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Abstract
In this present contribution, a simple chaotic oscillator based on a memcapacitor with only one equilibrium point is

reported. The proposed oscillator consists of an inductor (only storage element) and a nonlinear active memcapacitor which

is the key component responsible for the complex behaviors exhibited by the circuit. The resulting mathematical model is a

simple jerk-type equation system that is easy to manipulate both analytically and numerically. The numerical results reveal

the emergence of a plethora of phenomena such as period-doubling bifurcations, antimonotonicity, offset-boosting, and

multistability giving rise to several kinds of coexisting attractors among which the coexistence of six stable states. The

PSpice investigations confirm the real feasibility of the proposed circuit. The complexity of the phenomena and behaviors

observed make the particularity of the proposed memcapacitor–inductor circuit and thus constitutes an enriching contri-

bution in nonlinear dynamics.
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1 Introduction

The existence of the memristor as the fourth electronic

component having a memory next to the resistor, capaci-

tance, and inductor was deduced in 1971 by Chua [1].

Many applications in nonlinear circuits have been realized

through the memristor in the growing interest of nonlinear

science [2–6]. Later in 2009, Di Vental et al. formally

defined the three pinch hysteresis loops of each element

combining two consecutive state variables when an alter-

native source is applied to them, notably the current–

voltage for the memristor, charge–voltage for the memca-

pacitor and current-flux for the meminductor [7]. Several

works on chaotic oscillations based on the memristor have

been investigated. Memristor models are used to replace

the nonlinear negative resistance of the Chua circuit with

that of the quadratic, cubic, piecewise linear model [8–10].

Using some models derived from HP memristor a chaotic

circuit was explored in [11, 12]. In 2016, an application in

cryptography was analyzed using a chaotic system based

on the memristor [13]. In the same year, an optimal syn-

chronization on a memristor circuit was investigated [14].

Unlike the memristor, few works have been investigated

with the memcapacitor and the meminductor. Notably,

some dynamic systems based on memcapacitor and

meminductor are designed and studied through mathe-

matical models [15–18], and equivalent circuits [19–25].

The smooth cubic nonlinearities used for memcapacitor

and meminductor are proposed respectively by Fitch et al.

[15], and Yuan et al. [26]. Very recently in 2019, a chaotic

oscillator based on memcapacitor and meminductor has

been proposed and investigated [27]. In that same year,

Yuan et al. also proposed a new model of memcapacitor

and its corresponding circuit used in a chaotic oscillator

explored analytically and experimentally [28]. The previ-

ous works present simple chaotic circuits having at least

three components. Another simple chaotic system based on
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meminductor was also proposed in 2017 by Birong et al.

[29], whose authors investigated the complete dynamics.

Very recently, Ngoumkam and Kengne have proposed a

minimal three-term chaotic Jerk system consisting of two

linear terms and single hyperbolic sine nonlinearity. The

authors have shown that the system can exhibit a coexis-

tence of six different solutions for a set of parameters of the

system [30]. Tchinga et al., in their work proposed the

simplest chaotic circuit of Hartley’s oscillator family

consisting of two components including an inductor and a

JFET [31]. They also reported a simple autonomous

chaotic oscillator with five jerky type components, con-

sidered to be the simplest of its kind, using a single oper-

ational amplifier [32]. In these works [27, 28], the authors

have not carried out detailed dynamic studies. Very

recently, Joshi and his collaborators presented a simple

oscillator which can be both chaotic and hyperchaotic with

a sine hyperbolic nonlinearity [33]. The authors also pre-

sented a simple Jerk system with hyperbolic sine nonlin-

earity which can be either from the category of hidden

attractors or self-excited attractors according on the nature

of the equilibrium points [34]. As a result, Joshi and Ranjan

proposed a new simple chaotic oscillator consisting of a

single operational amplifier with tank circuit to generate a

chaotic waveform [35].

