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Abstract
Deep learning is widely considered to be the most important method in computer vision fields, which has a lot of

applications such as image recognition, robot navigation systems and self-driving cars. Recent developments in neural

networks have led to an efficient end-to-end architecture to human activity representation and classification. In the light of

these recent events in deep learning, there is now much considerable concern about developing less expensive computation

and memory-wise methods. This paper presents an optimized end-to-end approach to describe and classify human action

videos. In the beginning, RGB activity videos are sampled to frame sequences. Then convolutional features are extracted

from these frames based on the pre-trained Inception-v3 model. Finally, video actions classification is done by training a

long short-term with feature vectors. Our proposed architecture aims to perform low computational cost and improved

accuracy performances. Our efficient end-to-end approach outperforms previously published results by an accuracy rate of

98.4% and 98.5% on the UTD-MHAD HS and UTD-MHAD SS public dataset experiments, respectively.
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1 Introduction

Quite recently, considerable attention has been paid to

Deep Neural Networks (DNNs) in challenging computer-

vision research area. These DNN models are undergoing a

revolution in description and classification tasks due to

their capabilities of solving time-series-related issues. It

has been utilized in several applications such as speech and

image recognition, robot navigation systems, self-driving

cars and medical diagnosis. The deep learning architecture,

which imitates the human brain working, builds intelligent

neural network models to automatically learn complex data

sequences. These successful deep learning methods have

been extensively used in human action recognition, and

various newly researchers have shifted traditional machine

learning methods to successful deep learning approaches,

as reviewed in [1–6]. Convolutional Neural Networks

(CNNs) are neural networks consisting generally of

convolutional, pooling and fully connected layers utilized

for many image classification tasks [7, 8]. Forward neural

networks as CNNs cannot characterize time dependencies

of data sequences. Deep CNN forward neural network

models have achieved great success for visual-image

recognition. However, it has failed to characterize time

dependencies of video sequences. Video dynamics detec-

tion needs a system that knows the present, previous, and

next frames of a given video. Recurrent Neural Networks

(RNNs) are then defined to represent times-series infor-

mation based on recurrent hidden states over time steps.

Nevertheless, RNNs remain limited for very long time

dependency because of the vanishing gradient problem.

Therefore the solution is to use Long Short-term Memory

(LSTM) which improve the RNN performances by storing

multiple gating neural responses at each time-step to

exploit long time memory. Much recent research [9–11] on

action recognition based on LSTM has been developed.

The focus of recent research [12–15] has been on video-

level representation using CNNs to encode convolutional

features. In practice, it is hard to directly train a CNN

model from scratch with random initial parameters, which

needs a high computational architecture and hours or days
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of computation time for the training step. Comparatively,

training a CNN network with the large ImageNet dataset,

which contains 1.2 million images from 1000 different

classes, takes 2–3 weeks utilizing multiple Graphic Pro-

cessing Units (GPUs). Thus, it is common today to apply

pre-trained CNN models, which were previously learned

on a large challenging dataset, to successfully transfer

learning with a reduced runtime for the recognition system

based on limited dataset. Transfer learning from pre-trained

networks can be executed with two different ways. The first

approach consists in training the pre-trained model with a

new dataset to update the network parameters and get a

well action prediction. In the second method, the pre-

trained model is used to extract feature vectors from video

sequences by removing the fully connected output layer.

Accordingly, the second category has been widely devel-

oped for several action recognition architectures followed

by a classifier, such as LSTM, to form an end-to-end

model. End-to-end deep learning of the CNN-LSTM

[15–17] method is currently an efficient technique to rec-

ognize actions from the entire long time video sequences.

This framework has served to output the complex data for

action detection and segmentation and it has achieved

superior performances compared to traditional deep learn-

ing methods. Few researchers have addressed the problem

of sequence-to-sequence framework complexity. These

challenges motivate us to call into question how to define

an efficient and effective model for learning time-series

dependencies of action video sequences. The objective of

this paper is to define an efficient end-to-end model for

human action recognition with a low computational cost

and an effective accuracy improvement by optimizing

network parameters. First, convolutional feature vectors

are extracted from RGB video sequences based on a pre-

trained CNN. The pre-trained Inception-v3 model is uti-

lized for video-level representation. Second, the LSTM

recurrent network architecture is defined by optimizing its

parameters to get a well classification rate. Finally, the

feature outputs of the pre-trained model is applied to the

LSTM classifier giving an end-to-end CNN-LSTM archi-

tecture for video dynamics detection and recognition.

