
A test point selection approach for DC analog circuits with large
number of predefined faults

Masoumeh Khanlari1 • Mehdi Ehsanian1

Received: 25 June 2019 / Revised: 25 June 2019 / Accepted: 3 October 2019 / Published online: 2 November 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Test point selection is an important stage in analog circuits fault diagnosis. In this paper, a test point selection method is

proposed that is suitable for large numbers of predefined faults in DC analog circuits using the technique of constructing a

fault dictionary for each component. Main idea is selecting a test point set with minimum amount of overlap between fault

and no-fault regions for each component. A combined exclusive-inclusive algorithm is applied on each fault dictionary and

using the achieved information, a grade is given to each test point. Then the test points with grades lower than a threshold

value are eliminated and a decision guide is provided for tester to select final test point set. Applying this method on a

benchmark circuit is eliminating 22% of test points and the accuracy metrics of proposed approach is comparable with

using all of the test points. The results show that by eliminating 56% of the test points, the accuracy metrics just drops

about 4%.

Keywords Fault diagnosis � Test point selection � Classification � Support vector data decomposition

1 Introduction

Methods for fault diagnosis of analog circuits fall in two

categories called simulation before test (SBT) and simu-

lation after test (SAT) [1]. SBT methods require minimum

computation during the test and most of the computational

effort are performed off-line. Fault dictionary is an

important method of SBT approach, especially in diag-

nosing catastrophic faults [1]. A fault dictionary is a set of

measurements of the circuit under test (CUT) simulated

under potentially faulty conditions (including no-fault

case) and constructed before the test. There are three

important phases in the fault dictionary approach. At first,

the circuit is simulated for each of the predefined faults and

the resulting responses are stored. Next phase is selection

of test points. The last phase is designing classifier to

isolate the predefined faults. During the test, the faulty

circuit is excited by the same stimuli that were used in

simulations, and measurements are made at the preselected

nodes. Finally, they are classified using the designed

classifier to diagnose the fault.

Test points may be nodes at which the measurements are

performed. In practice, it may not be possible to make

measurements at every point of the circuit. Test point

selection is process of selecting optimum set of points with

maximum degrees of fault isolation.

Generally, test point selection methods fall in two cat-

egories: inclusive and exclusive approaches [2]. In inclu-

sive approaches, the desired optimum set of test points is

initialized to be null, then a new test point is added to it if

needed. For the exclusive approaches, the desired optimum

set is initialized to include all available test points. Then a

test point will be deleted if its exclusion does not degrade

the degree of fault diagnosis. Various criterions were used

in contributions to include or exclude a test point. Ambi-

guity set (AS) and integer-coded table were used in [2] to

define the criterion. Entropy index (EI) of test points is the

criterion used in [3]. The work in [4] uses a fault-pair

Boolean table technique instead of integer-coded table to

increase its accuracy. The method in [5] used the line’s

slope of voltage equation between two nodes to select
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optimum test point set in linear time-invariant circuits.

Probability density of node voltages is another approach

used to define the criterion [6, 7]. The work in [6] intro-

duced a fault-pair isolation table constructed by calculating

the area of non-overlapping part of the distribution curves,

and the work in [7] used fault-pair similarity coefficients

calculated by Cauchy–Schwarz inequality. Combined

inclusion–exclusion approach was also proposed in some

contributions [8–10]. To take into consideration the com-

ponent tolerances, a new integer-coded fault dictionary

called extended fault dictionary (EFD) was used in [11]. A

novel entropy measure was used as the criterion in this

work. Some works have been done which cannot be clas-

sified into inclusion or exclusion group, such as graph

based algorithm [12, 13], greedy randomized adaptive

search procedure (GRASP) [14], genetic algorithm [15],

multidimensional fitness function discrete particle swarm

optimization (MDFDPSO) [16], Quantum-inspired evolu-

tionary algorithm [17], binary bat algorithm (BBA) [18],

and depth first search (DFS) algorithm [19].

In all of these works, whole fault classes are investigated

during search for optimum test points. The works are based

on exhaustive or local search which select optimum set for

isolating predefined faults. It was pointed out in [3, 15] that

exhaustive search is NP-hard. Also, time complexity of

local search approaches is in direct proportion to the

number of predefined faults. Therefore, these approaches

are not applicable when the number of predefined faults is

enlarged.