Since the challenge nowadays is to propose oscillators

that are very simple both in their circuits and their equa-

tions, and presenting complex dynamic behaviors, in this

paper a simple circuit consisting of an inductor and a

memcapacitor that can exhibit a plethora of dynamic

phenomena is proposed. This work is original and high-

lights the following innovations:

(a) The proposed circuit is simple, consisting only of an

inductor and a nonlinear active memcapacitor;The

proposed circuit is simple, consisting only of an

inductor and a nonlinear active memcapacitor;

(b) The proposed circuit although simple, presents chaos

and very complex dynamic behaviors including

antimonotonicity, offset-boosting, multistability,

and many others;

(c) The mathematical model resulting from the proposed

circuit is a simple jerk-type equation system that is

easy to manipulate both analytically and

numerically;

(d) Multistability gives rise to the coexistence of two,

three, four, and even six attractors, which is usually

difficult to find in 3D jerk systems.

Considering the standard for the publication of new

chaotic systems mentioned by Sprott in 2011 [36], the new

proposed system satisfies all the three publication criteria

and for this purpose enriches the literature on dynamic

circuits and systems based on controlled-charge

memcapacitor. The rest of this article is organized as fol-

lows: in Sect. 2, the mathematical model of a charge-

controlled memcapacitor is proposed and used for design-

ing a simple chaotic oscillator. Based on the mathematical

model of the proposed circuit, its dynamics analysis is

performed. Basic properties of the system are explored

analytically in Sect. 3. In Sect. 4, bifurcation diagrams,

Lyapunov stability diagrams for an overall system view,

antimonotonicity, and multistability are investigated and

explored. PSpice studies are explored in Sect. 5 for the

validation of the proposed circuit and finally, a conclusion

of the work in Sect. 6.

2 Memcapacitor model and a simple
memcapacitor-based chaotic circuit

2.1 Memcapacitor model

In accordance with the general definition reported in Ref.

[7], the charge-controlled memcapacitor is described as:

vmðtÞ ¼ C�1 rmðtÞð ÞqmðtÞ;
_rmðtÞ ¼ qmðtÞ;

�
ð1Þ

where vmðtÞ is the voltage across the memcapacitor, qmðtÞ
the charge passing through the memcapacitor at time t,

rmðtÞ the integral of qmðtÞ, and C�1 the inverse memca-

pacitance. In this paper, we define C�1 according to the

charge qmðtÞ and the non-linear element rmðtÞ as follow:

C�1 ¼ A1

qm
rmðtÞ þ A2r

4
mðtÞ � A3; ð2Þ

By substituting Eq. (2) in Eq. (1), we obtain the

expression of the proposed memcapacitor model which is

described as follows (time dependence was intentionally

omitted for simplicity):

vm ¼ A1

qm
rm þ A2r

4
m � A3

� �
qm;

_rm ¼ qm;

8<
: ð3Þ

where A1, A2, and A3 are positive real constants. In order to

test the property of this proposed memcapacitor, we set

A1 ¼ 1, A2 ¼ 0:1, A3 ¼ 1 and qmðtÞ ¼ U sinð2pftÞ, by

varying the frequency (f ), amplitude (U) and initial con-

ditions (rmð0Þ). The simulation results of the vm � qm
hysteresis curve are illustrated in Fig. 1. From this Fig. 1, a

pinched hysteresis loop and a hysteresis collapse with

increasing frequency (f ), amplitude (U) and initial condi-

tions (rmð0Þ) of the alternating voltage source are clearly

observed and the considered memcapacitor faithfully

respects the conditions described in [7], these curves con-

form to the definition of the negative memcapacitor’s

characteristics [37].
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2.2 A simple memcapacitor-based chaotic circuit

Based on the proposed memcapacitor model in Eq. (3), a

simple chaotic oscillator consisting of an inductor and a

memcapacitor is designed as shown in Fig. 2. Since the

memcapacitor is the central element of the proposed circuit

as responsible for the autonomy and also the complex

behavior of the system thanks to its nonlinearity; it con-

stitutes the only active element [38]. By applying

Kirchhoff’s laws to the circuit of Fig. 2 and taking the

charge qm on the memcapacitor, the current i through the

inductor and the internal state variable rm of the memca-

pacitor as state variables, the following differential equa-

tions of the circuit are obtained:

drm
dt

¼ qm;

dqm
dt

¼ i;

di

dt
¼ � r

L
i� 1

L
vm;

ð4Þ

where vm ¼ A1rm þ A2r4mqm � A3qm.