2 Literature review

Chéron et al. [18] developed a new method of Pose based

CNN (P-CNN) features for activity recognition from

videos. Color images and optical flow vectors were crop-

ped from video frames and their corresponding positions of

body joints. Two CNN layers, with five convolutional and

three fully-connected layers, were used to describe infor-

mative image regions of body joints. The first CNN net-

work pre-trained on the ImageNet dataset was trained with

the RGB frames to represent appearance information. The

motion information was defined by applying the optical

flow features to the second CNN layer which was pre-

trained using the UCF101 dataset. The concatenation of

both features presented the final P-CNN descriptor vectors

of action videos. Ng et al. suggested in [19] an efficient

classification method that combined information over full

length videos based on various DNN architectures. Two

AlexNet and GoogLeNet pre-trained CNN models were

applied to scratch video frames in order to encode convo-

lutional temporal features. The LSTM recurrent network

was then connected to the output of the CNN models to

perform ordered frame sequences and to predict activity

videos. The authors in [20] adapted an effective Region-

based CNN (RCNN) model for action classification. The

description was done in the region that contained people

and secondary regions with additional contextual cues,

which helped to improve the activity recognition system.

The stochastic gradient descent optimization method was

applied in the RCNN training step for prediction. An end-

to-end model was defined in [21] to describe action videos.

An optical flow descriptor was extracted from consecutive

frames to encode motion information. Color data and/or

motion descriptor vectors were applied for a pre-trained

CNN network in order to generate video representation.

After that, the LSTM network was trained by the output of

the pre-trained CNN to classify activity videos in a

sequence-to-sequence way. Wang et al. defined in [22] an

effective Temporal Segment Network (TSN) framework

for deep action recognition. TSN aims to encode long-term

temporal features by combining sparse temporal and spatial

sampling across whole action videos based on CNN

models. Two spatial and temporal stream learned CNNs

were used so as to represent the dynamic characteristics of

complex action sequences. The authors in [23] captured

frame order information utilizing a novel temporal con-

volutional pooling technique inspired from the CNN

functionality for action recognition. Motion features were

extracted by applying the improved dense trajectory

method to video sequences. Frame-level appearance

information was encoded by calculating convolution

operations at several local image regions using a CNN pre-

trained on the ImageNet challenging dataset. An order-

aware convolutional pooling approach was applied to the

obtained sequence of frame-level characteristics to get

dynamic video representation. A multi-region two-stream

CNN architecture was proposed in [24] for action detec-

tion. Motion and appearance information was represented

by applying Region Proposal Networks (RPN) to the

optical flow and RGB data, respectively. The improvement

in the recognition system was done by embedding a multi-

region approach to the CNN model. The end-to-end two-

stream CNN performed a well frame-level activity
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detection system. Lan et al. [12] developed an action

recognition system based on a deep local video descriptor.

The TSN method was trained by video sequences to form

local spatial and temporal CNN features. The Support

Vector Machine (SVM) classifier was matched by the

global video representations to get score prediction. Score-

level fusion was executed to the spatial and temporal pre-

diction output of SVM to perform the final action label. An

efficient and fast hidden two-stream CNN method was

defined in [25] to detect and classify human actions. A

fully convolutional network called MotionNet was trained

by video frames to encode optical flow features. The fine-

tuning of a temporal stream CNN was done utilizing this

estimated motion information in an end-to-end architecture

to predict the action label. A second spatial stream CNN

was trained by the input frames to extract appearance

features. Hidden two-stream CNNs were performed based

on late fusion that combined the obtained spatio-temporal

information for a powerful action recognition system.

Sargano et al. [16] presented an activity classification

approach based on transfer learning of a deep video rep-

resentation. the extraction of dataset frame features was

done using an AlexNet CNN model pre-trained on the

ImageNet dataset. A hybrid SVM and K-Nearest neighbor

classifier were matched by the information vectors to get

human action classes. A real-time and high-precision video

dynamics detection technique was introduced in [26] uti-

lizing a deep learning architecture. An RNN was imple-

mented to represent the time-series continuity of video

sequences. The dynamic detection of actions with a

reduced video size was made by combining the CNN and

RNN models together. The authors in [27] suggested two

Fully Convolutional Networks (FCNs) models based on

Temporal Pyramid Pooling (TPP) to represent video-level

features. One FCN layer was focused to encode appearance

information from color videos. Optical flow vectors were

learned by the other FCN in order to to characterize motion

information. A linear weighted method was performed to

fuse the output of the two FCNs representing the spatio-

temporal features of action videos. The classification step

of the activity sequences was executed by the SVM clas-

sifier. An extended Dynamic Time Recurrent Attention

Model (DT-RAM) was proposed in [28] for video repre-

sentation. DT-RAM was a deep recurrent network that

would extract the informative features from complex video

sequences by removing pointless image regions. This kind

of networks updated the next attention state and made a

decision with an extra binary action whether to stop the

computation while giving the classification rate or to con-

tinue calculation. DT-RAM was an end-to-end model that

would help to improve the action recognition score. An

accurate video representation method was studied in [17]

for human activity recognition with a Long-Term

Temporal CNN (LTC-CNN) model. Five space-time con-

volutional layers followed by three fully connected layers

were used to learn motion estimation. The LTC-CNN

architecture was considered as a well spatio-temporal low-

level representation approach. Shi et al. defined in [29] a

shuttleNet biologically-inspired deep network with feed-

ward and feedback connections for action classification.

