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Abstract
This paper presents an experimental study on using analytical design equations in the particle swarm optimization (PSO)

for the automatic sizing of multi-stage operational amplifiers (opamps). Differing from the existing research, this work

incorporates design equations in the PSO search process in attempt to reduce the search space dimensionality and the

number of PSO iterations without sacrificing the quality of search results. Design equations are approximate characteri-

zation of the opamp performance metrics in analytical form, which are widely used in manual design process. However, the

opamp device sizes cannot be uniquely solved from a set of design equations. Heuristic search can serve as a local

optimizer in a reduced-dimensional search space to further refine optimization. Extensive simulation-based experimental

PSO search results are presented to demonstrate the effectiveness of the proposed auto-sizing tactic. An alternative genetic

algorithm based search method is implemented as well and tested for comparison.

Keywords Auto-sizing � Design equation � Genetic algorithm (GA) � Multi-stage opamp � Operational amplifier (opamp) �
Particle swarm optimization (PSO) � Relaxation iteration (RI)

1 Introduction

With continuous down-scaling of the advanced semicon-

ductor process technology, the gain achievable by single or

two-stage operational amplifiers (opamps) becomes inad-

equate. In the past two decades we have witnessed an

increasing number of publications on the design of multi-

stage opamps, mainly three-stage amplifiers, see for

example [1–4] and the references therein.

Amplifier design starts from selecting a proper circuit

topology to meet design requirements. Having selected a

circuit topology, the designer would spend quite an amount

of time on circuit sizing.

For multi-stage circuits, compensation is another

important part of design. Compensation design is closely

related to design equations, which can be derived manually

by analyzing a stage-form macromodel. Several research

papers have outlined analytical design procedures for

CMOS amplifier sizing [5, 6]. Some other authors have

introduced graphical design procedures for analyzing

compensation strategies [7, 8]. No matter by an analytical

approach or a graphical approach, design equations always

play important roles in the process of design reasoning.

While design equations can help reasoning during the

design of a compensation network, they are also useful in

determining device sizing. Based on a systematic calcula-

tion procedure, rough device sizes can be determined

although they are not necessarily the final device size

values [5, 6]. Nevertheless, design equations can play the

role of constraints that can effectively reduce the blandness

in optimizing the circuit sizing.

Several reference sizing procedures have been proposed

in the literature, such as analytical design equation based

calculation procedure [5, 6] or gm/ID based sizing strategy

[9]. However, all these sizing strategies cannot determine

the device sizes of an amplifier in one shot. Several itera-

tions or tradeoff steps are necessary, which require a great
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deal of design expertise, which could become a major

obstacle to the beginners.

Another idea proposed recently by Guo [10] is a local

search method, which is also a method based on design

equations. Discrepancies found between the performance

metrics predicted by equations and validated by simulation

are utilized by a set of relaxed equations to correct the

current sizing. Guo [10] reported convergence by the

relaxation iteration provided that an initial sizing calcu-

lated by design equations is sufficiently close to a local

optimum. Repeatedly SPICE simulation is needed in the

relaxation-based iterations.

However, all the previously mentioned sizing processes

do not guarantee that the obtained sizing result be optimal

in any sense because a sizing process will be terminated as

long as a set of performance requirements have been sat-

isfied. When conflict occurs, it is up to the designer to

resolve the conflict, which is quite time-consuming some-

times. When designing multi-stage opamps (say, three

stages), designers would have to work with more number

of design equations, which could complicate hand calcu-

lation for device sizing.

Auto-sizing of opamps has been a constantly visited

research subject in the literature. In the early days, auto-

sizing was approached by simulation-based optimization,

such as the works published at the end of 1980’s [11–13].

However, those early works did not address the use of

design equations. Also, multi-stage amplifier design was

not yet a major research interest then.

Other optimization techniques applied to the automatic

sizing of opamps include a combination of genetic algo-

rithm (GA) and simulated annealing (SA) [14], a combi-

nation of GA with neural networks [15], a combination of

GA with particle swarm optimization(PSO) [16], other

variants of PSO [17, 18], and genetic programming (GP)

[19], among others.

The novelty of this work is to incorporate design

equations in a PSO-based search process for sizing two-

stage and three-stage opamps. Currently, we use the design

equations published in the research articles on specific

multi-stage opamps. In future, it is also possible to auto-

matically generate design equations for multi-stage opamps

by a symbolic computation method [20]. Hence, it is a

worthwhile effort to make a preliminary study on whether

analytical design equations can enhance the efficiency of

evolutionary search for the task of multi-stage opamp

sizing.

