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Abstract
All adaptive algorithms suffer stability issues when employed for the impulsive noise control under the domain of active

noise control (ANC) systems. There is a dire need of investigations to overcome this limitation for the impulsive noise, a

robust adaptive algorithm is proposed in literature. In the first part of paper, this robust adaptive algorithm is tested for the

first time under ANC environment for impulsive noise cancellation and thus, a new ANC algorithm named filtered-x least

cosine hyperbolic (FxLCH) algorithm is presented. Simulations are carried out to validate the improved performance of

proposed FxLCH algorithm where the impulsive noise realizations are generated by symmetric a-stable distributions.

Moreover, the proposed solutions perform better than the standard filtered-x least mean square (FxLMS) algorithm

including its variants, and it shows better stability and converges faster than its competitors. Robustness of the algorithm is

a constraint in the presence of high impulsive noise. To overcome this problem and to enhance the robustness of proposed

FxLCH algorithm, two modifications are suggested. First proposed modification clips the reference and error signals

(CFxLCH algorithm), while the second modification integrates already reported normalized step size with FxLCH

(MFxLCH) algorithm. The performance of suggested MFxLCH algorithm is validated by extensive simulations. The

results exhibited that MFxLCH algorithm acts as a trade-off between FxLMS and filtered-x recursive least square (FxRLS)

family algorithms. It has shown better convergence speed than that of FxLMS family algorithms and can approach steady

state error as of FxRLS family with almost same computational complexity as of FxLMS family algorithms.
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1 Introduction

As per literature, researchers have been extensively using

Active noise control (ANC) as it tends to perform well

when low-frequency noise needs to be cancelled. The

performance is better than the passive methods such as

enclosures and silencers [1]. ANC under acoustic

environment is based on the superposition property of

sound waves causing destructive interference between the

noise signal and its anti-phase (identical amplitude but

opposite in phase) signal. This anti-phase noise is gener-

ated by an adaptive algorithm based controller [2]. The

basic working of a single channel feed-forward adaptive

algorithm-based ANC system is depicted in Fig. 1. Later,

the samples of the reference signal x nð Þ and the instanta-

neous residual error e nð Þ are being used by the adaptive

algorithm to update filter coefficients of an FIR filter and

generate the anti-phase signal h nð Þ. Thus, for giving x nð Þ
and e nð Þ as input to the adaptive algorithms, two micro-

phones are deployed, which produces the anti-noise signal

H nð Þ and descends the cancelling loudspeaker.

Impulsive noise cancellation achieved significant

importance in the past decade and its solutions are being

explored in a variety of fields such as acoustic impulse

noise generated in industrial systems, impulse noise

affecting vehicular travel, impulsive noise in wireless and

power line communications [3–5]. To model the statistics
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of impulsive noise [6], symmetric alpha stable (SaS) dis-
tributions are used. The closed form expression does not

exist for stable distributions, but the powerful computer

processors have made it possible to compute stable distri-

butions despite the lack of closed-form expressions.

Therefore, for modelling impulsive noise, the characteristic

equation is used which is given as

u tð Þ ¼ e�c tj ja ð1Þ

The SaS distributions have a characteristic exponent

parameter að0\a\2Þ, which controls the spread of the

PDF, i.e., a smaller value of a indicates that noise will be

more impulsive with a heavier tail. The dispersion

parameter c is set to 1, to make the SaS distribution as

standard SaS distribution. It is categorized as a normal

distribution for a ¼ 2, while the distribution is Cauchy for

a ¼ 1. Figure 2 represents the relationship between pdfs of

SaS with varying a. For a\2, the second order moment is

infinite. The performance of most widely used filtered-x

least mean square (FxLMS) algorithm for ANC, which is

considered to lessen the second order moment of the error

signal, is severely degraded as it becomes unstable in the

impulsive environment.

