches for the

LNA_130 and LNA_65, respectively. Table 4 presents the

desired specifications (Specs.) of the figures of merit

(FoMs) and the average values of the FoMs obtained by the

non-interactive and interactive approaches for the

LNA_130 and LNA_65, respectively.

The threshold values in Table 4, which were defined for

the specifications, are required by the application of the

LNAs. As the threshold values are the minimum specifi-

cations considered for the application, the minimization

(\) or maximization ([) profile set for each specification

aims to improve the respective figure of merit whenever

possible. Because there are tradeoffs among the several

specifications to be met simultaneously, achieve all

required specifications is a very difficult task. Therefore,

the criterion used to identify that one approach is better

than the other is the one which is the able to improve the

greatest number of specifications. We can observe in

Table 4 that both non-interactive and interactive approa-

ches of the iMTGSPICE used for the design of the

LNA_130 and LNA_65 successfully achieved the

specifications within the desired tolerance range. Regard-

ing the LNA_130, the interactive approach with a non-

expert designer obtained the best results for most FoMs:

S21, S11, S12, PTOT, and AG with differences of 97%, 59%,

14%, 30%, and 11%, respectively. Only for two FoMs, S22

and NF, the interactive approach obtained inferior results

in relation to the non-interactive, with differences of 86%

and 75%, respectively. As a non-specific value was set for

S22 and the NF value obtained by the interactive approach

met the required specification, the designer prioritized the

improvement of the other FoMs as the most positive

approach. Despite the large relative difference regarding

the NF, which is an important FoM for a LNA, the results

obtained by both methods, interactive and non-interactive

are very good, as they are considerably smaller than the

required specification of 4 dB. Furthermore, considering

the LNA_65, the interactive approach with a non-expert

designer also obtained the best results for most FoMs: S21,

S11, S22, NF, and AG (5%, 72%, 26%, 19%, and 52%). Only

for two FoMs, S12 and PTOT, the interactive approach

obtained worse results than the non-interactive, with dif-

ferences of 7% and 41%, respectively. As the two afore-

mentioned parameters were met by the interactive method,

the designer prioritized the improvement of the largest

possible number of FoMs evaluated for the LNA. It is

observed that the interactive approach can be used to guide

the optimization process in such a way to meet faster the

required specifications and in a given direction, prioritizing

certain specifications. These results demonstrate the

advantage of using the interactive approach to improve the

performance of the LNAs.