To deal with the problem of large numbers of predefined

faults, the idea of designing a classifier for each of the

circuit components rather than one classifier for the whole

circuit was proposed in [20]. However, the method suffers

from randomness effect of the used classifiers. Two over-

come this problem, there is a new idea in designing

approach of classifiers. In this way, classifiers are designed

in two stages. At first, Support Vector Data Description

(SVDD) technique is used to detect the fault regions in data

space of each component. Afterward, classification among

various classes included in fault regions are performed

based on a clustering approach by using Improved Kernel

Fuzzy C-Means (IKFCM) algorithm. The main idea of this

paper is to find a test point set for each component by

which the fault regions have minimum overlap with no-

fault region. This leads to best isolation of fault and no-

fault states. Since there are a few specified number of fault

types that a component may be encountered with, this

process has low complexity even if the number of circuit

faults is large. Details about this approach are given in

following sections.

This paper has been organized in five sections. Section 2

describes the fault diagnosis method. The new test point

selection method is described in Sect. 3. Experimental

results are discussed in Sect. 4 and finally, Sect. 5 con-

cludes the paper.

2 Fault diagnosis method for large numbers
of predefined faults

The proposed test point selection method is comprised of

two phases: off-line process which is done before starting

the test, and on-line process during the test process. These

processes are described in following.

2.1 Off-line process

Figure 1 shows the diagram of off-line process. First, the

predefined fault list is provided for the CUT, which usually

includes all of single hard/soft faults, or all of double

hard/soft faults. Here, hard fault means short-circuit and

open-circuit, and soft fault means deviation from the

specified tolerance ranges. Single fault means one com-

ponent is faulty, and double fault means two components

are faulty simultaneously. Single and double faults are

most probable faults in analog circuits [1]. The circuit is
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Fig. 1 Diagram of constructing the fault dictionary with off-line

process
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simulated in each fault mode and no-fault mode to store

measured responses in the fault dictionary.

The collected data of fault list are divided into the train

and test sets and normalization is done by the Z-Score

method with respect to the mean and standard deviation of

the train set part. The normalized data are classified based

on various fault types of each component. Table 1 shows

the predefined single hard fault list for a typical circuit with

three resistors, R1 to R3, and the fault types of each

component. In this table, O, S, and ‘‘–’’ mean open-circuit,

short-circuit and no-fault respectively. This categorization

forms the required fault dictionary for each component.

Then, the fault regions in data space of each fault dic-

tionary are recognized by the SVDD algorithm. The SVDD

is a popular kernel-based technique to construct a flexible

description of the input data [21]. This process has been

shown for a typical component in Fig. 2 with two detected

fault regions in which no-fault area are separated from fault

regions.

For each component, the accurate diagnosing fault states

are more importance than no-fault state, so the fault regions

are tightened by t% when finding the samples of no-fault

class that is located in the fault regions. Therefore, some of

no-fault samples located in the fault regions are disre-

garded and the overlap between fault and no-fault samples

is decreased with the penalty of misclassifying the disre-

garded no-fault samples. The value of t should be selected

so that misclassification rate of no-fault class does not

increase too much. This process is shown in Fig. 3. The left

is a fault region containing the fault and no-fault samples.

In the right, some of the no-fault samples that are located in

the fault region disregarded with tightening the fault

region.

The detected fault regions include the data from various

fault classes and a part of no-fault class. The data of var-

ious classes in fault regions are clustered using IKFCM

algorithm [20]. Thereby, some cluster centers are achieved

which are used for classifying new data during the test (in

on-line process).

2.2 On-line process

The on-line process is performed during the test to classify

a new measured data. Figure 4 shows the on-line process

for a typical component. If data is located in fault regions,

then the sample belongs to the no-fault class and so the

component is non-faulty. Otherwise, classification is made

in the fault region which includes this sample. For this

purpose, distance of the sample to each cluster center

included in this fault region is found. The data belongs to

the cluster with minimum distance, and the class of sam-

ples in this cluster determines the fault type of the related

component.
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Fault region

No-fault sample

Fig. 2 Detecting the fault regions for a typical component by the

SVDD algorithm
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Fig. 3 Tightening fault region for no-fault samples; (left) fault region

including fault and no-fault samples, (right) the tightened fault region
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Fig. 4 The on-line process of classifying a new data

Table 1 Predefined fault list in a supposed circuit

Predefined faults Fault classes for the components

# R1 R2 R3 R1 R2 R3

1 O – – O – –

2 S – – S – –

3 – O – – O –

4 – S – – S –

5 – – O – – O

6 – – S – – S

7 – – – – – –
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3 A novel approach for test point selection

The more no-fault samples in fault regions leads to the

more probability of misdiagnosing faulty components

which is more destructive than misdiagnosing non-faulty

components.