Considering x1 ¼ rm, x2 ¼ qm, x3 ¼ i, a ¼ A3

L , c ¼ r
L,

b ¼ A1

L and q ¼ A2

L , we obtain

_x1 ¼ x2;
_x2 ¼ x3;
_x3 ¼ ax2 � cx3 � bx1 � qx2x41;

8<
: ð5Þ

where a, b, c, and q represent the system setting parameters

Fig. 1 qm � vm hysteresis loop of the novel memcapacitor in different situation: a for f = 0.1 Hz, f = 0.5 Hz, and f = 1.5 Hz, b for U = 2 v,

U = 3 v, and U = 5 v; c for rmð0Þ ¼ 1, rmð0Þ ¼ 3, and rmð0Þ ¼ 5. Obtained for the fixed parameters A1 ¼ 1, A2 ¼ 0:1, and A3 ¼ 1

+

−

i

mv mC( ),L r

Fig. 2 The proposed memcapacitor-based chaotic oscillator where r
is the internal resistance of the inductor

Analog Integrated Circuits and Signal Processing (2021) 106:615–634 617

123



(all are positive) and the dot represents differentiation with

respect to time. By using simple mathematical rules,

Eq. (5) can be written into the following simple jerk form

x
... ¼ a _x� c€x� bx� q _xx4 ð6Þ

3 Basic dynamical characteristic

3.1 Dissipativity and symmetry

The necessary condition to study the dissipation of our

model (5) is expressed by the following equation [39–41]:

rV ¼ o _x1
ox1

þ o _x2
ox2

þ o _x3
ox3

¼ �c ð7Þ

Since c is a positive constant, the volume contraction

rate Eq. (7) is always negative and the system (5) is dis-

sipative. From Eq. (7), all trajectories are confined to space

whose volume is zero [42] and, therefore, existing attrac-

tors can be chaotic.

Another important property is the symmetry, because it

provides additional information about the dynamic behav-

ior of the system. By performing the transformation

x1; x2; x3ð Þ $ x1; �x2; �x3ð Þ on the system (5), the solu-

tion remains the same. It implies that the system (5) is

symmetric about the coordinate x2 and x3.

3.2 Stability of equilibrium point

To study the stability of equilibrium [43] point amounts to

determine this point which is obtained by solving the

system equation _x1 ¼ _x2 ¼ _x3 ¼ 0 in order to know if it is

stable or unstable. The only equilibrium point is the origin

E0 ¼ 0; 0; 0ð Þ. The Jacobian matrix of the system (5)

around the fixed point E0 is defined by:

J ¼
0 1 0

0 0 1

�b a �c

2
4

3
5 ð8Þ

whose characteristic equation is:

k3 þ ck2 � akþ b ¼ 0 ð9Þ

According to the Routh–Hurwitz criterion, the charac-

teristic Eq. (9) is an opposite sign, therefore, the equilib-

rium point E0 is always unstable whatever the set of system

parameters’. For the range of system parameters a ¼ 1,

b ¼ 0:5, and q ¼ 1, the eigenvalues, as well as the stability

of fixed point are summarized in Table 1. In light of the

results of Table 1, the eigenvalues, solutions of character-

istic Eq. (9) are obtained in the form:

k1 ¼ �g

k2;3 ¼ #� iu
ð10Þ

with positive constants g and #. We note that k1 is real

negative whereas the complex conjugate eigenvalues k2
and k3 are all real positive roots. Therefore, the fixed point

E0 is unstable saddle-focus equilibrium and the existing

attractors can be classified as self-excited attractors

[44, 45].

Table 1 Eigenvalues and stability of equilibrium point with fixed

parameter a ¼ 1, b ¼ 0:5, and q ¼ 1

Control parameter c Eigenvalue Stability

c ¼ 0:1 k1 ¼ �1.2362

k2;3 ¼ 0:56808� 0:28594i

Unstable

c ¼ 0:3 k1 ¼ �1.3323

k2;3 ¼ 0:51614� 0:32999i

Unstable

c ¼ 0:5 k1 ¼ �1.4376

k2;3 ¼ 0:46878� 35785i

Unstable

c ¼ 0:8 k1 ¼ �1.6125

k2;3 ¼ 0:40623� 0.38086i

Unstable

c ¼ 1 k1 ¼ �1.7399

k2;3 ¼ 0:36995� 0.38795i

Unstable

Fig. 3 Bifurcation diagrams a showing local maxima of the

coordinate x1 versus b and the corresponding largest b of Lyapunov

exponents plotted in the range 0:28� b� 1 for a ¼ 1, c ¼ 0:5 and

q ¼ 1
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4 Numerical simulations and dynamical
behaviors

