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Abstract
Optimal sizing of analog circuits is a hard and time-consuming challenge. Nowadays, analog designers are more than ever

interested in developing solutions for automating such a task. In order to overcome well-known drawbacks of the con-

ventional equation-based and simulation-based sizing techniques, analog designers are being attracted by the so-called

metamodeling techniques and recently have used them for establishing accurate models of circuits’ performances.

Metamodels have been associated to optimization routines to maximize circuits’ performances. In this work we deal with

the newly proposed efficient global optimization (EGO) algorithm that intrinsically offers both the metamodel generation

and the optimization routine. Furthermore, it performs the requested task by using a relatively very small number of

performance evaluations. Firstly, we focus on the convergence rates of the EGO technique via twenty benchmark test

problems. Then, we use EGO for the optimal design of a couple of analog CMOS circuits. Comparison between EGO

performances and those obtained using two surrogate-assisted metaheuristics is provided to show potentialities of the

proposed approach. Finally, The case of muti-objective problems is also considered. The multi-objective efficient global

optimization algorithm is used for generating Pareto fronts of conflicting perormances of two analog circuits. Obtained

results are compared to those of the conventional in-loop optimization technique.

Keywords Optimization � Metamodeling � Kriging technique � EGO � Expected improvement � Metaheuristic �
PSO � GA � CMOS � CCII � VF � Wilcoxon signed-rank test � MOEGO � MOPSO

1 Introduction

Analog circuit sizing and optimization problems are

tedious and time consuming. Conventional approaches use

the equation-based and/or the simulation-based techniques

[1–6]. Despite the fact that the last overcomes limitations

of the former (i.e. the use of approximated and error-prone

models) due to the use of SPICE-like numerical simulators

for the evaluation of performances and intrinsic constraints,

the evaluation time rapidly becomes prohibitif for (not

only) complex circuits. It is worth mentioning that the use

of ‘rapid’ metaheuristics has considerably contributed to

reducing computing time of the optimization routines and

have allowed solving complex and hard problems. The

available literature offers a plethora of works dealing with

this problematic, see for instance [7–9]. However, evalu-

ations remain expensive and very much time consuming

the optimization routines, as stressed above.
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Few years ago metamodeling techniques, also known as

surrogate modeling, have been proposed in the specialized

literature. Among these techniques we can mention the

Kriging model [10, 11], the Radial Basis Functions [12, 13]

and the Polynomial Regression model [14]. Such surrogate

models allow establishing precise models of the handled

performances, which evaluation time is very short. These

techniques have successfully been used in many engi-

neering domains [15–22], in particular in analog circuit

design, see for instance [23–27]. The approach, called

surrogate based optimization, consists of constructing a

model of the considered performance by fitting a function

through an initial design sampling and then using that

model within the optimization routine. This model is thus

used to predict values of future search samples. Subse-

quently, high performance regions of the design space can

be identified more rapidly [25–29].

The efficient global optimization technique (EGO) was

proposed in the late 90s [30]. EGO technique fits a surro-

gate model to an initial design of samples by evaluating the

considered performance at few additional design points

(generally, the Kriging modeling technique is used), thus

decreasing the predicted error. The differential evolution

algorithm is used to maximize the (expected) improvement

function, which is of the form: E[I(x)] = E[max(fmin - Y,

0)]. Where fmin is the best current function value evaluated

at some point x, and Y is a uniformly distributed random

variable. The expected improvement (E[I(x)]) criterion

aims to evaluate and update the so far constructed Kriging

model [30–36].

The mono-objective EGO algorithm has shown its

effectiveness in various domains of engineering, such as

automotive problem [31] and electronics for the optimal

design of analog circuits [34–36].

Currently, many studies are being proposed [37–41] to

modify the mono-objective EGO to deal with multi-ob-

jective problems.

This multi-objective optimization approach consists of

optimizing EIs of all objectives, and consider the obtained

Pareto solutions as promising candidates. In fact, the multi-

objective EI criteria have the same routine as the mono-

objective EGO algorithm. Nonetheless, when the number

of objectives is higher than two, the formulas of these

multi-objective EI criteria are hard to provide, which

makes the computations of these multi-objective EI criteria

typically time-consuming. In order to solve this problem, a

new approach is proposed that is based on the concept of

the expected improvement matrix (EIM) [41], which is

simplier to evaluate regardless of the number of objectives

and the one of non-dominated points.

In this paper, firstly, we are interested in evaluating

potentialities of the EGO technique in the aim to apply it to

optimally design analog circuits. As it will be shown

below, this will allow taking benefits from advantages of

both conventional sizing/optimization techniques: preci-

sion of the model and rapidity of the evaluation.

For the sake of comparison, two Kriging-based meta-

heuristic sizing approaches are considered: the first uses an

evolutionary technique, namely the genetic algorithm, and

it will be denoted ‘GA-Kriging’, whereas the second uses a

swarm intelligence approach, namely, the particle swarm

optimization technique, and it is denoted as ‘PSO-Kriging’.

Secondly, we deal with adapting the conventional EGO

technique to handle multi-objective problems using the

EIM approach, and we show via comparisons with results

obtained using an PSO-based inloop technique, showcased

via two analog circuits, that the multi-objective EGO

(MOEGO) offers a considerable reduction in computing

time.

The rest of the paper is structured as follows. In Sect. 2,

we present an overview of the EGO technique and give

details about the Kriging modeling approach, the expected

improvement criterion, and the differential evolution rou-

tine. Then, in Sect. 3 we deal with the surrogate-assisted

metaheuristic approaches developed for comparison pur-

poses, as explained above. In Sect. 4, convergence rates

and comparisons between EGO performances and those

provided by the Kriging-assisted metaheuristic approaches

are provided. Twenty bench mark test problems are con-

sidered. The Wilcoxon signed-rank test is used as a metric.

In Sect. 5, we focus on the application of the EGO tech-

nique for the optimal sizing of two CMOS analog circuits,

namely a current conveyor and a voltage follower. Ditto,

comparisons with the Kriging-based metaheuristic opti-

mization approaches, regarding convergence rates and

robustness, are provided. Section 6 presents the multi-ob-

jective EGO algorithm, offers details regarding the EIM

concept, and gives a comparison with results obtained

using PSO for generating Pareto front for the circuits

handled in Sect. 5. Finally, in Sect. 7 we conclude the

work.