It is important to note some important results in Table 4

related to the LNA_130. The interactive approach achieved

32.1 dB for the forward gain (S21) of the LNA_130,

whereas the non-interactive approach obtained a value of

only 16.3 dB, a difference around 16 dB. As the operation

frequency of the LNA is 2.4 GHz, the S21 parameter is

measured in this frequency. As can be seen in Fig. 4 (a),

the S21 parameter obtained by the interactive approach is

better centered in the operation frequency than the non-

interactive approach. This is the main reason by the huge

difference in this parameter. Despite the remarkable dif-

ference, by the beginner approach of the interactive

method, no expert knowledge was necessary. During the

optimization process, the user observed in real time that

this parameter was improving very slowly. Therefore the

user increased the weight (priority) of the S21 parameter in

the iMTGSPICE tool and reduced the weight of other

parameters, which achieved more easily the required

specifications, for example PTOT and AG. Other remarkable

results are observed in Table 4 regarding both LNAs. The

interactive approach improved in more than 10 dB the

input reflection coefficient (S11) of the LNA_130 and

Table 3 Design variables obtained for the LNA_130 and LNA_65

Design Variables

LNA_130 LNA_65

Non-interactive Interactive Non-interactive Interactive

W = 58.8 lm W = 68.3 lm W = 4.225 lm W 1= 3.38 lm

W = 16.5 lm W = 1.1 lm W = 5.98 lm W = 5.98 lm

W = 8.9 lm W = 6.5 lm W = 5.785 lm W = 4.485 lm

L = 4.7 lm L = 2.2 lm L = 0.21 lm L = 0.07 lm

L = 1.4 lm L = 39.9 lm L = 0.21 lm L = 0.08 lm

L = 29.6 lm L = 48.0 lm L = 0.06 lm L = 0.07 lm

R = 19,366 X R = 19,540 X R = 90,690 X R = 81,160 X

R = 26,103 X R = 19,939 X R = 63,500 X R = 83,390 X

R = 1439 X R = 13,548 X R = 37,410 X R = 93,580 X

L = 5.2 nH L = 5.8 nH L = 5.4 nH L = 5.2 nH

L = 8.7 nH L = 7.6 nH L = 7.2 nH L = 8.8 nH

C = 3.7 pF C = 4.7 pF C = 3.05 pF C = 4.1 pF

C = 0.55 pF C = 0.65 pF C = 0.7 pF C = 0.55 pF

C = 4.9 pF C = 4.7 pF C = 0.7 pF C = 1.25 pF

C = 10.9 pF C = 19.7 pF C = 13.2 pF C = 12.95 pF

V = 0.5 V V = 0.9 V V = 0.65 V V = 0.65 V

V = 0.94 V V = 0.53 V V = 0.5 V V = 0.45 V

m = 1 m = 1 m = 20 m = 26

m = 1 m = 1 m = 28 m = 30

m = 1 m = 1 m = 26 m = 30
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LNA_65. For example, the interactive approach obtained

the value of - 25.3 dB for the S11 parameter of the

LNA_65, whereas the non-interactive approach obtained a

value of -14.7 dB. Similarly to the previous case, as can be

seen in Fig. 5 (a) and Fig. 5 (b), the S11 parameter obtained

by the interactive approach is better centered in the oper-

ation frequency than the non-interactive approach. This is

the main reason by the huge difference in this parameter.

Again, no expert knowledge was needed to achieve such

improvement. During the optimization process, the user

observed that the S11 parameter, similarly to the parameter

S21, was improving very slowly. Therefore the user also

increased the weight (priority) of the S11 parameter in the

iMTGSPICE tool and reduced the weight of other param-

eters, which achieved more easily the desired specifica-

tions. The weight redistribution was carried out a few

times, for example, after the user observed the stagnation

of the parameters aforementioned by dozens of iterations of

the genetic algorithm. Fig. 4 illustrates the forward gain

(S21) achieved by solutions obtained by the non-interactive

Table 4 Average values of the

figures of merit obtained for the

LNA_130 and LNA_65

FoMs Specifications Obtained FoMs

LNA_130 LNA_65

Non-interactive Interactive Non-interactive Interactive

|S21| C 15 dB 16.3 dB 32.1 dB 20.6 dB 21.6 dB

|S11| B -10 dB - 20.8 dB - 33.0 dB - 14.7 dB - 25.3 dB

|S12| B -20 dB - 65.4 dB - 74.3 dB - 36.5 dB - 33.8 dB

|S22| Minimize (dB) - 1.4 dB - 0.2 dB - 11.0 dB - 13.9 dB

NF B 4 dB 1.2 dB 2.1 dB 1.2 dB 1.3 dB

PTOT B 6 mW 62.9 lW 44.2 lW 2.5 mW 3.52 mW

AG B 1500 lm2 564.4 lm2 504.1 lm2 61.9 lm2 29.9 lm2
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Fig. 4 Forward gain obtained by the non-interactive and interactive

approaches for the LNA_130 (a) and LNA_65 (b)
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Fig. 5 Input reflection coefficient obtained by the non-interactive and

interactive approaches for the LNA_130 (a) and LNA_65 (b)
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and interactive approaches for the LNA_130 (a) and

LNA_65 (b).

Regarding the LNA_130 in Fig. 4 (a), it is observed that

the solution obtained by the interactive approach achieved

a higher forward gain than the other one obtained by the

non-interactive approach, which is also better centered in

the operation frequency of 2.4 GHz. Analyzing the

LNA_65 [Fig. 4 (b)], the interactive approach also

obtained a higher forward gain in the operation frequency

in relation the non-interactive method. Although both

solutions of the LNA_65 are accurately tuned in the

operation frequency, the solution obtained by the interac-

tive approach better rejects frequencies out of the operation

frequency, that is, it is more selective than the solution

obtained by the non-interactive method.

The input reflection coefficient (S11) obtained by solu-

tions obtained by the non-interactive and interactive

approaches are illustrated in Fig. 5, regarding the

LNA_130 (a) and LNA_65 (b).