The main contribution of this paper includes the fol-

lowing. Firstly, it develops a PSO method whose initial set

is generated by using a set of design equations. In a sense

PSO is used as a local optimizer that refines a set of fea-

sible device sizes satisfying a set of design equations.

Secondly, it develops a GA in the same setting, i.e., letting

GA begin with an initial population generated by the same

set of design equations. Thirdly, we also investigate whe-

ther the integration of relaxation iteration [10] in PSO can

benefit the convergence speed or even the suboptimal

solution quality.

The rest of the paper is organized as follows. The

equation-based auto-sizing procedure by PSO is described

in Sect. 2. Then in Sect. 3 we outline design equations for

several sample circuits on which we make experimental

study in this paper. The experimental setting is then

expanded on in Sect. 4 followed by reports on experi-

mental results. Finally, Sect. 5 concludes the paper. A brief

description of the design of GA used in this work is pre-

sented in ‘‘Appendix’’.

2 Formulation of equation-based auto-
sizing by PSO

2.1 Performance targets considered in this work

Opamp design begins with a set of performance targets. In

this paper we mainly consider the set of {DC gain, GBW,

PM, CMRR, PSRR}, where GBW stands for gain-band-

width product, PM for phase margin, CMRR for common-

mode rejection ratio, and PSRR for power-supply rejection

ratio.

When a set of design targets are given, the designer

would have to choose a circuit topology first based on his/

her design knowledge; the topology includes circuit ele-

ments that serve as compensation.

In order to appreciate the basic performance properties

of a multi-stage amplifier, the designer would typically

derive the open-loop transfer function (TF) from a stage-

form macromodel, see for example the papers [5, 21–23].

After properly condensing the analytical expressions, a set

of design equations can be derived as the characterization

of the circuit ac performance. Mainly, the design equations

can be associated with the properties such as dc gain,

dominant poles-zeros, and phase margin, etc. Other special

equations may be related to slew rate (SR), noise, and

biasing currents, etc. Depending on the sizing strategy

chosen, different design equations will be made use of with

different priority.

The sizing steps can be described as follows. Given a

CMOS transistor-level circuit and a set of performance

targets, find the aspect ratios W/L (width over length) of all

MOS devices, bias currents, and other design variables so

that after SPICE simulation with a technology library the

opmap performance meets the preset specifications.
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2.2 PSO formulation

PSO is a nature-inspired collaborative optimization method

[24, 25]. It works with a swarm of particles with position

and velocity. Optimization is achieved by iteratively

moving the swarm toward better solutions in reference to a

given quality measure.

PSO is a population-based iterative optimization pro-

cedure, hence it requires an initial set of solution vectors in

a given search space. Each particle consists of a vector of

design variables of the opamp, which include the MOSFET

dimensions (W/L) and other circuit variables like biasing

currents and some lumped element values used in fre-

quency compensation.

Suppose a particle swarm has the population size N.

Each particle is composed of D design variables, repre-

sented by xi ¼ xi1; xi2; . . .; xiD½ �.
The D design variables with each particle are sufficient

to define a SPICE netlist, which can be generated and

passed to a SPICE simulator for simulation. Suppose we

consider M performance measures for each circuit candi-

date. Let T
ðdÞ
k be the kth performance measure whose value

is desired and let T
ðsimÞ
k ðxiÞ be the corresponding perfor-

mance measure whose value is simulated for the circuit

instance xi. Then the relative performance error for the

circuit instance (or particle) xi is defined by

ErelðxiÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

M

k¼1

T
ðdÞ
k � T

ðsimÞ
k ðxiÞ

T
ðdÞ
k

 !2
v

u

u

t : ð1Þ

We denote by U½0; 1� the uniform distribution of real

random numbers in the interval ½0; 1�. q 2 U½0; 1� means

that q is a random number with the uniform distribution.

PSO requires the definition of the velocity of each par-

ticle to update the particle position during iteration. It is a

self-updated random vector defined by

vkþ1
i;d ¼ vki;d þ c1 � q1 � p bestki;d � xki;d

� �

þ c2 � q2 � g bestkd � xki;d

� � ð2Þ

where q1; q2 2 U½0; 1�. The index i ranges in f1; . . .;Ng,
the index d ranges in f1; . . .;Dg, and k is the iteration

index. p bestki is the best circuit instance once achieved by

the ith particle in all iterations up to the kth step. g bestk is

the circuit instance of the best performance achieved by the

whole swarm in all iterations up to the kth step. c1 and c2
are the acceleration coefficients, specifying the relative

attraction nearby p bestki and g bestk, respectively.