2 The efficient global optimization
algorithm: an overview

The efficient global optimization algorithm is an opti-

mization process assisted by a surrogate model (a Kriging

model). This algorithm is based on the use of the error

estimation provided by the Kriging model to sequentially

enrich the design of experiments with new points. In order

to improve the quality of the optimum, the process maxi-

mizes the so-called expected improvement criterion (see

Sect. 2.2).

EGO algorithm encompasses two-steps [32]. In the first

step, an initial Kriging model is built using an initial design
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sampling. In the second step, new samples are added to the

initial data which serve for constructing/updating the

Kriging model while optimizing the EI criterion using the

Differential Evolution (DE) algorithm [42, 43]. The cor-

responding pseudo code can be summarized as follows:

where X is the set of samples and Y is the simulation result

set of X.

In the following subsections, we present details of main

subroutines of the EGO algorithm, i.e. the Kriging mod-

eling, and the Expected improvement criterion.

2.1 The Kriging model

Surrogate modeling is gaining interest in various domains

of engineering, such as aeronautics [44] and electronics

[26, 27]. It is able to approximate very complex non-linear

functions by a simple and an accurate surrogate model.

Kriging modeling technique was initially developed to

solve problems in geostatistics [45]. Rapidly, it became

very famous in analog circuit design and optimization. The

Kriging model treats the target function as a realization of a

Gaussian process. A Kriging model can be expressed as:

yðxÞ ¼ lþ eðxÞ ð1Þ

where x is the sample point, l is the mean of the Gaussian

process, e(x) is the error term which is normally distributed

with mean zero and variance r2.

The correlation between two points x(i) and x(j) is

defined by:

corr e x ið Þð Þ � e x jð Þð Þ½ � ¼ exp �
Xd

k¼1

hk xk ið Þ � xk jð Þj jPk

 !

ð2Þ

where d is the dimension of the design space.

Equation (2) indicates that a small distance between two

points is synonym of a large correlation, and vice versa.

The distance is measured by parameters Pk (which is

related to the smoothness of the function in coordinate

direction k) and hk can be interpreted as a measure of the

activity of variable xk.

The best linear unbiased predictor of y(x) [30] is:

ŷðxÞ ¼ l̂þ rT R�1ðy � l̂Þ ð3Þ

The mean squared error of the predictor s2 is defined by:

s2ðxÞ ¼ r̂2 � 1 � rTR�1r þ ð1 � 1T R�1rÞ2

1T R�11

" #
ð4Þ

where l̂ and r̂2 are estimations of l and r2 which are

derived by maximizing the likelihood of the observed

samples.

In this equation, R is a matrix with entry

Rij ¼ corr eðxðiÞÞ; eðxðjÞÞ
� �

. r is an n dimensional vector with

entry ri ¼ corr eðxÞ; eðxðiÞÞ
� �

and y ¼ yð1Þ; yð2Þ; . . .; yðnÞ
� �

is

the vector of the n observed function values.

Algorithm 1 The EGO algorithm

Begin 

Initialize design samples (X,Y)

Initialize The best result (xmin, ymin)

While the stop criterion is not met do

Build a Kriging model

new sample (xnew) = maximize E[I(x)]

Evaluate xnew according to the Kriging model

X ← X ∪ xnew (Add new sample to the model)

Y ← Y ∪ y (xnew)

ymin ← min(Y) (Compute the minimum ymin)

xmin ← x ∈ X: y(x) = ymin

end While

End
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2.2 The expected improvement criterion

The EGO algorithm enriches the design of samples at each

iteration with a new sample point. This sample is chosen

according to the maximum expected improvement (EI)

criterion proposed by Jones [30].

Since the value of an un-sampled point Y(x) can be

processed as a Gaussian process with a mean value ŷ(x),

and a variance s2(x), then, the improvement of this point

beyond the current best-observed value ymin is a random

value that can be expressed as follows:

IðxÞ ¼ max ymin � YðxÞ; 0ð Þ ð5Þ

Therefore, the expected improvement is defined by:

E I xð Þ½ � ¼ ymin � ŷ xð Þð Þ � U ymin � ŷ

s xð Þ

� �
þ s xð Þ

� / ymin � ŷðxÞ
sðxÞ

� �
ð6Þ

where U is the standard normal density, u is the distribu-

tion function and s xð Þ is the square root of the Kriging

prediction variance.

The advantage of the expected improvement function is

to provide a suitable trade-off between local search and

global search. In Eq. (6), the first term of the expected

improvement function increases when the prediction

ŷ(x) decreases which causes the local search exploitation (it

will be close to the best observed point). The second term

of the expected improvement function is enhanced when

the variance s(x) is increasing, which leads to the global

exploration.

3 The Kriging-assisted metaheuristics

The conventional in-loop optimization kernels consist of

the use of expensive simulations (in terms of computing

time, generally). To fix this problem, surrogate models can

be used. Firstly, a design of experiment (DoE) is generated

using the Latin hypercube technique (LHC) [46]. Then, the

design sampling is evaluated. We use Hspice simulator for

this purpose. The established database will serve as an

input for the modeling routine.

The constructed model will be used inside an opti-

mization kernel [47, 48].

For the sake of further comparison results, we consider

two well-known robust metaheuristics (GA and PSO).

The Kriging-assisted metaheuristic algorithm can be

summarized as depicted by the flowchart given in Fig. 1.

4 EGO performances: convergence rates
and comparison results

A benchmark of twenty test problems has been considered

[49, 50], see Table 1. Functions’ expressions are given in

Appendix. EGO, GA-Kriging and PSO-Kriging were con-

sidered for comparison. Accuracy of the obtained results

was evaluated using Eq. (7). The statistical evaluation was

performed using the Wilcoxon rank test metric [51] for 100

runs of the three algorithms for each test problem, see

corresponding results in Table 2.

relative Error ¼ Theoretical result � Simulation result

Theoretical result

����

����
� 100

ð7Þ

The size of the database set is equal to 10.d in the case

of the EGO algorithm, where d is the dimension of the test

problem. 100 initial samples were used for the two other

algorithms. The Kriging models were built using the

DACE toolbox [52]. The following settings were

considered:

• For the DE algorithm:

• Maximum number of iterations: 100.