4.1 Bifurcation analysis and route to chaos

The system (5) is solved numerically using the standard

four order Runge–Kutta algorithm and the largest

Lyapunov exponent the Wolf algorithm [46] at Dt ¼ 10�3

s. The system reveals a complex and varied dynamic that

reflects the bifurcation diagrams in Fig. 3(a) and their

corresponding largest Lyapunov exponents of Fig. 3(b). It

can be seen from Fig. 3 that chaos is obtained by period-

doubling followed by a symmetry restoration when the

parameter b is considered as a bifurcation control

Fig. 4 Phase portraits showing

routes to chaos in the system for

varying the control parameter b:
a period-1 limit cycle for b ¼ 1,

b period-2 limit cycle for

b ¼ 0:9, c period-4 limit cycle

for b ¼ 0:885, d asymmetric

chaos for b ¼ 0:8, e symmetric

chaos for b ¼ 0:7, f period-3
limit cycle for b ¼ 0:56, g
symmetric chaos for b ¼ 0:4,
and h period-1 limit cycle for

b ¼ 0:3. Initial conditions
ðx1ð0Þ; x2ð0Þ; x3ð0ÞÞ are
0; � 1; 0ð Þ for a–d and

0; 1; 0ð Þ for e–h
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parameter. Two sets of data are superimposed and the color

difference (blue by increasing the values of b and green by

decreasing the values of the same parameter b) is observed
to illustrate the symmetry property of the system. A good

correspondence of periodicity of the system is observed on

the bifurcation diagram and the largest Lyapunov exponent

of Fig. 3. The transition to chaos is illustrated by the phase

portraits in Fig. 4 when we consider the bifurcation dia-

gram or the graph of Lyapunov exponent in green. In light

of Fig. 4, the color difference (magenta and green) simply

shows the asymmetrical behaviors. The attractors in blue

are obtained when the symmetry of the system is restored.

The other parameters of the system in particular c and a
are also considered as bifurcation control parameters in a

great interest to observe their influences on the dynamic

behavior of the system. Thus, the bifurcation diagrams of

Figs. 5(a) and 6(a) are obtained by plotting the local

maxima of the state variable x1 as a function of c and a
respectively. The corresponding graphs of Lyapunov

exponents are shown in Figs. 5(b) and 6 (b) showing a good

agreement between the periodicity of bifurcation diagrams.

Moreover, striking phenomena are observed when a

parameter a is introduced on the second line of the system

(5). Note that this parameter a represents an intrinsic

property that is highlighted during the design of the emu-

lator circuit of the memcapacitor (see Sect. 5). Interesting

behaviors are observed when it considered as a bifurcation

control. Thus Fig. 7(a) shows two superimposed

bifurcations diagrams obtained by varying the bifurcation

control parameter a in the range 1� a� 12 (see caption of

Fig. 7). The corresponding graphs of Lyapunov exponents

in Fig. 7(b) justify the correspondence between periodicity

and the transition to chaos.

Fig. 5 Bifurcation diagrams a showing local maxima of the

coordinate x1 versus c and the corresponding largest b of Lyapunov

exponents plotted in the range 0:35� c� 0:75 for a ¼ 1, b ¼ 0:7 and

q ¼ 1

Fig. 6 Bifurcation diagrams a showing local maxima of the

coordinate x1 versus a and the corresponding largest b of Lyapunov

exponents plotted in the range 1� a� 4:5 for c ¼ 0:8, b ¼ 2 and

q ¼ 1

Fig. 7 Bifurcation diagrams a showing local maxima of the

coordinate x1 versus a and their corresponding largest b of Lyapunov

exponents plotted in the range 1� a� 12 for a ¼ 1, c ¼ 0:5, b ¼ 0:7
and q ¼ 1
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Note that the color difference in Fig. 7 highlights both

the symmetry and hysteresis behaviors of the system that

will be exploited in the following sections. With regard to

Figs. 5, 6 and 7, the same transition towards the chaos of

Fig. 3 is observed when considering c, a, and a as bifur-

cation control parameters.