An alternative velocity vector is defined by the next

equation

vkþ1
i;d ¼ wk � vki;d þ c1 � q1 � p bestki;d � xki;d

� �

þ c2 � q2 � g bestkd � xki;d

� � ð3Þ

where an inertia factor wk is introduced to adjust the weight

of the previous velocity. Initially, w0 is chosen 0\w0\1

and is reduced linearly with each iteration. Equation (3) is

what we used in our PSO implementation for velocity

update.

The entries of the ith particle are updated by the fol-

lowing equation

xkþ1
i;d :¼ xki;d þ vkþ1

i;d : ð4Þ

In order to accelerate the convergence of PSO iteration,

reducing the search space dimensionality is an effective

tactic. One option would be to use design equations, which

restrict the search space where the circuit variables can

vary. Since the adjustment of velocity in PSO is quite

autonomous, we decide to apply design equations in the

generation of the initial swarm to restrict the PSO search

space in the region defined by the design equations. In this

sense the subsequent PSO search serves as a local

optimizer.

3 Design equations of sample circuits

Design equations are consequence of certain circuit struc-

ture and their connection to the performance requirements.

Since the compensation network in a multi-stage opamp

directly controls the pole-zero structure in the frequency

domain, the details of a circuit topology can significantly

alter the expression of design equations. Hence, design

equation belongs to the topology-pertinent property of an

amplifier. In other words, for each specific configuration of

an amplifier, its associated design equations should be

derived specifically by hand or generated by a computer

program such as [20].

We shall use design equations in the generation of the

initial circuit instances in PSO and in the embedded

relaxation iterations. In this section we present one set of

design equations for the standard two-stage opamp with

simple Miller compensation (SMC) and refer to the liter-

ature for the design equations of other circuits. Our main

focus in this work is on the two-stage or three-stage

amplifier circuits.

3.1 Design equations of the CMOS two-stage
SMC opamp

Shown in Fig. 1 is a standard two-stage CMOS opamp

containing a simple Miller compensation capacitor CC.
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Thus this opamp is referred to as the SMC opamp. We shall

present design equations pertinent to the noise, GBW, PM,

and SR metrics, etc.

Palmisano et al. [5] presented a manual design proce-

dure for the SMC opamp and its extensions. This procedure

starts from the noise requirement. Neglecting flicker noise

at low frequencies, we may write the input noise voltage

spectral density of the two-stage opamp as

Snðf Þ ¼ 2 � 4kT 2

3gm1;2
1þ gm3;4

gm1;2

� �

ð5Þ

where k is the Boltzmann constant and T is the absolute

temperature.

Assuming gm3;4 � gm1;2, we may calculate the

transconductance of transistors M1,2 approximately from

(5)

gm1;2 �
16kT

3Snðf Þ
: ð6Þ

After gm1;2 is known, the GBW requirement gives rise to

the estimation of the compensation capacitor given by

CC ¼ gm1;2

2pfGBW
: ð7Þ

Next, by the (internal and external) SR equations relating

the quiescent currents ID1;2 and ID7 to the lumped capacitor

values

SRint ¼
2ID1;2

CC

ð8Þ

SRext ¼
ID7 � 2ID1;2

CL

ð9Þ

where CC is the compensation capacitor and CL is the load

capacitor, the biasing currents can be estimated by

ID1;2 ¼
SR

2
CC ð10Þ

ID7 ¼ SRðCC þ CLÞ ¼ 2 1þ CL

CC

� �

ID1;2 ð11Þ

where SRint ¼ SRext ¼ SR is assumed.

By gm ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kn;p
W
L
ID

q

where Kn;p ¼ ln;pCOX=2, the

aspect ratio of transistors M1,2 can be derived from (11) as

W

L

� �

1;2

¼
g2m1;2

4KnID1;2
: ð12Þ

On the other hand, a pole-zero analysis gives rise to the

phase margin expression

M/ ¼ 90� � arctan
fGBW

f2
ð13Þ

where f2 denotes the second dominant pole

f2 ¼
gm6

2pCL

: ð14Þ

From the above two equations we may derive the

transconductance gain of M6

gm6 ¼ 2pfGBWCL tanðM/Þ: ð15Þ

The aspect ratio of M6 is then given by

W

L

� �

6

¼ g2m6
4KpID6

ð16Þ

because ID6 ¼ ID7.

As suggested by [5], the separation factor, j, between
the second pole (at frequency f2) and the GBW frequency,

i.e.,

j ¼ f2

fGBW
ð17Þ

is a helpful parameter to facilitate decision-making in

design.