• DE-step size: 0.8.

• Crossover probability: 0.8.

• Strategy: DE/rand/1/bin.

• For the PSO algorithm:

• Social parameter: 2.

• Cognitive parameter = 2.

• Inertia weight: (number of generations-number of

iterations)/(number of generations).

• For the GA algorithm:

• Mutation rate = 0.1

• Crossover rate = 0.5

We examined the relative success for 100 runs of the

EGO algorithm in solving the different benchmark prob-

lems. The Wilcoxon Signed-Rank Test was used for pair-

wise comparisons, with the statistical significance value

a = 0.05. The null hypothesis H0 is: ‘The difference

between the relative error obtained by algorithm A and the

relative error achieved by algorithm B is identical to the

same benchmark problem’. To determine if algorithm A is

statistically more successful than algorithm B, or if not, the

alternative hypothesis ‘is validated’ (i.e. T ? and T - as

described in [53]) is checked.
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Table 2 presents the pairwise comparisons of the three

algorithms (PSO-Kriging vs. EGO and GA-Kriging vs.

EGO) using the Wilcoxon Signed-Rank Test metric. The ?

and - indicate cases in which the null hypothesis was

rejected. The ‘=’ indicates the cases when the two algo-

rithms are identical and successful in solving the problems.

The null hypothesis H0 was valid. In fact, the sign ‘ ?’

indicates the best performance, and the ‘-’ indicates the

worst one, when solving the statistical comparison prob-

lems. The three statistical significance cases (marked with

‘?’, ‘=’ or ‘-’) present in the last row of Table 2 the total

counts in the (?/-/=) format.

Table 2 clearly shows that the EGO algorithm is sta-

tistically more successful and outperforms both Kriging-

assisted metaheuristics.

5 Application to the optimal design
of analog circuits

In this section, we are interested in the design of two

analog CMOS circuits, namely, a second-generation cur-

rent conveyor (CCII) [54] and a voltage follower (VF) [55].

EGO technique is used for this purpose, and a comparison

with both Kriging-assisted metaheuristics is performed.

Wilcoxon Signed-Rank Test metric and robustness check

are provided to further highlight performances of the pro-

posed technique.

As introduced above, an LHC database was generated

for each circuit. Hspice simulator was used for evaluating

the considered performances. It is to be noted that two

experiments were considered when dealing with EGO: the

first is performed via 5 initial samples and the second is

done via 35 initial samples (The objective is to highlight

Begin

Initialize Population

Evaluate 
Population

Metaheuristic 
routine

New Population

Evaluate
New Population

Stop Criterion
met?

End

Initialize input data
via LHC sampling

Evaluate
(Hspice Simulator)

Kriging Model

Input/output data

Generate Data Base

Generate Surrogate Model

NO

YES

Fig. 1 The Kriging-assisted

metaheuristic
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Table 1 Benchmark test

problems
Problem Variables’ lower limits Variables’ upper limits Problem dimension

F1 Six-hump camel-back - 3, - 2 3,2 2

F2 Goldstein-Price - 2 2 2

F3 Branin - 5, 0 10,15 2

F4 Harman3 0 1 3

F5 Harman6 0 1 6

F6 Michalewicz 0 3.1416 2

F7 Beale - 4.5 4.5 2

F8 Rosenbrock - 5 10 2

F9 Mccormick - 1.5, - 3 4,4 2

F10 Eggholder - 512 512 2

F11 Holder table - 10 10 2

F12 Bohachevsky1 - 100 100 2

F13 Forrester 0 1 1

F14 Three-hump camel - 5 5 2

F15 Cross-in-Tray - 10 10 2

F16 Drop-wave - 5.12 5.12 2

F17 Levy N.13 - 10 10 2

F18 Booth - 10 10 2

F19 Matyas - 10 10 2

F20 Schaffer N.2 - 100 100 2

Table 2 Results of pairwise

comparisons for affording the

best solution for each

benchmark problem by utilizing

Wilcoxon rank test (a = 0.05)

PSO-Kriging versus EGO GA-Kriging versus EGO

p value T ? T - Winner p value T ? T - Winner

F1 0 0 4005 ? 0 0 4656 ?

F2 0 0 5050 ? 0 0 5050 ?

F3 0 134 3694 ? 0 19 5031 ?

F4 0 0 5050 ? 0 0 5050 ?

F5 0 0 5050 ? 0 0 5050 ?

F6 0 1062.5 3987.5 ? 0 863 4187 ?

F7 0 0 5050 ? 0 0 5050 ?

F8 0 30 5020 ? 0 0 5050 ?

F9 0 990 0 – 0 3 4462 ?

F10 0 737 4313 ? 0 939 4111 ?

F11 0 335 4715 ? 0 611 4439 ?

F12 0 80 4970 ? 0 34.5 5015.5 ?

F13 1 0 0 = 0 0 1431 ?

F14 0 364 4101 ? 0 94.5 4855.5 ?

F15 0 0 5050 ? 0 20 5030 ?

F16 0 497 4553 ? 0 648 4402 ?

F17 0 0 5050 ? 0 3 5047 ?

F18 0 3022 381 – 0 0 5050 ?

F19 1 0 0 = 0 0 4950 ?

F20 0.6925 2410 2640 = 0.9671 2513 2537 =

?/-/= 15/2/2 19/0/1
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efficiency of EGO when dealing with a small initial

database).

5.1 Application #1: a CMOS second-generation
current conveyor

In the first application, we deal with maximizing the cur-

rent transfer cut-off frequency (Fci) and minimizing the

parasitic X-port resistance (RX) of a second-generation

CMOS current conveyor. Figure 2 shows the considered

CCII. The circuit’s variables are the channel widths WN,

WP of the NMOS and the PMOS transistors, respectively.

All transistors are constrained to operate in the saturation

mode. The AMS 0.35 lm technology is used.

Tables 3 and 4 present optimal values of the CCII

variables obtained using the three sizing techniques.