Investigation of this performance challenge in literature

has led to various solutions. Sun et al. [7] suggested an

alteration in the already existing FxLMS algorithm that

aimed towards the stability of the system. The modification

limits the reference signal using a fixed threshold which

tends to eliminate adverse effects of large amplitude of

impulse. In [8], Akhtar and Mitsuhashi proposed an

improvement in the algorithm [7], which involved

replacement of impulses by new threshold values of the

reference as well as error signal for enhanced stability and

faster convergence. The requirement of runtime update of

threshold parameters is a cause of the increase in compu-

tational complexity of algorithms proposed in [7, 8]. Nor-

malized step-size FxLMS (NSSFxLMS), which excluded

modification of reference or error signal, was proposed in

[9]. Thus, selection of threshold parameters was not

required, and complexity was reduced for NSSFxLMS.

Another technique FxlogLMS by Wu et al. [10] was

designed to reduce squared logarithmic transformations of

error signal, which led to better results as far as the

robustness was concerned but its tendency to reach a dead

zone during the update of filter coefficients posed a

drawback. Algorithm proposed by Bergamasco et al. [11]

for ANC application estimate secondary path. A reformed

filtered x least mean M-estimator (FxLMM) method based

on two-part skewed triangular M-estimate has been pro-

posed in [12], to ensure stability for high peak impulses.

Authors in [13] proposed a step size normalized filtered

reference least-mean-square (FxGSNLMS) method which

generalizes the threshold based impulse noise cancelation

by simulating cost function/error ratio using a Gaussian

pdf. Huang et al. [14] proposed a variable step size

approach for FxLMS algorithm, which was modified by

using self-adjustable tap length by Chang and Chu [15] for

improvement in convergence rate and mean error perfor-

mance. Akhtar et al. [16] proposed an improvement in

FxLMS algorithm using normalized step size to enhance its

stability and reuse of data for improving its convergence

rate. The algorithms in [12–15] are all robust to interfer-

ence to the error microphone.

In [17], a robust modified gain filtered-x recursive least

square (MGFxRLS) algorithm was presented that gives fast

convergence than that of NSSFxLMS algorithm at the

expenditure of high computational complexity. It is well

known that convergence for all the LMS based impulsive

noise control algorithms is relatively slow and have larger

steady state error if compared with RLS based algorithms

for non-stationary environment [18]. Therefore, there is

need for exploring less complicated solutions which can

ensure good convergence, reduced steady-state error, and

enhanced robustness. A less complex robust adaptive

algorithm is successfully presented [19, 20] for impulsive

noise. This new Robust algorithm renders good noise

cancellation capability due to its convex combination of

cost functions and has low complexity but that hasn’t been

validated in the ANC domain. Therefore, in this paper,

Fig. 1 Basic principle of broadband feedforward ANC system

Fig. 2 Probability density functions of the generic SaS process
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Robust algorithm has been tested for the first time in ANC

domain. As the Robust algorithm has been combined with

filtered reference input, therefore it has been termed as the

filtered-x least cosine hyperbolic algorithm. It can be

assured from simulation results that proposed FxLCH

algorithm is best suitable for the less rigorous impulsive

environment but lacks robustness if the environment is

more impulsive. In order to tackle this issue, further few

alterations are suggested in the FxLCH algorithm for

improving its convergence and robustness. The first alter-

ation is clipped based FxLCH (CFxLCH) algorithm which

clips the reference and error signals above some threshold

parameters and then these modified signals are used for

updating the weight equation of FxLCH algorithm. In the

second alteration, the energy of the reference and error

signals in the step size of the FxLCH algorithm is well

incorporated by the modified FxLCH (MFxLCH).

The remainder of the paper is organized as follow: The

proposed algorithm will be discussed in the Sect. 2 and

further its two modifications are presented in Sects. 2.1 and

2.2. The complexity analysis of all the proposed algorithms

is followed in Sect. 3. All the simulations following with

their results are explained and presented in Sect. 4. Finally,

Sect. 5 has the conclusion discussed in it.