4.2 Lyapunov stability diagrams of the proposed
system

It is always interesting to have a global idea of the dynamic

behavior of a chaotic system for a better analysis of the

system by studying the influence of one parameter on

another. In the same line, we decided to study the influence

of the different bifurcation control parameters presented

previously. To better understand the type of dynamic

behavior of the system (5), the Lyapunov exponent bands

are enabled each time to characterize the different observed

behaviors. Thus, Fig. 8(a) shows the effect of the param-

eter b on the parameter c for the choice of the other

parameters a ¼ 1 and q ¼ 1 where the type of the dynamic

behavior is a function at the same time both of the color

and the value of the correspondence of the Lyapunov

exponent. In light of the Lyapunov stability diagram of

Fig. 8(a), the blue shadings correspond to the periodic

Fig. 8 Standard Lyapunov

stability diagrams a, b, and c in

the c; bð Þ, a; cð Þ, and a; cð Þ
plane obtained by scanning

upward the values of control

parameters where Lyapunov

exponents are unable to

discriminate individual

behaviors. (Color figure online)

Fig. 9 Highlighting the hysteresis window of the bifurcation diagrams

of Fig. 3 (a) and their corresponding largest b of Lyapunov exponents

plotted in the range 0:83� b� 0:86 showing the different types of

coexistences
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attractors (negative Lyapunov exponents), the cyan marks

attractors of high periodicity and more and more attractors

of strong chaoticity for the data in dark red. When keeping

set the parameters a ¼ 1, b ¼ 0:7, and q ¼ 1; the influence

of the parameter a on c is also observed in Fig. 8(b) which

is strongly dominated by the high periodicity behaviors.

The limit cycles of period-1 are weakly observed for this

set of parameters in blue, the periodicity increases in cyan

until the chaotic behavior represented by the other colors.

Similarly, the influence of the parameters a and b in

Fig. 8(c) which presents a situation opposite to that of

Fig. 8(b) because the periodic behavior dominates the

Fig. 10 a Bifurcation like sequence showing local maxima of the

coordinate x1 versus initial state x1ð0Þ plotted in the range

0.4 B x1ð0Þ B 1.2 while keeping a ¼ 4:49, x2ð0Þ ¼ 2, and

x3ð0Þ ¼ 5; enlargement of bifurcation diagrams b of Fig. 5 and their

corresponding largest c of Lyapunov exponents plotted in the range

4:23� a� 4:5 showing the region in which the system experiences

the coexistence of three symmetrical attractors

Fig. 11 a Enlargement of bifurcation diagrams a of Fig. 7 in the range

7� a� 8:9 showing the region in which the system develops the

coexistence of six asymmetrical attractors; Bifurcation like sequence

b showing local maxima of the coordinate x1 versus initial state x2ð0Þ
plotted in the range 0.15 B x2ð0Þ B 0.4 while keeping a ¼ 7:42,
x1ð0Þ ¼ 0:0, and x3ð0Þ ¼ 0:0; Enlargement of the bifurcation

diagrams c of Fig. 10(b) in the interval 7:355� a� 7:538 showing

the zone of coexistence of six asymmetrical solutions
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chaotic one by the strong cyan coloration. The rest of

parameters are a ¼ 1, c ¼ 0:5, and q ¼ 1.

Let us note that this way of representation is very

important for the good control of the dynamic behavior of

the system (5) and even for practical studies on the choice

of the parameters of the system while having an idea on the

dynamic behavior. In the literature, these Lyapunov sta-

bility diagrams are used namely in [47, 48].

Fig. 12 Phase portraits

illustrating the coexistence of

two symmetric attractors

(chaotic (a) and cycle limit of

period-1 (b)) obtained for the

set parameters b ¼ 0:3,
a ¼ 1,c ¼ 0:5, and q ¼ 1. Initial

conditions are 0; 0:4; 0ð Þ and
0; 1; 0ð Þ respectively

Fig. 13 Phase portraits illustrating the coexistence of four different

types of attractors obtained for the fixed set a ¼ 1,c ¼ 0:5,
q ¼ 1, x1ð0Þ ¼ 0:0, and x3ð0Þ ¼ 0:0: four different chaotic attractors

for b ¼ 0:8425, x2ð0Þ ¼ �0:4 (a1) and x2ð0Þ ¼ �0:7 (b1); two chaos

with two limit cycles of period-3 for b ¼ 0:85, x2ð0Þ ¼ �0:4 (a2) and
x2ð0Þ ¼ �0:7 (b2); two limit cycles of period-5 with two limit cycles

of period-3 b ¼ 0:8526, x2ð0Þ ¼ �0:4 (a3) and x2ð0Þ ¼ �0:7 (b3)
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4.3 Multistability and offset boosting