Figures 3 and 4 show reached performances, respec-

tively for Rx and Fci using optimal parameters’ values

obtained using the proposed technique.

XY Z

V DD

V SS

M7M8M9M10

M1 M2

M3 M4

M6M5M11M12M13

Io

Fig. 2 A CMOS second-

generation current conveyor

Table 3 Rx results

Parameters values (w1, w2) (lm) Optimization result MATLAB (X) Simulation result H-SPICE (X) Relative error (%)

5 points

EGO w1 = 45.38

w2 = 79.15

264.51 264.51 0

GA-Kriging w1 = 45.26

w2 = 78.90

265.72 264.94 0.29

PSO-Kriging w1 = 45.35

w2 = 78.86

264.84 265.21 0.14

35 points

EGO w1 = 46.53

w2 = 79.16

262.71 262.71 0

GA-Kriging w1 = 46.65

w2 = 79.33

262.72 262.35 0.141

PSO-Kriging w1 = 45.43

w2 = 78.98

262.71 262.68 0.011
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Frequency (Hz)
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)
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160
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220

240

260

280

Rx= 264.5 Ω

Ω

Fig. 3 CCII X-port parasitic

resistance

102 103 104 105 106 107 108 109 1010

C
ur

re
nt

 G
ai

n 
(d

B
)

-12

-10

-8

-6

-4

-2

0

2

Fci = 1.073e+ 09

Frequency (Hz)

Fig. 4 CCII high current cutoff

frequency

Table 4 Fci-results

Parameters values (w1, w2) (lm) Optimization result MATLAB

(GHZ)

Simulation result H-SPICE

(GHZ)

Relative error

(%)

5 points

EGO w1 = 10.75

w2 = 17.8

1.0732 1.0732 0

GA-Kriging w1 = 46.65

w2 = 79.33

1.0718 1.0690 0.262

PSO-

Kriging

w1 = 10.72

w2 = 17.80

1.0731 1.0736 0.047

35 points

EGO w1 = 10.75

w2 = 17.80

1.0732 1.0732 0

GA-Kriging w1 = 46.65

w2 = 79.33

1.0731 1.0750 0.177

PSO-

Kriging

w1 = 10.75

w2 = 17.79

1.0731 1.0734 0.028
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5.2 Application #2: a CMOS voltage follower

Figure 5 depicts the considered CMOS voltage follower

(VF) [55]. Two performances were considered, namely

maximization of the voltage transfer high cutoff frequency

(Fcv) and minimization of the voltage offset (Voffset).

Tables 5 and 6 show obtained results.

Figures 6 and 7 show Hspice simulation results using

optimal parameters’ values obtained thanks to the proposed

approach.

Below, we present a pairwise statistical comparison

results for 100 runs of the three sizing techniques. Wil-

coxon Signed-Rank Test metric is used for this purpose, as

introduced above. Tables 7 and 8 present results for the

CCII and the VF, respectively.

The ‘?’ indicates cases where the EGO algorithm per-

formance is statistically better, and the null hypothesis was

rejected.

From Tables 7 and 8, it is clear that the EGO algorithm

is statistically more successful than the other algorithms.

Vin Vout

VDD

VSS

M9M10M11

M1

M5
M6

M 7M8

Ibias

M2

M4M3

Fig. 5 A CMOS voltage

follower

Table 5 Voffset results

Parameters values (w1, w2) (lm) Optimization result MATLAB (V) Simulation result H-SPICE (V) Relative error (%)

5 points

EGO w1 = 15.27

w2 = 92.20

- 0.0935 - 0.0935 0

GA-Kriging w1 = 15.26

w2 = 92.22

- 0.0934 - 0.0935 0.1070

PSO-Kriging w1 = 15.26

w2 = 89.27

- 0.0935 - 0.0936 0.1070

35 points

EGO w1 = 20.19

w2 = 15.95

- 0.0980 - 0.0980 0

GA-Kriging w1 = 42.19

w2 = 16.32

- 0.0962 - 0.09624 0.0416

PSO-Kriging w1 = 65.66

w2 = 62.11

- 0.0980 - 0.09798 0.0143
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The relative error of the EGO algorithm is smaller than the

one of both the GA and the PSO based algorithms.

For further highlighting efficiency of EGO, we per-

formed a 100-run robustness test and proceeded to the

same comparison while considering a 5-point database for

EGO and a 35-sample point for both GA-Kriging and PSO-

Kriging algorithms. Tables 9 and 10 present the obtained

results. Figures 8 and 9 present the boxplots corresponding

to the robustness tests of the relative errors for each

algorithm.

Voltage (V)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Vo
lta

ge
 O

ffs
et

 (V
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Voff = -0.09354

Fig. 6 VF voltage offset

Table 6 Fcv results

Parameters values (w1, w2) (lm) Optimization result MATLAB

(MHz)

Simulation result H-SPICE

(MHz)

Relative error

(%)

5 points

EGO w1 = 53.88

w2 = 57.19

46.2480 46.2480 0

GA-Kriging w1 = 54.02

w2 = 57.46

46.2265 46.2390 0.0270

PSO-

Kriging

w1 = 53.86

w2 = 57.18

46.2307 46.2570 0.0568

35 points

EGO w1 = 50.02

w2 = 83.17

46.4148 46.4070 0.0169

GA-Kriging w1 = 57.92

w2 = 48.20

46.3919 46.4040 0.0260

PSO-

Kriging

w1 = 48.43

w2 = 47.87

46.4163 46.4070 0.0200
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Fig. 7 VF high voltage cutoff

frequency

Table 7 Results of pairwise

comparisons for the three

algorithms of the CCII circuit

(a = 0.05)

PSO-Kriging versus EGO GA-Kriging versus EGO

p value T ? T - Winner p value T ? T - Winner

Minimization of the resistance Rx (f = 1 kHz)

Rx (5 points, 30 iterations) 0 0 5050 ? 0 0 5050 ?

Rx (35 points, 30 iterations) 0 0 3403 ? 0 0 5050 ?

Maximization of the current transfer cutoff frequency (Fci)

Fci (5 points,30 iterations) 0 0 5050 ? 0 0 5050 ?