2 Proposed solution based on FxLCH
algorithm

The basic principle of adaptive filters is minimization of a

certain cost function. The cost function of FxLMS algo-

rithm is mean square error which assumes that the pro-

duced error is Gaussian in nature i.e. the second order

moment (variance) is finite. However, whenever the signal

becomes impulsive, variance of the signal is finite. Hence

the FxLMS algorithm becomes unstable and for impulsive

noise reduction it is not an ideal option. Considering

impulsive noise, a new Robust algorithm with cost function

based on the convex combination of cost functions is

reported in literature [19]. The reported cost function is:

J nð Þ ¼ log cosh qe nð Þð Þ½ �
q

ð2Þ

where q controls the sensitivity to large outliers in the error

signal and also controls concavity in the cost function

about the origin. It can be estimated by the standard

deviation of error or its square. By using this cost function,

the reported [19] weight update equation is:

vðnþ 1Þ ¼ vðnÞ þ l tanh½qeðnÞ�½xðnÞ� ð3Þ

Noise robustness is achievable by the reported algorithm

as the tangent hyperbolic saturates to ± 1 for large

impulses. It is evident from the literature that this Robust

algorithm has never been tested in the ANC domain.

Therefore, the performance of the proposed method has

been tested for impulsive noise suppression in the ANC

domain and filtered-x version of the robust algorithm

named as FxLCH algorithm is presented. The elementary

schematic of a proposed algorithm dealing with impulsive

noise control is shown in Fig. 3.

The overall principle of the ANC system remains the

same except that instead of a conventional adaptive filter,

filtered-x version of the robust algorithm named as FxLCH

algorithm is used. In this proposed algorithm, the weight

update equation is as follows:

vðnþ 1Þ ¼ vðnÞ þ l tanh½qeðnÞ�½xf ðnÞ� ð4Þ

Fig. 3 Schematic of proposed

FxLCH algorithm-based ANC

system
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tanh½qeðnÞ� ¼
signðeðnÞÞ; eðnÞj j � 1=q

�eðnÞ eðnÞj jq2 þ 2qeðnÞ otherwise

( )

ð5Þ

where the reference noise signal vector is x nð Þ ¼
x nð Þ; x n� 1ð Þ; . . .; x n� Lþ 1ð Þ½ �0 and estimated secondary

path filter SS0 zð Þ filters the reference noise signal xf nð Þ.
For the convergence of the algorithm, it is very impor-

tant to select an optimum value of the step size (l) in the

proposed FxLCH algorithm. The selection of value is

critical as the convergence depends on the controlling

parameters. This critical value can be determined by

repetitive simulations for the best convergence.

The factor that needs to be considered here is, if the

reference signal xf nð Þ or the error signal eðn) from Eq. (4)

are encountered by large amplitude pulses, then the pro-

posed algorithm is likely to get unstable. Therefore, there is

a need of few solutions that can cope up with the concern

of stability. In the next section, two modifications in the

proposed FxLCH algorithm have been suggested so

robustness and stability can be achieved even while

encountering high impulses. The modifications are as

follows:

(i) Clipped filtered-x LCH algorithm (CFxLCH

algorithm).

(ii) Modified step size filtered-x LCH algorithm

(MFxLCH algorithm).

2.1 Clipped filtered-x LCH (CFxLCH) algorithm

In standard FxLCH algorithm, all samples of the reference

noise vector are equally treated. A high impulse can make

FxLCH algorithm unstable. The main aim is to boost the

robustness of FxLCH algorithm while maintaining the

same computational complexity as of FxLMS algorithm.

Based on extensive simulations, a modified form of the

FxLCH algorithm is proposed. In the FxLCH algorithm,

the initial modification is founded on the thresholding

technique. The reference and the error samples would be

cropped if the selected thresholds are exceeded by the

magnitude of samples of reference and error signals. This

cropping would be done above the threshold values set by

the signal statistics. In actual, an offline estimation of

signal statistics is carried out. Figure 4 depicts the

schematics of the modified form of the proposed FxLCH

algorithm. The alteration in the reference and error signals

of proposed CFxLCH algorithm is as follow:

x0 nð Þ ¼
l1; if x nð Þ� l1
l2; if x nð Þ� l2
x nð Þ; otherwise

8<
: ð6Þ

e0 nð Þ ¼
l1; if e nð Þ� l1
l2; if e nð Þ� l2
e nð Þ; otherwise

8<
: ð7Þ

where l1 and l2 are lower and upper thresholds that have

been reported in the literature [9], and these are calculated

by the 1st (for l1) and 99th (for l2) percentile value of

reference and error signals, respectively. The weight

update equation with altered reference and error signals of

proposed CFxLCH algorithm is

vðnþ 1Þ ¼ vðnÞ þ l tanh½qe0 ðnÞ�½ssðnÞ � x0 ðnÞ� ð8Þ

The ANC system stability is ensured by cropping the

high impulses to the threshold values. The enhanced

robustness of proposed CFxLCH is validated by simulation

results. Improved performance of the proposed CFxLCH

algorithm is totally achieved by careful selection of

Fig. 4 Schematic of proposed

Clipped FxLCH algorithm-

based ANC system
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thresholds. Moreover, the performance of different inves-

tigated variants of FxLMS algorithm i.e. Sun’s [7], modi-

fied Sun’s [8], Akhtar [9] and proposed CFxLCH

algorithm, depends mainly on selecting a suitable threshold

parameter [l1, l2]. It is the main limitation of these

threshold-based algorithms that if noise statistics change

during runtime application then these threshold parameters

need to be re-estimated. Therefore, another modification

which is self-governing and also independent of threshold

parameters [l1, l2] is suggested in the next section of this

paper.

2.2 Modified Filtered x LCH (MFxLCH) algorithm

In [9], a modified normalized step size is used with the

standard FxLMS algorithm (NSSFxLMS) that enhanced its

stability and robustness. Motivated by the performance of

the modified normalized step size used in [9], we have

modified the step size of FxLCH algorithm on the same

lines. Thus, the second modification in the proposed

FxLCH algorithm is named as Modified FxLCH

(MFxLCH) algorithm. Here, the step size varies after each

Table 1 Complexity analysis of

proposed FxLCH algorithm
Equation’s Operations * ± 7

1 xf nð Þ1x1¼ bss nð Þ1xB�x nð ÞBx1 B B - 1 –

2 G nð Þ1x1¼ vT nð Þ1xD�x nð ÞDx1 D D - 1 –

3 v nþ 1ð ÞDx1¼ v nð ÞDx1þl1x1sign½e nð Þ1x1xf nð ÞDx1
v nð ÞDx1þl1x1½2q1x1 � q21x1 e nð Þ1x1

�� ��e nð Þ1x1xf nð Þ1x1

D ? 1

D ? 3

D

D ? 1

–

–

4 q1x1 ¼ 3
m1x1þ3r1x1

1 1 1

5 e nð Þ1x1¼ H nð Þ1x1�Gf nð Þ1x1 – 1 –

6 Gf nð Þ1x1¼ ss nð Þ1xB�G nð ÞBx1 B B - 1 –

Total 2D 1 2B 1 2

2D 1 2B 1 4

2D 1 2B 2 1

2D 1 2B

1

1

Table 2 Complexity analysis of

proposed modified FxLCH

algorithm

Equation’s Operations * ± 7

1 xf nð Þ1x1¼ bss nð Þ1xB�x nð ÞBx1 B B - 1 –

2 G nð Þ1x1¼ vT nð Þ1xD�x nð ÞDx1 D D - 1 –

3 v nþ 1ð ÞDx1¼ v nð ÞDx1þl nð Þ1x1sign½e nð Þ1x1�xf nð ÞDx1
v nð ÞDx1þl nð Þ1x1½2q1x1 � q21x1 e nð Þ1x1