Combining (7), (14), and (17), we obtain an estimate of

the compensation capacitor by

CC ¼ j
gm1;2

gm6
CL ð18Þ

where j can be determined by the phase margin require-

ment, i.e., j ¼ tanðPMÞ[ 1.

By the fact that VGS3 ¼ VDS4 ¼ VGS6, the aspect ratios of

M3,4 are related by

W

L

� �

3;4

¼ ID3;4

ID6

W

L

� �

6

: ð19Þ

Furthermore, by ID5 ¼ 2ID1;2, the aspect ratios of M5 and

M7 satisfy

Fig. 1 CMOS two-stage SMC opamp
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W

L

� �

5

¼ ID5

V2
DSAT5Kn

; ð20Þ

W

L

� �

7

¼ ID7

V2
DSAT7Kn

: ð21Þ

If we set VDSAT8 ¼ VDSAT5;7, the biasing current IB can

be calculated by

IB ¼
W
L

	 


8
W
L

	 


5

ID5: ð22Þ

Remark 1 Note that in the above deduction all design

targets are regarded as equalities. Since most design targets

are specified as the reference numbers not necessarily

being achieved exactly, these equalities should be consid-

ered as the reference targets for optimization. Because we

use the design equations to generate an initial swarm for

PSO search, the search result would usually produce the

best possible approximation to the targets as long as the

specified targets are feasible. If we would like to achieve

better performance targets for certain metrics, we may

choose higher target values for these metrics.

3.2 Design equations of three kinds of two-stage
opamps with modified compensations

The simple Miller compensation in the opamp of Fig. 1

results in a zero in the right-half plane (RHP). In order to

eliminate the RHP zero and improve phase margin, one

may choose an alternative compensation in place of the

Miller capacitor CC. Three commonly adopted strategies

are: nulling resistor (NR) in series with CC, voltage buffer

(VB) in series with CC, and current buffer (CB) in series

with CC, see Fig. 2. Palmisano and Palumbo studied the

optimization of these alternative compensations with NR

and VB in [21] and CB in [22]. The reader may find the

related design equations in these works.

3.3 Design equations of a CMOS three-stage
opamp

A three-stage opamp with reversed nested Miller com-

pensation added with feedforward and nulling resistor

(RNMCFNR) was proposed by Grasso et al. [23]. The

transistor circuit schematic is shown in Fig. 3. The cascade

of three stages enables a dc gain above 100 dB even with a

low supply voltage. The specific compensation design was

aimed at GBW enhancement. The detailed design equa-

tions can be found in [23].

3.4 Design equation based relaxation iteration

Guo [10] proposed a relaxation iteration (RI) procedure,

which iteratively corrects the discrepancy found by com-

paring the performance metrics predicted by design equa-

tions and by simulation. Since the design equations might

involve multiple performance measures in the same equa-

tion, relaxation can convert the equations into an iterative

computation procedure. If the circuit sizing gradually

reaches a local optimal operating point, then the high order

terms neglected in design equations become truely minor.

As a result, the circuit performance predicted by the

approximate design equations agree better with the SPICE

simulation results. So roughly one may anticipate that the

relaxation iteration tends to converge.

According to Guo [10], relaxation-based iteration

introduces parameter update equations by modifying the

existing design equations into delta-correction; that is,

adding a Dp term to a relaxation equation arising from its

associated design equation.

For example, for the two-stage SMC opamp, we may

perform one iteration on the GBW frequency as follows

fGBW ¼ gm1;2

2pCC

þ DfGBW ð23Þ

where DfGBW is a discrepancy between the predicted and

the simulated. Upon convergence, DfGBW ¼ 0 and the

(a) (b) (c)

Fig. 2 Three alternative compensations for the two-stage opamp: a
nulling resistor (NR) with CC . b Voltage buffer (VB) with CC . c
Current buffer (CB) with CC

Fig. 3 Schematic of the three-stage RNMCFNR opamp [23]
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predicted fGBW would be equal to the simulated. Similarly,

one may make a correction on the phase margin as:

/ ¼ p
2
� tan�1 fGBW

f2
þ D/: ð24Þ

The error terms DfGBW and D/ above are calculated as

follows

DfGBW ¼ f
ðsimÞ
GBW �

g
ðsimÞ
m1;2

2pCC

; ð25Þ

D/ ¼ /ðsimÞ � p
2
þ tan�1 fGBW

f
ðsimÞ
2

; ð26Þ

where g
ðsimÞ
m1;2 , f

ðsimÞ
2 , f

ðsimÞ
GBW , and /ðsimÞ are the simulated

transconductance of M1,2, the second dominant pole fre-

quency, GBW, and PM, respectively, of the circuit at the

last iteration step.