Unlike the bifurcation diagram and the largest of Lyapunov

exponent where a so-called bifurcation parameter is varied

for a qualitative analysis, there is an unusual and striking

phenomenon which is obtained by varying only the initial

conditions for the same set of given parameter’s system

and commonly called multistability or coexistence of

several stable states (attractors). Each attractor that coexists

Fig. 14 Phase portraits in the (x1; x2) plan and their corresponding

spectral power density obtained for the parameters of the system

b ¼ 2,c ¼ 0:8, q ¼ 1, and a ¼ 4:49 illustrating the coexistence of

three symmetrical solutions: a limit cycle of period-1 with two

different chaotic attractors (b, c). Initial conditions are

0:8; 2; 5ð Þ, 0:5; 2; 5ð Þ, and 0:6; 2; 5ð Þ respectively
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corresponds to a single initial condition given and it is in

this sense that we have explored in literature different types

of attractors (fixed point, periodic, quasi-periodic, chaotic,

and hyperchaotic) that coexist [49]. Considering the

bifurcation diagram of Fig. 3, hysteresis windows are

observed in the 0:285� b� 0:208 and 0:83� b� 0:86

ranges. It is obvious that there is a coexistence of two

different attractors in the first zone and when the bifurca-

tion diagram of Fig. 3 is widened in the second range as in

Fig. 9, a coexistence of several kings of four types of

attractors of different natures only by varying only the

initial conditions (see Fig. 13). Similarly, when widening

the bifurcation diagram and the graph of Lyapunov expo-

nents of Fig. 6 in the range 4:23� a� 4:50, a coexistence

of three symmetrical solutions are observed, including the

bifurcation like sequence of local maxima of x1 versus the

initial conditions x1ð0Þ (keeping the other initial variables

x2ð0Þ ¼ 2, x3ð0Þ ¼ 5) of Fig. 10(a). We can have a coex-

istence of two chaotic attractors with a periodic attractor of

period-1 (see Fig. 14) or a coexistence of two periodic

attractors with a chaotic attractor (a ¼ 4:44 for example).

In the same line, a coexistence of six asymmetric solu-

tions is obtained when widening the bifurcation diagram of

Fig. 7 as illustrated in Fig. 11(a) and for a set of initial

values of Fig. 11(b), the zoom of the bifurcation diagram

of Fig. 11(c) is shown where three branches of different

bifurcations can be easily observed in accordance with the

initial conditions of Fig. 11(b) a sample of this coexistence

of six attractors is presented in Fig. 16.

To illustrate the different coexistence mentioned above,

Fig. 12 shows a coexistence of two symmetrical attractors

(chaotic in (a) with a limit cycle of period-1 in (b)) for

b ¼ 0:3. The coexistence of four asymmetric attractors are

illustrated in Fig. 13 where we respectively have four

chaotic attractors of Fig. 13(a1) and (b1) for b ¼ 0:8425,

two chaotic attractors (a2) with two periodic attractors of

period-3 (b2), and finally a coexistence of four periodic

attractors (of period-4 (a3) and period-3 (b3)). Other works

Fig. 15 Cross sections of basins of attraction for x3ð0Þ ¼ 0,

x2ð0Þ ¼ 0, and x1ð0Þ ¼ 0 respectively, showing the influence of each

attractors of Fig. 14 where the blue basin represents the periodic

attractor, those in green and yellow the different chaotic attractors,

and the red areas denote the unbounded dynamics obtained for the

same set of parameters in Fig. 14
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whose authors also show the coexistence of four different

attractors are investigated in [50, 51].