Fci (35 points, 30 iterations) 0 0 5050 ? 0 0 5050 ?

?/-/= 4/0/0 4/0/0

Table 8 Results of pairwise

comparisons for the three

algorithms of the VF circuit

(a = 0.05)

PSO-Kriging versus EGO GA-Kriging versus EGO

p value T ? T - Winner p value T ? T - Winner

Minimization of the voltage offset (with voltage input V = - 0.1v)

Offset (5 points, 30 iterations) 0 262 4788 ? 0 416 4634 ?

Offset (35 points, 30 iterations) 0 0 5050 ? 0 0 5050 ?

Maximization of the voltage transfer high cutoff frequency (Fcv)

Fcv (5 points, 30 iterations) 0 0 4656 ? 0 0 5050 ?

Fcv (35 points, 30 iterations) 0 1885 3165 ? 0 2150 2900 ?

?/-/= 4/0/0 4/0/0
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6 The MOEGO algorithm

6.1 Multi-objective optimization problem:
an overview

A multi-objective problem comprises several (non-com-

mensurable/conflicting) objective functions to be opti-

mized concurrently [9]. It can be expressed as follows.

Minimize f~ðx~Þ ¼ f1ðx~Þ; f2ðx~Þ; . . .; fmðx~Þ½ �
with x~¼ x1; x2; . . .; xn½ � 2 Rn

ð8Þ

where x~ is th

e decision vector and fi is the ith objective

function. In addition, the general problem can
be associated to a number of inequality and
equality constraints.

A dominance routine is applied for solving such a multi-

objective problem [1, 5]. Solutions that are non-dominated

within the entire search space are named Pareto optimal

ones. They constitute the so-called Pareto front. This pro-

cess will be integrated within the conventional EGO

technique to propose a new multi-objective efficient global

optimization approach (MOEGO).
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(b) Current transfer cutoff frequency (Fci)
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Fig. 8 CCII: Boxplots of the 100-runs for the three algorithms

Table 9 Results of pairwise comparisons for different databases of the CCII circuit using the Wilcoxon Signed-Rank Test (a = 0.05)

p value T ? T -T - Winner

Minimization of the resistance Rx

EGO versus PSO-Kriging 0 0 3403 ?

EGO versus GA-Kriging 0 0 5050 ?

Maximization of the current transfer cutoff frequency (Fci)

EGO versus PSO-Kriging 0 0 5050 ?

EGO versus GA-Kriging 0 0 5050 ?

?/-/= 4/0/0
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6.2 The proposed MOEGO

As a first attempt to deal with multi-objective problems, EI

criteria was used [37–40]. However, it has been shown that the

multi-objective EI criteria are very expensive to compute when

the number of objectives is higher than two, which is not

practical to use in complex problems [41]. As a mean of fact,

the use of the expected improvement matrix (EIM)

within MOEGO has been proposed to improve its perfor-

mances [41].

The proposed EIM criteria are remarkably fast to compute

since their computation scales linearly with the number of

objectives and have better theoretical properties when

compared to the previously proposed linear time EI criteria.
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(b) Voltage transfer high cutoff frequency (Fcv)
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Fig. 9 VF: Boxplots of the 100-execution results for the three algorithms
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This criterion has been incorporated within the EGO

algorithm. Algorithm 2 gives the corresponding pseudo

code. Details regarding EIM are given in the following

subsection.

6.3 The concept of EIM

For multi-objective optimization, the current best solution

is, in fact, a two-dimensional matrix [41]:

f 1
1 � � � f 1

m

..

. . .
. ..

.

f k
1 � � � f k

m

2
64

3
75 ð9Þ

fmin is the current best solution in mono-objective opti-

mization. The number of points in the current best solution

increases from one to k; the dimension of each point

changes from one to m.

Inspired by this, the function EI(x) in mono-objective

optimization can also be expanded into a matrix for multi-

objective optimization, specifically, the expected

improvement matrix (EIM) [41] which can be defined as

follows.

EI1
1 xð Þ � � � EI1

m xð Þ
..
. . .

. ..
.

EIk
1 xð Þ � � � EIk

m xð Þ

2

64

3

75 ð10Þ

and

Table 10 Results of pairwise comparisons for different databases of the VF circuit using the Wilcoxon Signed-Rank Test (a = 0.05)

p value T ? T - Winner

Minimization of the voltage offset (with voltage input V = - 0.1 v)

EGO versus PSO 0 23 5027 ?

EGO versus GA 0 490 4560 ?

Maximization of the voltage transfer high cutoff frequency (Fcv)

EGO versus PSO 0 0 5050 ?

EGO versus GA 0 0 5050 ?

?/-/= 4/0/0

Algorithm 2 The EIM-based MOEGO pseudo code

Create an initial design: X = [x1; : : : ; xn]

Evaluate function at X and set Ym = fm(X) (with m number of functions)

Update the non-dominated front

While the stop criterion is not met do

For i =1 to m

Build the kriging model for each objective (X ; Y)m

end for 

Calculate the EIM matrix for multi-objective optimization

new sample(xn+1)= maximize E IM (x) and add xn+1 to X.

For i =1 to m

( yn+1)i ← f(xn+1)i and add (yn+1)i to Yi.  

end for

Update the non-dominated front

Re-estimate the parameters and update the kriging model.

end while

156 Analog Integrated Circuits and Signal Processing (2020) 103:143–162

123



EI
j
i xð Þ ¼ f

j
i � ŷi xð Þ
� �

� U f
j

i � ŷiðxÞ
si xð Þ

 !
þ si xð Þ

� / f
j

i � ŷi xð Þ
siðxÞ

 !
ð11Þ

where i = 1;2; …; m and j = 1;2; …;k. The element EI
j
i xð Þ

in EIM represents the expected improvement of the con-

sidered point x beyond the jth non-dominated front point in

ith objective.

Actually, replacing the term f
j

i � yi xð Þ in the multi-ob-

jective improvement functions by the term EI
j
i xð Þ derives

the formulas of the EIM criteria.