Other key design parameters can be updated as follows.

gm1;2 ¼ g
ðsimÞ
m1;2 þ 2p fGBW � f

ðsimÞ
GBW

� �

CC; ð27Þ

fGBW

f2
¼ tan tan�1 fGBW

f
ðsimÞ
2

þ ð/ðsimÞ � /Þ
 !

: ð28Þ

By Eqs. (14) and (28), we can update gm6 by

gm6 ¼
2pCLfGBW

tan tan�1 fGBW

f
ðsimÞ
2

þ ð/ðsimÞ � /Þ
� � : ð29Þ

The rest performance metrics and the related design

parameters can be handled analogously. The slew rate can

be corrected by

SR ¼ 2ID1;2

CC

þ DSR ¼ ID7

CC þ CL

þ DSR: ð30Þ

Then update the bias currents by

ID1;2 ¼ I
ðsimÞ
D1;2 þ SR� SRðsimÞ

2
CC; ð31Þ

ID7 ¼ I
ðsimÞ
D7 þ ðSR� SRðsimÞÞðCC þ CLÞ: ð32Þ

Based on the above equations, the device sizes can be

corrected accordingly.

In relaxation iteration, a scaling factor a 2 ð0; 1Þ can be

introduced in the updating formulas to improve conver-

gence [10].

Since the convergence of relaxation iteration is highly

sensitive to the vicinity of the beginning circuit operating

point (OP) to a local optimum, the performance of RI in

local correction is not guaranteed in general. In our PSO

experiment, we would intend to apply RI as a PSO

enhancement. We shall investigate in our experiment that

by embedding RI in the course of PSO iterations whether

the convergence of PSO can be accelerated. The details

will be described in the next section.

4 Experimental results of PSO
and comparison to GA

4.1 Experimental setup

We used the open source circuit simulator NGSPICE [26]

in our experiment. The device model used in simulation

was BSIM3 180 nm CMOS process. The PSO and GA

(used as a comparison) programs were written in the C

programming language and compiled by the GCC com-

piler. The runtime environment was an Intel core i7

3.6 GHz processor with 3.8 GB RAM running the Ubuntu

Linux operating system.

When running PSO for auto-sizing of multi-stage

opamps, we used the relative error function (1) to select

p bestki of the ith particle and g bestk at the kth iteration.

The swarm size of PSO was set to 30. The inertia weight wk

varied from 0.9 to 0.4 linearly with iterations. Both of the

acceleration coefficients c1 and c2 were set to 1.48. The

position and velocity of each particle were updated by the

iteration formula (4) and (3) (the one with an inertia fac-

tor), respectively. Note that the choice of the algorithm

parameters was empirical, subject to experience-based

adjustment for a specific circuit and performance targets in

practice.

4.2 Results on the two-stage SMC opamp

Referring to Fig. 1, the design variables of the two-stage

opamp are the aspect ratios (W/L) of eight transistors M1–

M8, the bias current IB, and compensation capacitor CC.

The sizing parameter finally obtained at the end of PSO are

listed in Table 1. Table 2 lists the performance results of

Table 1 Sizing parameters of the two-stage SMC opamp. All aspect

ratios are in units lm=lm

Parameters (by PSO) Value Value (by GA)

ðW=LÞ1;2 2.77/1 1.02/1

ðW=LÞ3;4 6.54/1 7.86/1

ðW=LÞ5 17.18/1 20.82/1

ðW=LÞ6 82.01/1 78.46/1

ðW=LÞ7 99.94/1 95.38/1

ðW=LÞ8 38.70/1 41.35/1

CC 2.0 pF 1.18 pF

IB 57.37 lA 53.30 lA
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the optimized opamp and the desired values. The load

capacitor CL was fixed at 5 pF.

Figure 4 shows the evolution of the relative error of the

two-stage opamp. The relative error curve stops descending

after 180 PSO steps, indicating that a suboptimal solution

has been reached by PSO.

Figures 5, 6 and 7 show the NGSPICE simulation

results of the two-stage opamp for frequency response,

CMRR, PSRR, and transient response to a period square

wave, respectively, for the SMC opamp.

4.2.1 Comparison to GA

In order to make comparison, we also implemented a GA-

based sizing program. The algorithm design is presented in

‘‘Appendix’’. When running GA, we chose a population

size of 40 individuals and set the number of iterations to

200. From Fig. 8, we find the fact that GA reached con-

vergence after 189 iterations. The sizing parameters and

the performance of the final suboptimal solution are listed

in Tables 1 and 2, respectively, as well. The SPICE sim-

ulation results have been suppressed except for a compar-

ison of the PSO evolution curves regarding the relative

errors, which is shown in Fig. 8.