More interestingly, a coexistence of three symmetrical

attractors and their correspondence densities spectral of

frequency is presented in Fig. 14 where in (a) a limit cycle

of period-1 coexists with two chaotic attractors (b) and (c)

(for more detail see caption of the figure). Each attractor of

Fig. 14 corresponds to a space that it magnetizes in the

phase space of the initial conditions. Thus, cross-section of

a basin of attraction (all of the initial conditions that give

Fig. 16 Phase portraits in the (x1; x2) plan and their corresponding

spectral power density obtained for the parameters of the system

b ¼ 0:7, a ¼ 1, c ¼ 0:5, q ¼ 1, and a ¼ 7:42 illustrating the coex-

istence of six asymmetrical solutions: a two limits cycle of period-5,

b two limits cycle of period-6, with two chaotic attractors c. Initial
conditions are 0; 0:375; 0ð Þ, 0; 0:15; 0ð Þ, and 0; 0:8; 0ð Þ respectively
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rise to one or another attractor) is presented in Fig. 15 in

the x1ð0Þ; x2ð0Þð Þ, x1ð0Þ; x3ð0Þð Þ, and x2ð0Þ; x3ð0Þð Þ planes
of the initial conditions where each color corresponds to a

coexisting attractor of Fig. 14 (see caption of Fig. 15).

Figure 16 shows the coexistence of the six attractors and

their corresponding frequency diagrams where we can

easily distinguish the periodicity of each attractor. This

figure presents four periodic attractors (a) and (b) that

coexist with the other two chaotic (c) for a set of system

parameters a ¼ 1, b ¼ 0:7 c ¼ 0:5, q ¼ 1, and a ¼ 7:42

but by varying only the initial condition x2ð0Þ. Several

works also explores the coexistence of six solutions in the

literature [52, 53].

Another form of coexistence of the attractors is offset

boosting [54, 55] which is obtained by varying a single

parameter k added to the state variable x1 (x1 þ k). Note

that this parameter is not added to hazard and the only

condition of its existence is that when a state variable of the

system appears on a single line as in [56], it is possible that

this system develops the phenomenon of offset boosting.

Only the variable x1 can be booster and thus, for discrete

values of k, we have attractors of the same nature that

appear in a staggered way. An example of this phenomenon

is presented in Fig. 17 where the chaotic attractor has seen

booster on several positions (see caption of the figure for

the details).

4.4 Antimonotonicity

Next to the multistability which is a strange and unpre-

dictable phenomenon, it exists to the other which is

obtained by appearance followed by the spontaneous dis-

appearance of the periodic bubbles of bifurcations. This

birth followed by the disappearance of the bifurcation

bubbles is called antimonotonicity and is explored in sev-

eral works namely in [57]. This new phenomenon is

observed in our system (5) and illustrated in Fig. 18 for

different discrete values of the parameter a considering b
as the bifurcation control parameter (see caption of

Fig. 18). To justify the existence of the phenomenon of

antimonotonicity observed in our system, we explore the

discrete first return map dynamics. From the positions of

two critical return points C1 and C2 consecutive to t ¼ tn
and t ¼ tnþ1, we have drawn the diagram of Fig. 19

Mnþ1ðx2Þ ¼ f ðMnðx2ÞÞð Þ. Note that the points C1 and C2

respectively justify the apparition and destruction of peri-

odic bubble bifurcations [58, 59].

5 Circuit diagram and PSpice results

The purpose of this section is to propose a simple elec-

tronics circuit in order to validate the correctness of the

proposed model [60]. Since there is no standard memca-

pacitor circuit in the literature, building an equivalent

memcapacitor circuit is a big challenge. In Fig. 20, the

memcapacitor-based circuit simulation model is designed,

where the proposed charge-controlled memcapacitor is

presented by the dotted block. The circuit components of

Fig. 20 are in others the operational amplifiers U1A to U1D

and U2A of the integrated circuits TL084, capacitors C1 and

C2, the real inductance L with its internal resistance r, the

resistors R and Ri for i ¼ 1 to 3f g, and the multipliers

defined by M1, M2, and M3. A symmetric voltage of ±

15 V serves to supply the circuit components. By

exploiting the Kirchhoff laws, the differential system

describing the dynamics of the circuit of Fig. 20 is obtained

as follows:

Fig. 17 Offset boosting of the chaotic attractor for varying the control parameter k: in (x1; x2) and (x1; x3) planes for k ¼ �2 (blue), k ¼ 0

(green), and k ¼ 2 (magenta). Others parameters are a ¼ 1, b ¼ 0:8, c ¼ 0:5, and q ¼ 1
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dtC1

dt
¼ 1

RC
tC2

;

dtC2

dt
¼ 1

RC
R0iL;

diL
dt

¼ � r

L
iL �

1

L
vm;

8>>>>><
>>>>>:

ð11Þ

where vm ¼ �R � 1
R2
tC1

þ 1
R3
tC2

� 1
R1
t4C1

tC2

� �
.