The Euclidean distance improvement was defined by

Keane [56] as the Euclidean distance between the objective

vector of x to its nearest non-dominated front point:

IeðxÞ ¼ min
k

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðf j
i � yiðxÞÞ2

s
ð12Þ

The Euclidean distance-based EIM criterion can be given

as:

EIMeðxÞ ¼ min
k

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðEI
j
i ðxÞÞ

2

s
ð13Þ

6.4 Application of MOEGO to the optimal design
of analog circuits

In this section, we applied the proposed EIM-based

MOEGO approach to the optimal sizing of a two con-

flicting performances of two analog circuits, namely, a

second-generation current conveyor (see Fig. 2) and a

voltage follower (see Fig. 5). We presented a comparative

study between the proposed MOEGO and an in-loop based

multi-objective particle swarm optimization algorithm

using the crowding distance (MOPSO-CD) [57, 58].

Regarding CCII, the goal is to optimize two objectives

of each circuit; the current transfer cutoff frequency (fci) is

maximized and the X-port parasitic resistance (Rx) is

minimized for the CCII. For the VF, the voltage transfer

high cutoff frequency (Fcv) is maximized and the voltage

offset (Voffset) is minimized.

For MOPSO-CD, a population of 50 individuals, and

100 iterations have been considered.

Figures 10 and 11 show the Pareto fronts obtained by

both approaches. Table 11 presents the execution time for

both algorithms, i.e. MOEGO algorithm and MOPSO

algorithm.

From this table, we can see that execution time of the

MOPSO-CD based inloop approach is considerably higher

then EIM-MOEGO one. The proposed algorithm reduces

the execution time from about 1 h to only few seconds for

generating the Pareto front, which confirms the efficiency

of the proposed EGO algorithm.
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Fig. 11 Pareto fronts of the VF performances

Table 11 Execution time for both algorithms

Circuit EIM-MOEGO MOPSO-CD

CCII 29 s 1 h 18 min

VF 13 s 1 h 07 min
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7 Conclusion

In this paper we proposed the use of the EGO technique for

the optimal design of analog circuits. The proposed

approach allows combining benefits of both conventional

sizing/optimizing techniques, namely, precision of the

models and rapidity of their evaluation. Two CMOS cir-

cuits were considered, namely a second generation current

conveyor and a voltage follower. Two performances for

each circuit were handled: the parasitic X-port input

resistance and the high current high cut-off frequency for

the current conveyor, and the voltage offset and the high

voltage cut-off frequency for the voltage follower.

Firstly, EGO performances were checked via its appli-

cation to a benchmark of 20 test problems. A comparison

with two conventional techniques that are based on the use

of a Kriging model of the performance inside a meta-

heuristic based optimization routine. Due to its stochastic

aspect, statistical tests were performed to check the good

convergence of the proposed algorithm. Then, the later was

applied for maximizing performances of the analog cir-

cuits. Ditto, the Wilcoxon metric was used for evaluating

robustness of the considered algorithms. Further, since

EGO offers the important advantage to be able to construct

accurate models using a relatively small initial database,

different tests were performed, and we showed that the

proposed approach is able to correctly converge to the

global optimum using a reduced number of initial starting

points. Robustness tests and statistical metric results show

that EGO clearly outperforms the conventional used

techniques.

The case of multi-objective problems has also been

considered. We proposed the use of the so-called expected

improvement matrix within a muti-objective EGO routine

to generate Pareto fronts linking non-commensurable and

conflicting performances of the considered analog circuits.

A comparision with results obtained MOPSO was provided.

For both cases, i.e. mono- and multi-objective EGO, we

showed that the proposed approach is very suitable to be

integrated within a CAD tool. Indeed, the statistical test

metric has highlighted that EGO outperforms the classical

metamodel-assisted metaheuristics. Further, a very consid-

erable reduction of computing time is ensured (fom 1 h to a

couple of tens of seconds for generating a Pareto front).
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Appendix: The test functions benchmark

Problem Equation Optimum value

F1 Six-hump camel-back f xð Þ ¼ 4 � 2:1x2
1 þ

x4
1

3


 �
x2

1 þ x1x2 þ �4 þ 4x2
2

� �
x2

2

�3� x1 � 3

�2� x2 � 2

- 1.0316

F2 Goldstein-Price f xð Þ ¼ 1 þ x1 þ x2 þ 1ð Þ2
19 � 14x1 þ 3x2

1 � 14x2 þ 6x1x2

�h

þ3x2
2Þ� � 30 þ 2x1 � 3x2ð Þ2

18 � 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x2

2

� �h i
�2� x1; x2 � 2

3

F3 Branin f xð Þ ¼ a x2 � bx2
1 þ cx1 � r

� �2þs 1 � tð Þ cos x1ð Þ þ s

a ¼ 1; b ¼ 5:1= 4p2ð Þ; c ¼ 5=p; r ¼ 6; s ¼ 10 and t ¼ 1= 8pð Þ
�5� x1 � 10

0� x2 � 15

- 0.3979

F4 Harman3
f xð Þ ¼ �

P4

i¼1

a exp �
P3

j¼1

Aijðxj � PijÞ2

 !

a 1:0; 1:2; 3:0; 3:2ð ÞT

A ¼

3:0 10 30

0:1 10 30

3:0 10 30

0:1 10 35

0
BB@

1
CCA

P ¼ 10�4

3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828

0
BB@

1
CCA

0� x1; x2; x3 � 1

- 3.86278
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Problem Equation Optimum value

F5 Harman6
f xð Þ ¼ �

P4

i¼1

a exp �
P6

j¼1

Aijðxj � PijÞ2

 !

a 1:0; 1:2; 3:0; 3:2ð ÞT

A ¼

10 3 17 3:5 1:7 8

0:05 10 17 0:1 8 14

3 3:5 17 10 17 8

17 8 0:05 10 0:1 14

0
BB@

1
CCA

P ¼ 10�4

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

0
BB@

1
CCA

- 3.32237

F6 Michalewicz
f xð Þ ¼ �

Pd

i¼1

sin xið Þsin2m ix2
i =p

� �

d ¼ 2; m ¼ 100� x1; x2 � p.