�� ��e nð Þ1x1xf nð Þ1x1

D ? 1

D ? 3

D

D ? 1

–

–

4 q1x1 ¼ 3
m1x1þ3r1x1

1 1 1

5 l nð Þ1x1¼
l1x1

bþxT
f
nð Þ1xDxf nð ÞDx1þKe nð Þ1x1

D D ? 1 1

6 Ke nð Þ1x1¼ kKe n� 1ð Þ1x1þ 1� kð Þe2 nð Þ1x1 3 2

7 e nð Þ1x1¼ H nð Þ1x1�Gf nð Þ1x1 – 1 –

8 Gf nð Þ1x1¼ ss nð Þ1xB�G nð ÞBx1 B B - 1 –

Total 3D ? 2B ? 5

3D ? 2B ? 7

3D ? 2B ? 2

3D ? 2B ? 3

2

2

Table 3 Complexity analysis of

FxLMS algorithm
Equation’s Operations * ± /

1 xf nð Þ1x1¼ bss nð Þ1xB�x nð ÞBx1 B B - 1 –

2 G nð Þ1x1¼ vT nð Þ1xD�x nð ÞDx1 D D - 1 –

3 v nþ 1ð ÞDx1¼ v nð ÞDx1�l1x1 � e nð Þ1x1�xf nð Þ1xD D ? 1 D –

4 e nð Þ1x1¼ H nð Þ1x1�Gf nð Þ1x1 – 1 –

5 Gf nð Þ1x1¼ ss nð Þ1xB�G nð ÞBx1 B B - 1 –

Total 2D ? 2B ? 1 2D ? 2B - 2 –
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iteration depending upon the magnitude of the input sample

as well as the energy of the error signal

lðnÞ ¼ l_

xf ðnÞ
�� ��2þKeðnÞ þ b

ð9Þ

where l_ is the optimum step size of the FxLCH algorithm,

l nð Þ is the time-varying normalized step size, Ke nð Þ is the
energy of error signal e nð Þ that is estimated online using a

low pass estimator by the subsequent equation.

Ke nð Þ ¼ kKe n� 1ð Þ þ 1� kð Þ e2 nð Þ
�� �� ð10Þ

where k, called as forgetting factor, has value 0:9\k\1.

When the excitation signal is impulsive in nature, there are

much more variations in the error signal which can cause

gradient noise amplifications in the FxLCH algorithm. For

tacking the effect of such variations in the reference and

the error signal, the power of the excitation signal jjxf nð Þjj2
and error signal Ke nð Þ is incorporated in the denominator of

modified step size. By modifying this, the step size of the

FxLCH algorithm will lessen and will freeze the adaptation

of the algorithm transitorily for large impulses. As an

outcome, the FxLCH algorithm will achieve robustness and

stability to an extent while catering impulsive noise.

Division by zero can be avoided by adding any small

positive number beta b in the denominator of Eq. (9)

The weight update equation of the proposed method

with above mentioned modifications is as follows:

vðnþ 1Þ ¼ vðnÞ þ lðnÞ tanh½qeðnÞ�½xf ðnÞ� ð11Þ

It is important to note that improved performance of the

proposed MFxLCH algorithm does not involve threshold

parameters [l1; l2] calculations. Although it is based on an

intuition-based modification, the results prove that there is

an improvement in the robustness, if compared with other

suggested alterations i.e. CFxLCH algorithm. Moreover,

MFxLCH algorithm has shown better stability and

robustness in comparison to the FxLCH algorithm. The

MFxLCH algorithm also attains better convergence and

almost same computational complexity as of NSSFxLMS

[9], the best variant of FxLMS family as verified by sim-

ulation results.