To implement the proposed oscillator conveniently, we

introduce the scaling factor RC. Thus, by carrying out the

variable change t ¼ sRC, system (11) becomes:

dtC1

ds
¼ tC2

dtC2

ds
¼ R0iL

diL
ds

¼ � rRC

L
iL �

R2C

LR2

tC1
þ R2C

LR3

tC2
� R2C

LR1

t4C1
tC2

8>>>>><
>>>>>:

ð12Þ

where tC1
and tC2

are the voltages across the capacitors C1

and C2; iL the current of the inductorL. With the following

variable change C1 ¼ C2 ¼ C, X1 ¼ tC1
, X2 ¼ tC2

,

Fig. 18 Bifurcation diagrams (showing the phenomenon of anti-

monotonicity) obtained by plotting the local maxima of the state

variable x1 as a function of the control parameter b: period-2 bubble

for a ¼ 0:47; period-4 bubble for a ¼ 0:48; period-8 bubble for

a ¼ 0:482; four chaotic bubbles for a ¼ 0:485; two chaotic bubbles

for a ¼ 0:488; Full Feigenbaum remerging tree at a ¼ 0:5. The rest of
fixed parameters are c ¼ 0:5 and q ¼ 1
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X3 ¼ iL, a ¼ R2C
LR3

, c ¼ rRC
L , b ¼ R2C

LR2
, q ¼ R2C

LR1
, and a ¼ R0(

the added parameter of Sect. 4) the dynamics of the elec-

tronic circuit of Fig. 20 and the one of Fig. 2 are

equivalents.

The circuit diagram of Fig. 20 is simulated by PSpice

software and the complex behaviors are carried out through

the phase portraits. For the choice of the resistors R1 ¼
25X and R2 ¼ 13KX, we obtain the asymmetric chaotic

attractors of Fig. 21. For the resistors R1 ¼ 50X and

R2 ¼ 11KX, we obtain the symmetric chaotic attractors of

Fig. 22 on different planes of the system’s coordinate. In

light of Figs. 21 and 22, a good agreement is observed

between the behaviors obtained by PSpice simulations of

the left column and those obtained by the numerical reso-

lution of the right column. Obtaining these chaotic

behaviors confirms the feasibility of the proposed model,

which is justified by the concordance between the results

obtained.

6 Conclusion

A novel mathematical model of charge-controlled mem-

capacitor and its corresponding circuit emulator is intro-

duced in this paper. Based on this model, a simple chaotic

oscillator is proposed and studied in detail. The simplicity

of the circuit and the complexity of the dynamic behavior

are the particular characteristics of the proposed model.

The entire dynamics of the system has been explored

giving rise to a plethora of phenomena including multi-

stability (through the coexistence of several types of

dynamic behavior), antimonotonicity, and offset boosting.

For the validation and the feasibility of the model, a circuit

realization has been carried out via PSpice simulations

whose results are in good agreement. This discovery enri-

ches for this purpose the literature on dynamic systems in

general and the family of oscillators based on the charge-

controlled memcapacitor, in particular by rich, varied and

complex results.

Fig. 19 First-return map of the maxima of the coordinate x2. This map

is indicative of one-dimensional maps with two critical points

confirming the occurrence of antimonotonicity in the proposed

memcapacitor oscillator. The parameters are: a ¼ 0:5, b ¼ 0:34,
c ¼ 0:5, and q ¼ 1
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Fig. 20 Circuit realization of the memcapacitor-based chaotic oscillator
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Fig. 21 Asymmetric chaotic attractor in the different planes obtained by PSpice simulations for R1 ¼ 25X and R2 ¼ 13kX. The initial conditions
(tC1

ð0Þ; tC2
ð0Þ; iLð0Þ ) are (0.1, 0, 0)
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