Main idea used in this paper is finding a test point set by

which there are minimum amount of overlap between

faults and no-fault classes. A solution to this problem is

exhaustive search among test points using evolutionary

algorithms. The fitness function may be the number of no-

fault samples that are located in fault regions. Therefore,

all of no-fault samples in each fault dictionary should be

examined to find those located in fault regions.

In a circuit with nc components and nf fault modes for

each component, the number of m-fold faults (NF) is

achieved by Eq. 1. No-fault class, in which all of compo-

nents are non-faulty, should be added to NF. Among these

NF þ 1 classes, Nfault classes fall in each fault class and

Nno�fault classes fall in no-fault class for every component

(Eqs. 2–3).

NF¼
nc!

m! nc �mð Þ n
m
f ð1Þ

Nfault¼
nc � 1ð Þ!

m� 1ð Þ! nc �mð Þ!� ðnfÞm�1 ð2Þ

Nno�fault¼ NFþ1ð Þ � nf
nc � 1ð Þ!

m� 1ð Þ! nc �mð Þ!� ðnfÞm�1

� �

ð3Þ

For example, in a typical circuits with 10 components,

the number of double hard faults is NF = 180 (m = 2 and

nf = 2, including short-circuit and open-circuit). These

fault classes, as well as the no-fault class are divided into

three classes for each component including short-circuit

(nfault = 18 classes), open-circuit (Nfault = 18 classes), and

no-fault (Nno�fault = 145 classes). By performing Monte

Carlo analysis with 50 iterations in each simulation, there

would be 900 samples in short-circuit (18 9 50 = 900),

900 samples in open-circuit class and 145 9 50 = 7250

samples in no-fault class. Based on our experiments,

dealing with this large number of no-fault samples to cal-

culate fitness function in exhaustive search for each com-

ponent, may take several days to be performed. Although

this process is performed before starting real test, but the

long time vesting may affect marketing parameters like

time-to-market.

Alternative method has been shown in Fig. 5. This is a

combined exclusive-inclusive method. The percentage of

no-fault samples located in fault regions is the criterion

ðCð%ÞÞ to be minimized (Eq. 4).

C ¼ Nsnfr

Nsnf
� 100 ð4Þ

where Nsnfr is the number of no-fault samples located in the

fault regions, and Nsnf is the number of total no-fault

samples. Steps of this algorithm are as follows.

3.1 Exclusion

After constructing the fault dictionaries by the measured

DC node voltages at all of the accessible test points, the

value of C is calculated for each test points in single-di-

mensional space. The test points are sorted with respect to

the values of C in ascending order. Then, redundant test

points are eliminated by exclusive method. In this way, the

test point set is initialized to include all accessible test

points and starting from last one (maximum to minimum

value of C), a test point is eliminated in each iteration if

two following conditions are met.

First, its elimination should not increase the value of

C more than 1%. By this manner, the test points which do

not create significant improvement in the value of C are

eliminated.

The second condition is related to tighten the fault

regions for no-fault samples (Sect. 3.1). No-fault samples

located outside the tightened fault regions do not affect

diagnosing accuracy of fault samples. However, those

located inside the tightened regions may cause misclassi-

fications in fault samples.

Typically, let’s consider the two fault regions in Fig. 6.

The samples of the fault regions are achieved from dif-

ferent test points. The right-sided fault region contains
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Fig. 5 Test point selection process
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fewer no-fault samples than the left-sided fault region, but

it contains more no-fault samples located in tightened fault

region. Since the no-fault samples located out of the

tightened regions are disregarded, the accuracy of diag-

nosing fault samples in the left-sided fault region is higher

than the left fault region. To consider this effect, percent-

age of no-fault samples located in tightened fault regions

ðCtð%ÞÞ is calculated (Eq. 5).