The next experiment further testifies that PSO search

outperformed GA when optimizing the two-stage SMC

opamp with a set of raised performance target values. This

experiment also answers a question regarding the perfor-

mance frontier; whether better performance than the

specified can be achieved given a circuit topology. As we

know, if the circuit topology does not change, the design

equations remain the same. Hence, a search algorithm with

a better capability of exploring the design space should be

able to produce a better optimized design. Table 3 shows

that PSO performed better than GA when the performance

values are raised.

Table 2 Performance of the two-stage SMC opamp

Spec. Desired Simulated (by PSO) Simulated (by GA)

Dc-gain 80 dB 78.74 dB 77.20 dB

GBW 10 MHz 10.00 MHz 10.01 MHz

PM 60� 60:32� 57:91�

CMRR 80 dB 76.60 dB 77.10 dB

PSRR 80 dB 82.62 dB 83.13 dB

SRþ – 12.70 V=ls 22.32 V=ls

SR- – 11.41 V=ls 17.89 V=ls

Error – 0.054484 0.072705
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In conclusion, using PSO as a local optimizer in auto-

sizing of multi-stage opamps outperforms GA relatively.

We may attribute the reason to the fact that PSO is suited

better to locally searching a continuous variable space

while GA is relatively weaker due to that the crossover and

mutation operators have limited searching power in a

continuous high-dimensional space. Because the perfor-

mance of PSO is more promising in the scenario of circuit

sizing, we decide to use PSO as the key optimizer in the

following experiments.

4.3 Results on the two-stage opamps with three
modified compensations

The simple Miller compensation (with the Miller capacitor

CC only) of the two-stage opamp shown in Fig. 1 can be

modified by inserting extra circuit components into the

Miller capacitor CC branch. We mainly consider the fol-

lowing three alternative compensation structures: CC in

series with a nulling resistor (NR), with a voltage buffer

(VB), or with a current buffer (CB); the corresponding

circuit blocks are shown in Fig. 2. The resulting opamps

are referred to as the MCNR opamp, MCVB opamp, and

MCCB opamp, respectively.

The MCNR opamp has the following PSO design vari-

ables: the aspect rations of eight transistors M1–M8, bias

current IB, compensation capacitor CC, and the nulling

resistor RC.

The MCVB opamp has the following PSO design vari-

ables: the aspect rations of nine transistors M1–M9 (one

appearing in the VB block), bias current IB, IVB and com-

pensation capacitor CC.

The MCCB opamp has the following PSO design vari-

ables: the aspect rations of nine transistors M1–M9 (one

appearing in the CB block), bias current IB, ICB and com-

pensation capacitor CC.

The PSO results on these three kinds of two-stage

variants are summarized in Table 4 and the comparisons of

the optimized performances are listed in Table 5. For all

cases the output load CL was fixed at 5 pF.

Shown in Figs. 9, 10, 11 are the relative error evolution

curves during the execution of PSO for the MCNR,

MCVB, and MCCB opamps, respectively. To save space

we do not show the simulated performance plots for these

examples.

4.4 Results on the three-stage RNMCFNR opamp

Referring to Fig. 3, the design variables of the three-stage

RNMCFNR opamp are: W/L of 11 transistors M0–M10,

W/L of the bias transistor Mbias, bias current Ibias, com-

pensation elements CC1, CC2 and RC. The load capacitor CL

was fixed at 500 pF.

The sizing parameters after the PSO run are listed in

Table 6. The simulated circuit performance numbers are

listed in Table 7. Figure 12 shows the relative error evo-

lution of of the three-stage RNMCFNR opamp; it stops
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Table 3 Comparison of the PSO and GA searching results for the

two-stage SMC opamp with lifted targets

Spec. Desired Simulated (by PSO) Simulated (by GA)

DC-gain 85 dB 83.30 dB 74.15 dB

GBW 13 MHz 12.95 MHz 12.26 MHz

PM 63� 62:88� 59:27�

CMRR 85 dB 84.52 dB 82.92 dB

PSRR 90 dB 90.54 dB 88.96 dB

Error – 0.022047 0.154101
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descending after about 250 steps, which indicates that the

best suboptimal solution has been found by PSO.

Figures 13, 14 and 15 show the SPICE simulation

results of the three-stage RNMCFNR opamp for the AC

response, CMRR, PSRR, and transient response,

respectively.