Regarding the LNA_130 and LNA_65, we can observe

in Fig. 5 that the solution obtained by the interactive

approach achieved the best profile, that is, in the operation

frequency of 2.4 GHz the S11 parameter is better mini-

mized and better tuned than in the profile obtained by the

non-interactive approach.

Fig. 6 illustrates the noise figure achieved by solutions

obtained by the non-interactive and interactive approaches

for the LNA_130 (a) and LNA_65 (b).

Analyzing the LNA_130 in Fig. 6 (a), we can observe

that the solutions obtained by both approaches achieved

similar profiles, although the non-interactive approach

obtained a NF smaller (better) than the interactive approach

in the operation frequency of 2.4 GHz. Regarding the

LNA_65 in Fig. 6 (b), it is observed that the solutions

obtained by both approaches, interactive and non-interac-

tive, achieved proper profiles for the NF curve, that is, at

frequencies around 2.4 GHz both approaches obtained

similar values for the NF parameter, which comply with

the required specifications.

It is important to note that, during the optimization

process, the user can redistribute weights (priorities) of the

specifications, assigning higher weight values for the

specifications that are more difficult to achieve. This

weight adjustment can be carried out several times during

the search process until reaching all specifications at the

same time and with robustness in relation to the manu-

facturing process, supply voltage and temperature varia-

tions. In addition, it was observed through Figs. 4 and 5

that this interactive process usually also improves the

profile of these curves, since the user guides the opti-

mization process for the design regions that maximize the

performance of the specifications, which contributes for

achieving the best profile of the curves obtained by the

interactive method in relation to the conventional non-

interactive.

Based on the results presented previously, we can con-

clude that the interactive approach with the GA was cap-

able of significantly improving most FoMs in relation to

the conventional non-interactive approach. The superiority

of the interactive method is due to the combination of the

human and artificial intelligences during the optimization

process. A non-expert designer was able to tune the opti-

mization process by changing weight values (priorities) of

the design specifications in real time during the optimiza-

tion process in the iMTGSPICE tool in order to prioritize

the optimization of the parameters that have greater diffi-

culty in meeting the required specifications.

5.1 The design optimization cycle times

The optimization cycle times for the design of the

LNA_130 are: 341 min. for the non-interactive approach

and 19.8 min. for the interactive approach. In addition, the

optimization cycle times for the design of the LNA_65 are:

536.5 min. and 453.6 min. for non-interactive and inter-

active approaches, respectively. Each optimization cycle
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Fig. 6 Noise figure obtained by the non-interactive and interactive

approaches for the LNA_130 (a) and LNA_65 (b)
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time value represent the time necessary to perform the

LNA design, encompassing the time required to obtain the

best robust solution in relation to the manufacturing pro-

cess, supply voltage and temperature variations, consider-

ing typical and robustness analyses (corner analysis and

Monte Carlo analysis). Moreover, for the interactive

approach, the optimization cycle times also take into con-

sideration the time spent by the designer.

We observed that the optimization processes regarding

the interactive approach of iMTGSPICE are capable of

reducing the optimization cycle times of the LNA_130 and

LNA_65 designs in relation to the other ones found by

using the conventional non-interactive optimization pro-

cesses with the GA in 94% and 16%, respectively.

It is important to observe that the optimization times of

the LNA_65 are higher than those obtained by the

LNA_130 because the SPICE simulation models used by

the LNA_65 are far more complex than the models used by

the LNA_130. The 130 nm technology has 114 parameters

(BSIM 3), whereas the 65 nm technology has 1863

parameters (BSIM 4).

Therefore, the interactive optimization process by using

the iMTGSPICE might be a useful approach to help not

only experts in RF design, but also non specialists in RF

design to achieve the desired specifications in a very

reduced design cycle time [13], [14], [15].