Ct ¼
Nsnft

Nsnf
� 100 ð5Þ

In which, Nsnft is the number of no-fault samples located

in the tightened fault regions. The second condition is that

by excluding test point, the Ct should not increase more

than 1%.

3.2 Inclusion

The effectiveness of selected test points is verified by

inclusive method. In this way, the test point set is initial-

ized to be null. Starting from the first test point in the

selected set at the previous step, a test point is selected in

each iteration if two conditions are met. First, including

that test point should decrease the value of C more than

1%. The second condition is that including the test point

should not increase the Ct.

Performing exclusive method before inclusive method

speeds up the test point selection process. The reason is

that inclusive algorithm is started with one node and may

include most of test points to gradually improve C and Ct.

However, exclusive algorithm is started with all nodes, that

probably have better value of C and Ct than one node in

inclusive algorithm. Therefore, it is more probable that

redundant test points are eliminated in next iterations, and

performing the inclusive algorithm with this reduced test

point set take less time.

3.3 Decision making

Previous processes are performed for every component to

find effective test point set for each of them. Thereafter, a

grade is given to each test point that is equal to the number

of components whose selected test point set include that

test point.

The grades are sorted in descending order and cumula-

tive sum of them are calculated by partially summing the

grades. Let g1; . . .; gNf g be the cumulative sum of grades,

where N is the number of test points and gN is sum of all

grades. Then they are manipulated as follows:

g�1; . . .; g
�
N

� �
¼ g1; . . .; gNf g

gN
ð6Þ

Values of g�i (i ¼ 1; . . .;N) are in interval [0,1]. Let g�t
be first grade equal to or greater than 0.9. This means that

test points related to grades g�1 to g�t are adequate to

diagnose at least 90% of components. Therefore, other

ones are omitted and selected test points make the optimum

test point set (Sopt).

Finally, it is useful to provide a decision guide for

testing. For this purpose, starting from the first test point in

Sopt and adding next test points in each iteration, parame-

ters C and Ct are calculated for each component. Then, the

parameters are averaged over components. The tester can

decide which set is appropriate for the circuit. According to

our previous experiences, a good choice is a set using

which averaged C and averaged Ct is as follows:

Cav � 20% ð7Þ

Ctav �
Nsf
2

Nsnf
� 100% ð8Þ

where Cav and Ctav are averaged C and averaged Ct over

components respectively. By this choice, according to

Eq. 7, on average, at most 20% of no-fault samples are

located in fault regions. Therefore, average accuracy of

80% in diagnosing no-fault samples is guaranteed. Also,

according to Eq. 8, the average number of no-fault samples

located in tightened fault regions is half the number of fault

samples which is reasonable choice to dominate the fault

samples in fault regions. The test point selection method is

more described in the next section using a benchmark

circuit.

4 Experimental results

4.1 DC transistor circuit

Figure 7 shows an analog DC transistor circuit. In [22]

only 6 predefined faults were considered for this circuit but

here all the double hard faults are selected as predefined

faults. There are two possible hard faults for resistors

(short-circuit and open-circuit) and six hard faults for each

transistor (three short-circuits in junctions and three open-

circuits in leads). By considering all the related faults in a

Sample of 
two different 
fault types
Fault region

No-fault sample

Tightened Fault 
region

Fig. 6 Two fault regions in two different two-dimensional spaces
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transistor, each transistor can be assumed as 6 components

as base–emitter, base–collector, collector–emitter junctions

(with no-fault and short-circuit fault), and base, collector,

emitter leads (with no-fault and open-circuit fault).

Therefore, there are 33 components in Fig. 7, including 9

resistors and 24 transistor components.

According to above discussion for Fig. 7, we don’t have

same number of faults for each component and Eq. 1 is not

applicable for fault calculation. If we want to use Eq. 1 for

number of faults in Fig. 7, we should imaginary consider

same number of faults for each component. To do this, we

add open-circuit fault to each junction and short-circuit

fault to each lead to reach nf ¼ 2 for all components. Now,

using Eq. 1 we get 2112 faults for this circuit that 1259 of

them are not real. Therefore, the number of double hard

faults in Fig. 7 is 853, and adding no-fault mode to this list,

the number of predefined faults and no-fault mode is 854.