Table 4 Complexity analysis of

NSSFxLMS algorithm
Equation’s Operations * ± /

1 xf nð Þ1x1¼ bss nð Þ1xB�x nð ÞBx1 B B - 1 –

2 G nð Þ1x1¼ vT nð Þ1xD�x nð ÞDx1 D D - 1 –

3 v nþ 1ð ÞDx1¼ v nð ÞDx1�l nð Þ1x1�e nð Þ1x1�xf nð Þ1xD D ? 1 D –

4 l nð Þ1x1¼
l1x1

bþxT
f
nð Þ1xD�xf nð ÞDx1þKe nð Þ1x1

D D ? 1 1

5 e nð Þ1x1¼ H nð Þ1x1�Gf nð Þ1x1 – 1 –

6 Gf nð Þ1x1¼ ss nð Þ1xB�G nð ÞBx1 B B - 1 –

7 Ke nð Þ1x1¼ kKe n� 1ð Þ1x1þ 1� kð Þe2 nð Þ1x1 3 2

Total 3D ? 2B ? 4 3D ? 2B ? 1 1

Table 5 Complexity analysis of proposed MGFxRLS algorithm

Equation’s Operations * ± 7

1 xf nð Þ1x1¼ bss nð Þ1xB�x nð ÞBx1 B B - 1 –

2 G nð Þ1x1¼ vT nð Þ1xD�x nð ÞDx1 D D - 1 –

3 v nþ 1ð ÞDx1¼ v nð ÞDx1þT nð ÞDxD�e nð Þ1x1 D D –

4 T nð ÞDx1¼
p nð ÞDx1

kþKe nð ÞþxT
f
nð Þ1xD�p nð ÞDx1

2D D ? 1 1

5 p nð ÞDx1¼ r n� 1ð ÞDxD�xf nð ÞDx1 D2 D2 � D

6 r nð ÞDxD¼ k�1 � r n� 1ð ÞDxD�k�1 � T nð ÞDx1�xf nð Þ1xD�r n� 1ð ÞDxD 3D2 2D2 � D 1

7 e nð Þ1x1¼ H nð Þ1x1�Gf nð Þ1x1 – 1 –

8 Gf nð Þ1x1¼ ss nð Þ1xB�G nð ÞBx1 B B - 1 –

9 Ke nð Þ1x1¼ kKe n� 1ð Þ1x1þ 1� kð Þe2 nð Þ1x1 3 2

Total 4D2 ?4D ? 2B ? 3 3D2 ? D ? 2B ? 1 2

D and B represent the number of filter coefficients and secondary path respectively
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3 Complexity analysis

In most of the cases, the computational complexity of any

algorithm has an utmost significance. For this reason,

equation wise analysis of the computational complexity of

proposed FxLCH and MFxLCH algorithms is conducted

and the results are presented in Tables 1 and 2. Analysis of

other considered algorithms are tabulated in Tables 3, 4

and 5. The computational complexity is calculated by

finding number of multiplications and additions required to

compute solution for single iteration of the algorithm. The

complexity of the investigated algorithms is calculated

using the method given in [22].

Figure 5 shows the plots for computational complexities

of the investigated algorithms. The proposed FxLCH and

MFxLCH algorithm have almost same computational

complexity as that of FxLMS and NSSFxLMS algorithm

respectively, which makes it suitable for many applications

(Table 6). The computational complexities of the newly

proposed algorithms along with inspected algorithms

[7–9, 17] are summarized in Table 6.

4 Simulation results

In the simulation phase, modeling of statistical parameters

of impulsive noise [6] is done by symmetric a-stable (SaS)
distributions Distribution functions for some SaS distri-

butions are depicted in Fig. 2. In this paper, two cases of

impulsive noise environments using standard SaS process

are considered in the simulation. All parameters have been

tabulated in Table 7 that are being involved in the simu-

lation phase of impulsive noise and the ANC environment.

Matlab software is used to implement the ANC system.

The comparison has been made between the performances

of proposed algorithms with that of already discussed

adaptive algorithms in the literature [7–9, 17]. Further-

more, it is assumed throughout the simulations that sec-

ondary path model SS zð Þ is kept same as estimated

secondary path bss zð Þ [7–17]. The values of primary PP zð Þ
and secondary SS zð Þ acoustic path coefficients are taken

from data set given in [1]. The magnitude and phase of the

primary and secondary path coefficients are depicted in

Fig. 6.