For the RNMCFNR opamp, we also made a test to see

whether using design equations could significantly improve

the quality of suboptimal solution in PSO search. This is

indeed true. Figure 16 shows a comparison of the evolution

curves of the relative errors. We see that the PSO search

without using design equations in producing the particles

of the initial swarm (particles generated at random) had a

curve with much larger relative errors comparing to the one

using design equations for the initial swarm. The com-

parison is a clear indication that design equations can

contribute significantly to producing a better quality initial

swarm and enhancing the quality of the final PSO search

result.

Table 4 Sizing parameters of the three two-stage opamp variants. All

aspect ratios are in units lm=lm

Parameters MCNR MCVB MCCB

ðW=LÞ1;2 5.63/1 4.48/1 6.78/1

ðW=LÞ3;4 2.15/1 10.12/1 10.77/1

ðW=LÞ5 4.43/1 30.07/1 28.30/1

ðW=LÞ6 100.00/1 58.50/1 58.67/1

ðW=LÞ7 100.00/1 80.01/1 74.60/1

ðW=LÞ8 17.38/1 28.17/1 36.24/1

ðW=LÞ9 – 1.06/1 37.77/1

RC 2.52 kX – –

CC 1.48 pF 1.28 pF 1.24 pF

IB 99.98 lA 23.86 lA 32.61 lA

IVB – 23.86 lA –

ICB – – 32.61 lA

Table 5 Performance measures

of the three two-stage opamp

variants optimized by PSO

Spec. MCRZ MCVB MCCB

Desired Simulated Desired Simulated Desired Simulated

DC gain 81.5 dB 78.16 dB 81.5 dB 80.39 dB 79 dB 79.78 dB

GBW 17 MHz 16.75 MHz 21 MHz 21.10 MHz 24 MHz 23.81 MHz

PM 65� 63:25� 60� 60:93� 70� 69:16�

CMRR 80 dB 77.83 dB 80 dB 77.99 dB 80 dB 76.83 dB

PSRR 80 dB 83.85 dB 80 dB 84.01 dB 80 dB 82.84 dB

SRþ – 15.95 V=ls – 25.04 V=ls – 21.32 V=ls

SR- – 14.38 V=ls – 13.27 V=ls – 10.71 V=ls

Error – 0.075306 – 0.058201 – 0.055942
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4.5 Test on relaxation iteration embedding

The previous PSO tests have demonstrated that, starting

from an initial instance set generated by design equations,

PSO can effectively search a suboptimal solution. But the

convergence takes quite a number of iterations.

Thus we were motivated to further test whether

embedding the relaxation iteration can accelerate the PSO

convergence without sacrificing the suboptimal solution

quality. Since RI is equation-based iteration, it fits in the

scenario of equation-based PSO. Our test was focused on

two circuits: the two-stage SMC opamp and the three-stage

RNMCFNR. While running RI, the compensation capacitor

CC remains unchanged.

Knowing that relaxation iterations could be effective if

the fitness of instance is sufficiently small, we initiate RI

after a period of PSO iterations. We made the insertion of

RI adjustable so that the convergence enhancement became

more effective.

We chose to preset a relative error level of PSO itera-

tions to invoke RI and set a control number (K) for RI

iteration. After K relaxation iterations, PSO continues until

the end.

Figure 17 shows a comparison of PSO error evolution

with and without RI embedding for the two-stage SMC
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Table 6 Sizing parameters of

the three-stage RNMCFNR

opamp. All aspect ratios are in

units lm=lm

Parameters Value

ðW=LÞ0;6;8;9 22.87/0.5

ðW=LÞ1;2 6.93/0.5

ðW=LÞ3;4 10.06/0.5

ðW=LÞ5;7;10 25.15/0.5

ðW=LÞbias 2.07/0.5

RC 2.62 kX

CC1 8.61 pF

CC2 1.00 pF

Ibias 5.81 lA

Table 7 Performance of the

three-stage RNMCFNR opamp
Spec. Desired Simulated

DC-gain 112 dB 99.69 dB

GBW 3 MHz 3.02 MHz

PM 63� 62:99�

CMRR 80 dB 85.26 dB

PSRR 80 dB 91.32 dB

SRþ – 2.71 V=ls

SR- – 6.23 V=ls

Error – 0.209975
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Fig. 12 Evolution of the PSO relative error for the three-stage

RNMCFNR opamp
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opamp. In this test RI was inserted at the relative error level

of 20%; that is, RI was invoked when the initial PSO search

had dropped the relative error by 20%, which was about 7

PSO iterations. After 2 relaxation iterations, PSO continued

to the end. We observe that with only two steps of RI a

significant amount of relative error was decremented.