According to other works, we consider 5% tolerance for

the resistors. Open- and short-circuit faults were modeled

by connecting a 100 MX resistor in series and paralleling a

0.01 X resistor, respectively.

Circuit simulations are done by HSPICE and classifiers

are implemented with MATLAB. The Monte-Carlo anal-

ysis with 50 iterations is done for each of 854 predefined

faults to measure DC voltage at all nodes. The fault dic-

tionary for each component is constructed by the achieved

data from simulations according to the discussion in

Sect. 2.

Table 2 shows the sorted values of C for each compo-

nent. In this table, B, C, E, BE, CE, and CB stand for Base,

Collector, Emitter, Base–Emitter, Collector–Emitter and

Collector–Base respectively.

In the next step, exclusive and inclusive algorithms

should be performed for every component. Tables 3 and 4

show these processes for BE1. In these tables, accnf is rate

of truly classified samples of no-fault class, and accf is rate

of non-misclassified samples of fault classes in no-fault

class that are defined as follows:

accf ¼ 100� Nifnf

Nsf
� 100 ð9Þ

accnf ¼
Ncnf

Nsnf
� 100 ð10Þ

where Nifnf is the number of fault samples incorrectly

classified in no-fault class, Nsf is total number of fault

samples, Ncnf is the number of correctly classified no-fault

samples, and Nsnf is the total number of no-fault samples.

Typically, by excluding node 7 in the first row of

Table 3, the value of C is unchanged and increment of Ct

less than 1%, so it could be discarded from the test point

list. Continuing this exclusion process, finally just nodes 2,

9, and 4 are remained for inclusion process. According to

Table 4, by inclusive process, the effectiveness of the

selected nodes is verified. Because of significant

improvement in C and Ct values by adding nodes 9 and 4,

all of these nodes are selected for fault diagnosis of BE1

component.

Results of exclusion and inclusion processes for all of

the components are shown in Table 5. According to this

table, now node grading is done to determine the impor-

tance of each node in circuit fault diagnosis process

(Table 6). According to the second row of Table 6, there

are 23 components that require node 6, and 2 components

which require node 5. The third row shows the cumulative

sum of grades. Finally, the normalized grade of each node

is determined in the last row. On the base of normalized

grades of the nodes, node 3 is the first node with the grade

of more than 0.9 and by adding nodes 4 and 5 there is not

any significant improvement in the grade values. Conse-

quently, nodes 4 and 5 can be discarded from the test point

set. Therefore, nodes 6, 8, 2, 7, 9, 1, and 3 are most

effective nodes for diagnosing almost all of components.

If access to all the selected test points is not possible, it

is useful to recommend a decision guide for testing. This

guide is shown in Table 7. The parameters in this table are

averaged over the components. According to this table, we

can see the fault diagnosis accuracy using the specified

nodes. The average of C is decreased and so accnf is

increased by including more nodes. The slow falling trend

of accf in this table is because of rising trend of averaged

Ct.

With reference to the criteria equations (Eqs. 7, 8), and

regarding that
Nsf
2

Nsnf
� 100% ¼ 5% in this circuit, the set

6; 8; 2; 7f g is appropriate test node set since the average C

Fig. 7 Benchmark circuit used in this paper
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Table 2 Sorted values of m and related test points

Component Sorted test points Sorted values of C (%)