Mean noise reduction (MNR) is the performance metric

for validating the performance of inspected algorithms in

this paper. Calculations are as follows:

Fig. 5 Complexity analysis of the investigated algorithms. a Number

of additions, b number of multiplications

Table 6 Summary of

computational complexity of

inspected algorithms

Algorithm Complexity

Additions Multiplications

FxLMS 2D ? 2B - 2 2D ? 2B ? 1

NSSFxLMS 3D ? 2B ? 1 3D ? 2B ? 4

MGFxRLS 3D2 ? D ? 2B ? 1 4D2 ?4D ? 2B ? 3

Proposed FxLCH 2D ? 2B - 1

2D ? 2B

2D ? 2B ? 2

2D ? 2B ? 4

Proposed clipped FxLCH 2D ? 2B - 1

2D ? 2B

2D ? 2B ? 2

2D ? 2B ? 4

Proposed modified FxLCH 3D ? 2B ? 2

3D ? 2B ? 3

3D ? 2B ? 5

3D ? 2B ? 7
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MNR nð Þ ¼ E
Qe nð Þ
QH nð Þ

� �
ð12Þ

Qe nð Þ ¼ kQe n� 1ð Þ þ 1� kð Þ e nð Þj j ð13Þ
QH nð Þ ¼ kQH n� 1ð Þ þ 1� kð Þ H nð Þj j ð14Þ

where Qe nð Þ and QH nð Þ are taken as the estimates of

absolute value of error and disturbance signal. Here, the

symmetric alpha stable model has generated two cases of

impulsive noise environments by setting a = 1.65 and

a = 1.45 respectively, which relates to less and more

impulsiveness respectively.

Case 1 The impulsive noise generated by selecting

a = 1.65 correspond to the less impulsive environment.

The primary noise xðn) picked by reference microphone for

a = 1.65 is depicted in Fig. 7.

To validate the performance of proposed algorithms and

to fetch the ideal values controlling parameters of dis-

cussed algorithms, multiple number of simulations are

carried out. All the comprehensive simulation results are

shown in Fig. 8(a–e) for the controlling parameters.

From the MNR curves of inspected algorithms in Fig. 8,

optimum values of the controlling parameters are cited in

Table 8.

The MNR curves for variants of FxLMS family are

depicted in Fig. 9 using the best controlling parameters as

listed in afore cited Table 8. It can be clearly seen from

Fig. 8 that amongst the FxLMS family investigated algo-

rithms, NSSFxLMS gives good convergence, low steady-

state error and better stability.

In Fig. 10, the MNR curve for proposed FxLCH algo-

rithm is compared with standard FxLMS algorithm. It can

be seen that the well celebrated FxLMS algorithm diverges

for case 1, whereas the proposed FxLCH algorithm doesn’t

diverge. The proposed FxLCH algorithm lacks robustness,

therefore, its two suggested modifications i.e. CFxLCH and

MFxLCH algorithms are simulated in Fig. 11. The opti-

Table 7 Parameter set for simulation of proposed algorithms

ANC system Impulsive noise

Parameters Symbols Values Parameters Symbols Value

Primary path tap size D 256 Total samples N 50,000

Secondary path tap size B 128 Total realizations Avg 10

Adaptive filter tap size Lw 192 Characteristic exponent a 1.65, 1.45

NSSFxLMS algorithm step size �l 5e-1 Scale c 1

MGFxRLS algorithm lambda k 0.999 Location C 0

Proposed FxLCH algorithm step size l 5e-1 Skewness d 0
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mum step size value of proposed FxLCH algorithm and its

two modifications are determined by extensive simulations

in Fig. 11 for a = 1.65. From simulation results of

Fig. 11(d), we can see that the convergence and robustness

of proposed MFxLCH algorithm is better among the other

proposed algorithms. Whereas all the proposed algorithms

achieve almost same steady state error.