- 1.8013

F7 Beale f xð Þ ¼ 1:5 � x1 þ x1x2ð Þ2þ 2:25 � x1 þ x1x2
2

� �2þ 2:625 � x1 þ x1x3
2

� �2

�4:5� x1; x2 � 4:5

0

F8 Rosenbrock f xð Þ ¼ �100 x2 � x2
1

� �2þ x1 � 1ð Þ2

�5� x1; x2 � 10

0

F9 Mccormick f xð Þ ¼ sin x1 þ x2ð Þ þ x1 � x2ð Þ2�1:5x1 þ 2:5x2 þ 1

�1:5� x1 � 4

�3� x2 � 4

- 1.9133

F10 Eggholder
f xð Þ ¼ � x2 þ 47ð Þsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x1

2
þ 47

�� ��
q
 �

� x1sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 þ 47ð Þj j

p� �

�512� x1; x2 � 512

- 959.6407

F11 Holder table
f xð Þ ¼ � sin x1ð Þ cos x2ð Þ exp 1 �

ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p
p

����

����
� �����

����

�10� x1; x2 � 10

- 19.2085

F12 Bohachevsky1 f xð Þ ¼ x2
1 þ 2x2

2 � 0:3 cos 3px1ð Þ � 0:4 cos 4px2ð Þ þ 0:7

�100� x1; x2 � 100

0

F13 Forrester f xð Þ ¼ 6x � 2ð Þ2
sin 12x � 4ð Þ

0� x� 1

- 6.0207

F14 Three-hump camel f xð Þ ¼ 2x2
1 � 1:05x4

1 þ
x6

1

6
þ x1x2 þ x2

2

�5� x1; x2 � 5

0

F15 Cross-in-Tray
f xð Þ ¼ �0:0001 s x1ð Þsin x2ð Þexp 100 �

ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p
p

����

����
� �����

����þ 1

� �0:1

�10� x1; x2 � 10

- 2.0626

F16 Drop-wave
f xð Þ ¼ � 1þcos 12

ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p
ð Þ

0:5 x2
1
þx2

2ð Þþ2

�5:12� x1; x2 � 5:12

- 1

F17 Levy N.13 f xð Þ ¼ sin2 3px1ð Þ þ x1 � 1ð Þ2
1 þ sin2 3px2ð Þ½ � þ x2 � 1ð Þ2

1 þ sin2 2px2ð Þ½ �
�10� x1; x2 � 10

0

F18 Booth f xð Þ ¼ x1 þ 2x2 � 7ð Þ2þ 2x1 þ x2 � 5ð Þ2

�10� x1; x2 � 10

0

F19 Matyas f xð Þ ¼ 0:26 x2
1 þ x2

2

� �
� 0:48x1x2

�10� x1; x2 � 10

0

F20 Schaffer N.2
f xð Þ ¼ 0:5 þ sin2 x2

1
�x2

2ð Þ�0:5

1þ0:001 x2
1
þx2

2ð Þ½ �2

�100� x1; x2 � 100

0
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model assisted optimization of glued laminated timber beams by

using metaheuristic algorithms. Engineering Applications of

Artificial Intelligence, 79, 129–141.

30. Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient

global optimization of expensive black-box functions. Journal of

Global Optimization, 13(4), 455–492.

31. Bouhlel, M. A., Bartoli, N., Regis, R. G., Otsmane, A., & Mor-

lier, J. (2018). Efficient global optimization for high-dimensional

constrained problems by using the Kriging models combined with

the partial least squares method. Engineering Optimization,

50(12), 2038–2053.

32. Zhan, D., Qian, J., & Cheng, Y. (2017). Balancing global and

local search in parallel efficient global optimization algorithms.

Journal of Global Optimization, 67(4), 873–892.

33. Zhan, D., Qian, J., & Cheng, Y. (2017). Pseudo expected

improvement criterion for parallel EGO algorithm. Journal of

Global Optimization, 68(3), 641–662.

34. Drira, N., Kotti, M., Fakhfakh, M., Siarry, P., & Tlelo-Cuautle, E.

(2018). Expected improvement-based optimization approach for

the optimal sizing of a CMOS operational transconductance

amplifier. In The IEEE international conference on synthesis,

modeling, analysis and simulation methods and applications to

circuit design (SMACD) (pp. 137–139), Czech Republic.

35. Drira, N., Kotti, M., Fakhfakh, M., Siarry, P., & Tlelo-Cuautle, E.

(2019). Pseudo expected improvement based optimization for

160 Analog Integrated Circuits and Signal Processing (2020) 103:143–162

123



CMOS analog circuit design. In The IEEE international confer-

ence on synthesis, modeling, analysis and simulation methods

and applications to circuit design (SMACD), Lausanne,

Switzerland.

36. Drira, N., Kotti, M., Fakhfakh, M., & Siarry, P. (2019). Efficient

global ‘rapid optimization of analog circuits: Application to the

design of a CMOS operational transconductance amplifier’. In-

ternational Journal of Engineering Sciences and Research

Technology, 8(8), 105–114.

37. Jeong, S., & Obayashi, S. (2005). Efficient global optimization

(EGO) for multi-objective problem and data mining. IEEE

Congress on Evolutionary Computation, 3, 2138–2145.

38. Knowles, J. (2006). ParEGO: A hybrid algorithm with on-line

landscape approximation for expensive multiobjective optimiza-

tion problems. IEEE Transactions on Evolutionary Computation,

10(1), 50–66.

39. Zhang, Q., Liu, W., Tsang, E., & Virginas, B. (2009). Expensive

multiobjective optimization by MOEA/D with gaussian process

model. IEEE Transactions on Evolutionary Computation, 14(3),

456–474.

40. Wagner, T., Emmerich, M., Deutz, A. H., & Ponweiser, W.

(2010) On expected improvement criteria for model-based multi-

objective optimization. In International conference on Parallel

Problem Solving From Nature (PPSN). Krakow, Poland.

41. Zhan, D., Cheng, Y., & Liu, J. (2017). Expected improvement

matrix-based infill criteria for expensive multiobjective opti-

mization. IEEE Transactions on Evolutionary Computation,

21(6), 956–975.

42. Mallipeddi, R., & Lee, M. (2015). An evolving surrogate model-

based differential evolution algorithm. Applied Soft Computing,

34, 770–787.

43. Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential

evolution: A practical approach to global optimization. Berin:

Springer.

44. Kanazaki, M., Takagi, H., & Makino, Y. (2013). Mixed-fidelity

efficient global optimization applied to design of supersonic

wing. Procedia Engineering, 67, 85–99.

45. Krige, D. G. (1951). A statistical approach to some basic mine

valuation problems on the Witwatersrand. Journal of the Chem-

ical, Metallurgical and Mining Engineering Society of South

Africa, 52(6), 119–139.

46. Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989).

Design and analysis of computer experiments. Statistical Science,

4(4), 409–423.

47. Parnianifard, A., Azfanizam, A. S., Ariffin, M. K., Ismail, M. I.,

Maghami, M. R., & Gomes, C. (2018). Kriging and latin

hypercube sampling assisted simulation optimization in optimal

design of PID controller for speed control of DC motor. Journal

of Computational and Theoretical Nanoscience, 15, 1471–1479.

48. Garbaya, A., Kotti, M., Drira, N., Fakhfakh, M., Tlelo-Cuautle,

E., & Siarry, P. (2018) An RBF-PSO technique for the rapid

optimization of (CMOS) analog circuits. In The international

conference on modern circuits and systems technologies on

electronics and communications (MOCAST) (pp. 1–4), Greece.

49. Karaboga, D., & Akay, B. (2009). A comparative study of arti-

ficial bee colony algorithm. Applied Mathematics and Compu-

tation, 214(1), 108–132.

50. Karaboga, D., & Basturk, B. (2007). A powerful and efficient

algorithm for numerical function optimization: Artificial bee

colony (ABC) algorithm. Journal of Global Optimization, 39(3),

459–471.

51. Derrac, J., Garcı́a, S., Molina, D., & Herrera, F. (2011). A

practical tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence

algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

52. Couckuyt, I., Dhaene, T., & Demeester, P. (2014). DACE tool-

box: A flexible object-oriented kriging implementation. Journal

of Machine Learning Research, 15(1), 3183–3186.

53. Civicioglu, P. (2013). Backtracking search optimization algo-

rithm for numerical optimization problems. Applied Mathematics

and Computation, 219(15), 8121–8144.

54. Ben Salem, S., Fakhfakh, M., Masmoudi, D. S., Loulou, M.,

Loumeau, P., & Masmoudi, N. (2006). A high performances

CMOS CCII and high frequency applications. Analog Integrated

Circuits and Signal Processing, 49(1), 71–78.

55. Guerra-Gomez, I., Tlelo-Cuautle, E., Luis, G., (2010). Sensitivity

analysis in the optimal sizing of analog circuits by evolutionary

algorithms. In The international conference on electrical engi-

neering computing science and automatic control (CCE’10) (pp.

381–385), Mexico.

56. Keane, A. J. (2006). Statistical improvement criteria for use in

multiobjective design optimization. The American Institute of

Aeronautics and Astronautics (AIAA) Journal, 44(4), 879–891.

57. Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A

proposal for multiple objective particle swarm optimization.

Congress on Evolutionary Computation (CEC’02), 2, 1051–1056.

58. Raquel, C. R., Naval, J. R., Prosper, C. (2005). An effective use

of crowding distance in multiobjective particle swarm optimiza-

tion. In Proceedings of the genetic and evolutionary computation

conference, Washington (pp. 257–264).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Nawel Drira was born in Sfax-

Tunisia in 1990. She is a Ph.D.

student in Electrical Engineer-

ing and Signal, Image, Auto-

matic at the National

Engineering School of Gabes,

Tunisia and at the University of

Paris-Est, France. She received

the Applied License and the

Engineering Diploma from the

National School of Electronics

and Telecommunications of

Sfax (ENET’Com) in 2012 and

2015, respectively. She is a

member of the Laboratory of

Advanced Electronic Systems and Sustainable Energy (ESSE-

ENET’Com), and the Images, Signals and Intelligent Systems Lab-

oratory (Lissi-Upec). She is an IEEE Student Member. Her research

interest mainly focuses on metamodeling and optimization tech-

niques, and on analog circuit design.

Analog Integrated Circuits and Signal Processing (2020) 103:143–162 161

123



Mouna Kotti was born in Sfax,

Tunisia in 1985. She received

the electrical engineering and

the Ph.D. degrees from the

National Engineering School of

Sfax (ENIS) in 2009 and 2017,

respectively. In February 2011,

she joined the National School

of Electronics and Communica-

tions of Sfax (ENET’Com)

where she is working as a con-

tractual Assistant. From 2014 to

2018 she worked in High

School of Sciences and Tech-

nologies of Hammam Sousse

(ESSTHS) as assistant. In September 2018, she joined the Higher

Institute of Industrial Systems (ISSIG) where she is working as an

Assistant Professor. Her current research interests are on analogue

and RF CMOS integrated circuits design automation and on model-

ing/optimization techniques.

Mourad Fakhfakh was born in

Sfax-Tunisia in 1969. He

received the engineering, the

Ph.D. and the Habilitation

degrees from the national engi-

neering school of Sfax Tunisia

in 1996, 2006 and 2011,

respectively. From 1998 to 2004

he worked in the Tunisian

National Company of Electric-

ity and Gas (STEG) as the head

of the technical intervention

department. In September 2004,

he joined the National School of

Electronics and Communica-

tions (ENET’Com), formerly (ISECS), where he is working as a full

Professor. He is the director of the Advanced Electronic Systems and

Sustainable Energy research laboratory (ESSE). Dr. Fakhfakh is an

IEEE senior member. He was the chair of Tunisian chapter of the

IEEE Council on Electronic Design Automation. He has co-edited

seven books and published more than 150 works published in inter-

national journals, conferences and book chapters. Dr. Fakhfakh

research interests include symbolic analysis techniques, analog circuit

design automation, and modelling and optimization techniques.

Patrick Siarry was born in

France in 1952. He received the

Ph.D. degree from the Univer-

sity Paris 6, in 1986 and the

Doctorate of Sciences (Habili-

tation) from the University Paris

11, in 1994. He was first

involved in the development of

analog and digital models of

nuclear power plants at Elec-
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