BE1 2 3 6 8 9 5 4 1 7 43.9 48.6 68.1 73 73.6 77.3 78 79.9 88

BE2 6 5 2 1 4 8 9 3 7 19.8 21.9 22.7 24.7 24.7 34.4 40.7 46 67.9

BE3 8 6 9 7 5 2 4 1 3 18.1 26.3 36.3 48.5 50.8 64 65.3 70.5 89.6

BE4 7 8 9 6 5 2 1 4 3 47.6 51.9 52.3 59.8 80 84.7 85.7 87.4 92.4

CE1 6 8 9 1 5 2 3 4 7 14.6 34.9 35 38.5 48.5 50.5 55.1 57.7 70.4

CE2 5 4 2 6 1 8 9 3 7 12.5 15.6 18.1 20.3 23.2 25.3 30.2 51.7 65.1

CE3 8 9 6 7 5 2 4 1 3 14.1 15.3 35.3 61.7 72.1 79.5 82 82.2 92.9

CE4 9 8 6 7 5 1 2 4 3 8.7 11.6 41.8 52.9 66.7 76.9 79.5 83.2 92.1

CB1 6 9 8 2 1 5 4 7 3 19.6 42.3 43.1 44.5 50.4 56.2 69.2 73.9 78

CB2 1 6 5 2 4 8 9 3 7 7.3 19.3 21.3 22.5 24.3 33.4 36.8 45.9 68.9

CB3 9 8 6 5 2 4 7 1 3 14.1 15.1 22.3 58.8 60.3 62.6 65.2 66.5 87.2

CB4 9 8 6 7 5 2 4 1 3 9.4 13.4 36.8 50.2 70.6 78.9 81.3 81.3 92.7

B1 3 6 2 8 9 5 1 4 7 42.5 69 69.5 72.1 73.4 78.5 79.6 80.9 87.2

B2 6 5 1 4 2 8 9 3 7 14.9 19.4 22.8 24.6 25.7 28.9 31 51.6 62.8

B3 8 6 9 7 5 1 2 4 3 32 37.5 37.9 55.1 71.7 74.8 82.1 85 91.5

B4 8 9 6 7 5 1 2 4 3 51.6 53.8 54.9 58.8 74.7 83.5 83.8 86.5 92.7

C1 6 8 9 2 1 5 4 3 7 66.8 72 73.1 74.3 75.2 76.3 78.6 81.7 86.5

C2 6 4 2 8 1 9 3 7 5 18.4 27.8 28.2 30.3 30.9 36.7 50.8 67.3 100

C3 8 9 6 7 5 1 2 4 3 38.9 40.4 41.5 51.5 67.6 76.3 81.5 85.3 90.9

C4 8 9 6 7 5 2 1 4 3 47 47.8 58.7 64.6 81.8 84.5 86.6 87 92.5

E1 3 2 6 8 9 5 4 1 7 35.8 67.9 70.2 73.8 74.7 78.9 79.1 80.4 87.9

E2 5 6 4 2 1 8 9 3 7 8.2 8.6 12.9 14.9 19.2 22.6 25.8 42.3 54.5

E3 8 9 6 7 5 1 2 4 3 29.9 34.8 38.8 49.2 77 79.2 82.2 85.4 91.5

E4 8 9 6 7 5 2 1 4 3 43.4 44.9 54.1 58.8 74.6 83.7 83.7 86.2 92.8

R1 1 6 5 2 4 8 9 3 7 10 17.2 17.7 21.8 22.8 30.6 35.7 43.9 66.2

R2 6 8 9 5 2 1 4 7 3 68.7 72.2 73.2 78.3 78.4 80.8 83.5 86.8 87.7

R3 3 6 8 9 2 5 1 4 7 38.5 71 75.1 76 76.6 81.8 83.3 87.3 89.1

R4 2 3 6 9 8 1 7 4 5 19.2 44.3 62.2 74.7 75.4 80 88.2 100 100

R5 5 6 4 2 1 8 9 3 7 6 12.6 19.7 23.6 26 35.4 46.2 47.9 71

R6 6 8 9 7 5 1 2 4 3 42.9 52.3 55.8 75.4 77.2 82.3 85.6 88.2 93

R7 9 8 7 6 5 2 1 4 3 55.8 59.1 61.7 70.8 83.6 85.1 87.4 88 92.4

R8 9 8 6 7 5 2 4 1 3 50.1 55.4 67.6 71.8 85.4 85.4 88 90.3 92.8

R9 9 8 7 6 5 2 4 1 3 23.6 34.7 55.8 55.9 83.7 84.4 87 88.3 92.9

Table 3 Exclusion process for

BE1
Node set Exclusion

C %ð Þ Ct %ð Þ accnf %ð Þ accf %ð Þ Endorsement

2; 3; 6; 8; 9; 5; 4; 1; 7f g 3.9 0.46 95.9 95.4 4

2; 3; 6; 8; 9; 5; 4; 1f g 3.9 0.47 96.1 95.2 4

2; 3; 6; 8; 9; 5; 4f g 3.8 0.46 96.3 94.7 4

2; 3; 6; 8; 9; 5f g 5.1 0.47 94 96.3 9

2; 3; 6; 8; 9; 4f g 3.7 0.55 96.1 95.4 4

2; 3; 6; 8; 4f g 4.4 0 94 98 9

2; 3; 6; 9; 4f g 3.7 0.69 96.3 94.4 4

2; 3; 9; 4f g 3.7 0.08 95.7 97.5 4

2; 9; 4f g 4.4 0 94.7 98.8 4

9; 4f g 46.5 2.82 48.2 90.7 9
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of this set is almost equal to 20% and average Ct is less