Figure 12 compares MNR curves of NSSFxLMS and

MGFxRLS algorithms with the proposed MFxLCH
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Fig. 8 MNR curves for a Sun’s algorithm, b modified algorithm, c Akhtar algorithm, d NSSFxLMS algorithm, eMGFxRLS algorithm for case 1

Table 8 Selected values of controlling parameter

Algorithms Controlling parameter

a = 1.65 a = 1.45

Sun’s l = 5e-7 l = 1e-7

Modified Sun’s l = 1e-5 l = 1e-1

Akhtar l = 1e-5 l = 5e-6

NSSFxLMS l = 5e-2 l = 1e-2

MGFxRLS d = 10,000 d = 10,000
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algorithm for a = 1.65. From Fig. 9 it’s obvious that

NSSFxLMS algorithm outclasses all other algorithms

among FxLMS family when convergence speed is con-

sidered. According to [17], MGFxRLS algorithm performs

better than the FxLMS family in terms of fast convergence

speed and low steady-state error Therefore, comparison of

the performance of proposed MFxLCH algorithm with that

of NSSFxLMS and MGFxRLS algorithms for a = 1.65 is

carried out. As shown in the Fig. 12 the proposed

MFxLCH algorithm performs better, when convergence is

considered, than NSSFxLMS algorithm with the steady

state error approaching to that of the MGFxRLS algorithm

and computational complexity almost same as of

NSSFxLMS algorithm.

Case 2 The impulsive noise generated by selecting

a = 1.45 correspond to more impulsive environment. In

Fig. 13, the MNR curve for standard FxLMS algorithm is

compared with proposed FxLCH algorithm for more

impulsive case. It is evident that the proposed FxLCH

algorithm depicts better convergence and enhanced sta-

bility as compared to standard FxLMS algorithm.

The detailed simulations for the best controlling

parameters presented in Table 8 for all the investigated

algorithms i.e. Sun’s, Modified Sun’s, Akhtar, NSSFxLMS

and MGFxRLS algorithm for a = 1.45 are depicted in

Fig. 14(a–e). The best variant of FxLMS family is deter-

mined by rigorous simulations for a = 1.45 and the result is

shown in Fig. 15.

It can be seen from MNR curves of Fig. 15 that among

the inspected algorithm of FxLMS family, NSSFxLMS

algorithm exhibits good convergence and better stability.

Further, the optimum values of step size parameter of

proposed FxLCH algorithm and its two modifications i.e

CFxLCH and MFxLCH algorithm are simulated in Fig. 16

for case 2 (a = 1.45). The fastest convergence, lowest

steady state error and good robustness of proposed

MFxLCH algorithm can be seen among the other proposed

algorithms in this research.

Figure 17 illustrates the MNR curves comparison of

proposed MFxLCH algorithm with the best variants of

FxLMS family and FxRLS family [21] in ANC domain for

a = 1.45. It is clearly shown in Fig. 17 that proposed

MFxLCH algorithm can be considered as a compromise

between FxLMS and FxRLS family algorithms since pro-

posed MFxLCH algorithm yields improved convergence

than NSSFxLMS algorithm and almost achieves the same

steady state error as that of the MGFxRLS algorithm with

computational complexity of almost NSSFxLMS

algorithm.

5 Conclusions

In this paper, the already existing robust algorithm has

been tested for the first time in the ANC domain for

impulsive noise. Therefore, a new ANC algorithm based on

filtered-x least cosine hyperbolic (FxLCH) adaptive algo-

rithm is suggested to improve convergence and stability
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when there is impulsive noise. Illustrative simulations

depicted that proposed FxLCH algorithm exhibits better

stability than filtered-x least mean square family (FxLMS)

algorithm but lacks robustness in presence of high impul-

sive noise. Therefore, to boost robustness of the algorithm,

further two modifications are proposed. First proposed

modification is clipped FxLCH (CFxLCH) which clips the

reference and error signals, while, the second modification

i.e. modified FxLCH (MFxLCH) algorithm combines

modified normalized step size of the NSSFxLMS algorithm
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with the FxLCH algorithm. With regards to stability and

robustness, both of the modifications performed better than

the standard FxLCH algorithm. Furthermore, the results

verified that proposed MFxLCH algorithm is a compromise

between FxLMS and FxRLS family as the proposed

MFxLCH algorithm, having computational complexity

almost same as of NSSFxLMS algorithm gives better

convergence than it, also can approach steady-state error of

FxRLS family.
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