We also tested the same RI embedding strategy for the

three-stage RNMCFNR opamp with the error evolution

curves of shown in Fig. 18. For this case RI was activated

when the relative error level dropped by 70% by the initial

PSO iteration. The reason we select a large percentage was

because the initial error of the three-stage RNMCFNR

opamp was large. Again the number of relaxation iterations

was 2. For both curves the initial part of PSO iterations

were made identical to exhibit the effect of RI activation,

which did explicitly accelerated convergence.

Finally, we mention the CPU time in the executions of

PSO, POS?RI, and GA on the examples we have tested.

For the two-stage SMC opamp the CPU time was about

28 min by PSO only and 42 min by GA. After embedding

RI, the CPU time spent on the two-stage SMC opamp by

PSO was reduced to about 13 min. While testing the other

three two-stage opamps with modified compensations, we
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measured the following CPU time costs by equation-based

PSO search: MCNR 48 min, MCVB 20 min, and MCCB

35 min. Last, for the three-stage RNMCFNR opamp, the

PSO search without using design equations took 72

CPU min, whereas by using design equations the CPU time

was reduced to 54 min. By PSO with RI embedding, the

CPU time spent on the three-stage RNMCFNR opamp was

reduced to 30 min.

5 Conclusion

The main purpose of this paper is to make an experimental

study on the role that design equations may play when they

are combined with a heuristic search algorithm like PSO or

GA. Although PSO performs relatively better than GA in

the investigated scenario of local search, whether such a

discrepancy is affirmative would require further investi-

gation. A more interesting observation is that, by incor-

porating an auto-generation engine of design equations, the

equation-based auto-sizing tool would become more pow-

erful. This approach is believed to be more promising than

other fully heuristic search routines without considering the

use of design equations. Recent research has shed light on

the auto-generation of design equations for a class of multi-

stage opamps with the help of symbolic computation

[20, 27–30]. Future research will be directed toward inte-

grating an equation generation engine with heuristic search

methods like PSO to completely get rid of the need of

manually deriving design equations in an auto-sizing tool.
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Appendix: Design of GA for comparison

GA is a well-known nature-inspired evolutionary algorithm

that can be applied to heuristic search problems [31]. As a

comparison to PSO, we develop in this section a GA for

equation-based automatic circuit sizing. Similar to PSO,

GA also searches a suboptimal solution by iterating a

population. Hence, there exist issues of initial selection of

population, fitness evaluation, and the design of genetic

operators such as mutation, crossover, and elite selection.

In the same spirit of this work, we generate the initial

population by design equations when using GA as the

search engine. The vector formed by the design variables

become an individual in the GA population. We assume

that all MOS devices has the fixed channel length L. Hence,

the channel width Wi of each MOS device becomes one of

the optimization variables. Each Wi is a real number and an

array of them forms the individual coding (i.e., the chro-

mosome) in the GA. The fitness of each individual is

evaluated by the inverse of the relative error function, i.e.,

fitness ðxiÞ ¼
1

ErelðxiÞ
ð33Þ

where ErelðxiÞ was defined in (1).

We use the roulette wheel selection in generating a new

population, which means that the probability of selecting

an individual to serve as a parent is proportional to its

fitness.

The operator of crossover is defined as follows.

ak;j :¼ cal;j þ ð1� cÞak;j ð34Þ

al;j :¼ cak;j þ ð1� cÞal;j ð35Þ

where ak;j is the jth gene (i.e., Wj) of the kth chromosome

(i.e., individual) and al;j is the jth gene of the lth chromo-

some. c 2 U½0; 1� controls the randomness of combining

two chromosomes.

Mutation of the jth gene of the ith chromosome is

defined below.

ai;j :¼ ai;j þ ðamax � ai;jÞ/ðgÞ; with probability 50%

ð36Þ

ai;j :¼ ai;j þ ðamin � ai;jÞ/ðgÞ; with probability 50%

ð37Þ

where, /ðgÞ :¼ q 1� g=Gmaxð Þ2, g is the current generation

index, and Gmax is the maximum number of GA genera-

tions. q 2 U½0; 1�. amax and amin are the maximum and

minimum values of the gene aij, respectively. For example,

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

ER
R

O
R

STEP

PSO vs PSO+RI

3−stage PSO+RI
3−stage PSO

Fig. 18 Comparisons of PSO convergence with and without RI for the

three-stage RNMCFNR opamp

128 Analog Integrated Circuits and Signal Processing (2020) 103:117–130

123



the maximum and minimum channel widths of all Wj are

set to 100 and 1, respectively, throughout the GA iterations.

Namely, amax ¼ 100 and amin ¼ 1.
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