than 5%.

If all of the nine test points are used, then average accnf
and average accf are 85.2% and 92.9% respectively.

Therefore, using 6; 8; 2; 9f g test point set, there are about

56% reduction in the number of test points with just 3.9%

reduction in accnf and 3.1% increment in accf . If the set in

the last row of Table 7 is selected, the accuracy parameters

Table 4 Inclusion process for BE1

Inclusion

Node set C %ð Þ Ct %ð Þ accnf %ð Þ accf %ð Þ Endorsement

2f g 41.4 0.86 57.9 100 4

2; 9f g 8.1 0.55 92.5 99.1 4

2; 9; 4f g 5.7 0 94.7 98.8 4

Table 5 Selected nodes by

exclusive and inclusive

algorithms

Component Selected nodes by exclusive algorithm Final selected nodes by inclusive algorithm

BE1 2 9 4 – – – – – – 2 9 4 – – – – – –

BE2 6 1 – – – – – – – 6 1 – – – – – – –

BE3 8 6 – – – – – – – 8 6 – – – – – – –

BE4 7 8 6 2 – – – – – 7 8 6 2 – – – – –

CE1 6 2 3 – – – – – – 6 2 3 – – – – – –

CE2 6 1 – – – – – – – 6 1 – – – – – – –

CE3 8 6 – – – – – – – 8 6 – – – – – – –

CE4 9 7 – – – – – – – 9 7 – – – – – – –

CB1 9 2 – – – – – – – 9 2 – – – – – – –

CB2 1 6 – – – – – – – 1 6 – – – – – – –

CB3 8 6 – – – – – – – 8 6 – – – – – – –

CB4 9 7 – – – – – – – 9 7 – – – – – – –

B1 3 6 2 8 9 7 – – – 3 – – – – – – – –

B2 6 1 – – – – – – – 6 1 – – – – – – –

B3 8 6 2 – – – – – – 8 6 2 – – – – – –

B4 8 6 7 2 – – – – – 8 6 7 2 – – – – –

C1 6 8 9 2 1 3 7 – – 6 8 9 2 1 3 7 – –

C2 6 1 – – – – – – – 6 1 – – – – – – –

C3 8 9 6 7 2 – – – – 8 9 6 7 2 – – – –

C4 8 6 7 2 – – – – – 8 6 7 2 – – – – –

E1 3 2 6 8 9 7 – – – 3 – – – – – – – –

E2 5 1 – – – – – – – 5 1 – – – – – – –

E3 8 9 6 2 – – – – – 8 9 6 2 – – – – –

E4 8 6 7 2 – – – – – 8 6 7 2 – – – – –

R1 1 6 – – – – – – – 1 6 – – – – – – –

R2 6 8 9 2 7 3 – – – 6 8 9 2 7 3 – – –

R3 3 6 8 9 2 1 7 – – 3 – – – – – – – –

R4 6 4 – – – – – – – 6 4 – – – – – – –

R5 5 4 – – – – – – – 5 4 – – – – – – –

R6 6 8 7 2 – – – – – 6 8 7 2 – – – – –

R7 9 8 7 6 2 – – – – 9 8 7 6 2 – – – –

R8 9 8 6 7 2 – – – – 9 8 7 – – – – – –

R9 9 8 6 2 – – – – – 9 8 – – – – – – –

Table 6 Grades of nodes
Nodes 6 8 2 7 9 1 3 4 5

Sorted grades 23 17 15 13 12 8 7 3 2

Cumulative sum of grades 23 40 55 68 80 88 95 98 100

Normalized grades 0.23 0.4 0.55 0.68 0.8 0.88 0.95 0.98 1
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will be same as when using all of the nine nodes, with

about 22% reduction in the number of test points.