5.2 The LNA robustness

To perform a detailed robustness analysis regarding the

solutions obtained by each approach (automatic optimiza-

tion with conventional GA and interactive optimization

using iMTGSPICE assisted by a non-expert designer), we

performed the Monte Carlo analysis for each solution

obtained by each approach of each LNA. Afterwards, we

have obtained the minimum and maximum values of each

FoM of the LNAs, regarding one potential solution

obtained by the automatic optimization process with the

conventional GA and one potential solution obtained by the

non-expert designer by using the interactive optimization

process with the iMTGSPICE. Next, the robustness value

(eSol) of each potential solution was calculated. The crite-

rion used to identify the most robust solution was the one

that presented the highest maximization of the desired

specifications (highest eSol). Table 5 presents the values of

the deviations regarding the main FoMs of the LNA_130

and LNA_65 in relation to the desired specifications in

Table 1 and the corresponding values of eSol regarding each

approach considered in this study.

It is important to note that a relative deviation greater

than 100% means that the FoM value obtained by the

optimization process is more than twice the value of the

desired specification considered. Similarly, if a FoM

obtained by the optimization process were worse than the

specification in Table 1, the relative deviation would result

negative.

Analyzing Table 5, regarding the LNA_130 and

LNA_65, respectively, we can observe that the interactive

optimization processes using the iMTGSPICE assisted by a

non-expert designer obtained the values eSol 29.9%, and

50.6% higher than those obtained by the non-interactive

approach. It means that the interactive approach achieved

the highest average deviations regarding the maximization

(improvement) of the main FoMs after the Monte Carlo

analysis, i.e. they achieved the most robust design

solutions.

The higher performance of the proposed interactive

evolutionary approach in relation to the non-interactive in

terms of optimization cycle time and robustness is due to

the consideration of a beginner designer knowledge in the

optimization process. These results demonstrate that the

interactive approach of the iMTGSPICE is capable of

helping not only expert but also non-expert designers of RF

circuits to find robust potential solutions [13], [14], [15].

However, it is necessary to emphasize that the user needs

to have a basic training about the use of the iMTGSPICE to

be aware of how the parameters of the genetic algorithm

interfere in the search process and that the design of an

analog IC has specifications that are competitive with each

other (for example, voltage gain and unit voltage gain

frequency), that is, it is not possible to improve all speci-

fications at the same time. Nevertheless, this does not mean

that the user of the optimization tool needs to know how

the tradeoffs among the specifications work. He can

acquire this knowledge by analyzing the optimization

Table 5 The average values of the eSol in percentage for each approach and each LNA considered in this work

Method LNA_130 LNA_65

|S21|
(%)

|S11|
(%)

NF
(%)

PTOT

(%)

eSol

(%)

|S21|
(%)

|S11|
(%)

NF
(%)

PTOT

(%)

eSol

(%)

Non-Interactive 2.6 124.9 46.7 98.7 68.2 17.3 17.5 43.5 42.7 30.3

Interactive 59.0 150.2 46.1 99.2 88.6 16.1 104.0 40.4 22.0 45.6
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process in real time and in this way he may be able to

optimize an analog IC even without being an expert.

6 Conclusion

This paper proposed an interactive approach using the

genetic algorithm to optimize CMOS RFICs, which was

integrated to the in-house optimization tool named

iMTGSPICE. This computational tool includes corner and

Monte Carlo analyses in the loop of the optimization pro-

cesses. Two experiments were carried out aiming the

optimization of a LNA optimized in two technology nodes

(130 nm and 65 nm) in order to evaluate this innovative

evolutionary optimization approach. The first optimization

process used the interactive approach of the iMTGSPICE,

which was assisted by a beginner designer, who has not

specific knowledge in CMOS RFICs designs. The second

one was performed by the conventional non-interactive

approach with the GA. The experimental results demon-

strated that the interactive approach with the GA was

capable of remarkably reducing the optimization cycle

times of the LNA design, from 16 to 94%, in relation to the

conventional GA approach. Moreover, the interactive

approach with the GA obtained the most robust potential

solutions taking into account the manufacturing process,

supply voltage and temperature variations, with improve-

ment in their average robustness values from 30% to 51%

in relation to the non-interactive approach with the GA,

regarding the values of the deviations of the main FoMs of

the LNA in relation to the desired specifications. These

results demonstrate that the iMTGSPICE is capable of

exploiting expert knowledge to obtain robust potential

solutions in a reduced design cycle time.
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24. Tuma, Tadej, & B}urmen, Árpád. (2009). Circuit simulation with

SPICE OPUS theory and practice. Birkhäuser Boston.
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