To verify the effectiveness of the selected test point set,

one can discard any of the selected node to see its impor-

tance. This process is shown in Table 8 and degradation of

diagnosis capability is demonstrated in it. Although some

sets have higher accf , but decreasing of accnf is much more

than increasing of accf for them.

4.2 Comparison with other methods

The previous works in this field are on the base of

searching the best node set so that maximum number of

predefined faults can be isolated. The number of predefined

faults in those works cannot be very large, since the

accuracy of isolating may be too low. For instance, the test

point selection method proposed in [6] is examined on a

band-pass filter with 11 nodes, 16 components, and 32

potential single hard faults (short-circuit and open-circuit

for each component) from which 23 faults were selected as

predefined faults. Its simulation results, lead to selecting 5

nodes from 11 nodes by which only 14 faults could be

classified (60.9% diagnostic accuracy).

Table 9 shows the comparison results of the proposed

method with the references [6, 7, 22] which are works in

DC domain. The proposed method can classify very large

number of predefined faults with highest accuracy using

only 4 nodes that shows the efficiency of the proposed

method specifically when the number of predefined faults

is very large.

The process time for our method is about 35 min that is

very faster than using exhaustive search that needs multiple

days for best test point selection.

5 Conclusion and future work

A test point selection method using combined exclusive-

inclusive algorithm was introduced for analog circuits with

large numbers of predefined faults. In this method it is

supposed that a classifier is designed for each of circuit

components, and most effective test points that make sig-

nificant improvement in accuracy of every classifier are

selected. Based on the experimental results 4 nodes from 9

circuit nodes were selected using which average accf and

accnf of the components are 96% and 81.3% respectively.

Table 7 Decision guide of the

benchmark circuit
Nodes set Average C %ð Þ Average Ct %ð Þ Average accnf %ð Þ Average accf %ð Þ

{6} 42.6 0.07 57.2 99.6

{6,8} 30 0.04 69.9 99.1

{6,8,2} 22.7 1.23 79.2 96.1

{6,8,2,7} 20.3 1.15 81.3 96

{6,8,2,7,9} 18.8 1.47 83.4 93.6

{6,8,2,7,9,1} 17.8 1.21 84.3 93.2

{6,8,2,7,9,1,3} 16.9 1.23 85.3 92.9

Using all of the nodes: average accnf = 85.2%, and average accf = 92.9%

Table 8 Verifying the

effectiveness of selected test

points (; and : mean decreasing

and increasing comparing with

selected node set)

Nodes set Average C %ð Þ Average Ct %ð Þ Average accnf %ð Þ Average accf %ð Þ

{6,8,2,7} (Selected node set) 20.3 1.15 81.3 96

{8,2,7} 24 0.73 76.8 # 4:5ð Þ 96.5 " 0:5ð Þ
{6,2,7} 24.3 1.31 77.8 # 3:5ð Þ 94.8 # 1:2ð Þ
{6,8,7} 27.2 0.33 73 # 8:3ð Þ 98 " 2ð Þ
{6,8,2} 22.7 1.22 79.2 # 2:1ð Þ 96.1 " 0:1ð Þ

Table 9 Results of comparing

the proposed method with other

works

Method No. of predefined faults No. of selected nodes Accuracy of fault diagnosis

[7] 17 4 of 12 70.6%

[6] 23 5 of 11 60.9%

[22] 6 11 of 11 96.8

Proposed method 854 4 of 9 83% (no-fault) 96% (fault)
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These nodes are used for diagnosing 854 predefined faults

(as well as no-fault mode) containing all of double hard

faults.

Due to computational burden of calculating the criteri-

ons, exhaustive search was not used in this paper. There-

fore, it is not claimed that the proposed method can find

global optimum solution. However, the method aimed to

find most effective test points that make significant

improvement in circuit diagnosing. Test points that have

little impact on the criterions are eliminated to reduce the

number of required test points.

Finally, it is worth noting that although the proposed

method was used for a DC analog circuit, it has the

potential of being used for time or frequency domains.

Steps of the algorithm may be applied on time samples or

frequency points of circuit’s frequency response to select

the optimum set. This idea will be examined in future

works.
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