The ShuttleNet contained different processors of gated

recurrent units connected together across several pathways

in a shuttle mode. A mechanism of attention was then

applied to choose the most efficient pathway with infor-

mative features. A novel Human-Related Multi-Stream

CNN (HR-MSCNN) framework was proposed in [13] to

recognize action sequences. HR-MSCNN aimed to extract

the discriminative video information based on different

Two-Stream CNN Networks (TS-NETs). Three TS-NETs

were trained to encode body motion estimation and three

TS-NETs to represent appearance description. The final

video-level representation was characterized by the con-

catenation of the six stream outputs based on the spatio-

temporal 3D convolutional fusion method. The authors in

[30] presented an end-to-end framework to characterize

video features for an action recognition system. TS-NETs

were applied utilizing color and optical flow data to encode

spatio-temporal feature vectors. Frame-level temporal

characteristics of human activities were captured by a deep

TPP layer. Yan et al. [31] solved the problem of sequence-

to-sequence RNN complexity by suggesting a Hierarchical

Multi-scale Attention Network (HM-AN). The HM-AN

algorithm was performed by concatenating hierarchical

multi-scale RNNs with hard and soft attention mechanisms

in order to learn the relevant video information. Rein-

forcement learning with the Gumbel-Softmax method was

implemented to generate a stochastic hard attention. Hier-

archical temporal features were detected by HM-AN to

learn the long-term dependencies of the video-action

recognition system. An important video-level representa-

tion approach was introduced in [14] using an Attention-

based Temporal Weighted (ATW) CNN technique. Video

data were grouped into different snippets, where each

snippet contained three ATWs of the spatial RGB ResNet,

temporal flow ResNet and Warped flow ResNet image

features to get action probabilities. The obtained sequences

of temporal weights were learned utilizing an attention

mechanism, and the action-video prediction was done with

a weighted sum method to fuse the three snippet modali-

ties. The authors developed in [15] a Recurrent Spatial-

Temporal Attention Network (RSTAN) model for person

identification in complex video sequences. An improve-

ment of the classical LSTM network was performed by

adding a spatial-temporal attention technique that helped

end-to-end trained model to learn relevant space-time

video dependencies. Actor-attention regularization was
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introduced in RSTAN for the reinforcement learning of

additional information around actors, which was helpful to

improve the action recognition rate.

3 Proposed architecture

We present an end-to-end CNN-LSTM architecture, as

shown in Fig. 1, for human action representation and

classification which will be detailed in this section.

3.1 CNN

CNN is a feed-forward artificial neural network type

which has been successfully applied in several image

classification and recognition systems [13, 14, 32]. CNN

like all networks, includes input, hidden and output lay-

ers. Generally, CNN hidden layers are structured as a

series of convolutional, pooling and fully connected lay-

ers. The first convolutional layer is intended to extract the

local spatial features of the input images based on the

kernel filter involving multiple channels. The filter is slid

over the entire input image to calculate a dot product

between the filter weights and the pixel values, as illus-

trated in Fig. 2. Given an input image I with C ¼ 3

channels (RGB) and a Kernel filter K as a weight matrix

of a k1*k2 shape, the convolutional equation can be

expressed as follows:

rðI � KÞij ¼ r
Xk1�1

m¼o

Xk2�1

n¼o

XC

c¼o

Km;n;c � Iiþm;jþn;c

 !
ð1Þ

where r is the activation function, typically a Rectified

Linear Unit (ReLU). The ReLU layer is an element-wise

approach that consists in replacing the negative values in

the feature map by zero, based on the following equation:

rðxÞ ¼ maxðx; 0Þ ð2Þ

Pooling, or also called downsampling layers are applied

after the ReLU operation to reduce the spatial dimension of

the input volume, thus diminishing the computation cost,

controlling the overfitting network problem and keeping

the most relevant features invariant to scale and orientation

changes. Several pooling categories have been utilized in

deep learning literature include max, average and

stochastic pooling methods. The max-pooling layer is

considered as the most widely used method in the CNN

architecture by sliding a window across the input to find the

highest values. The final layer represents the fully-con-

nected layer in which all the input neurons are completely

connected to the previous layer nodes. These dense layers

perform a classification step by transforming the features

extracted by the convolutional layers and downsampled by

the pooling layers to a class scores. The fully-connected

layer with a K-dimensional vector is followed by a softmax

activation function to generate a value in the range of (0,

1), which is given by:

rðxÞj ¼
exj

PK
k¼1 e

xk
ð3Þ

3.2 LSTM

The LSTM network [9–11] is an RNN-developed archi-

tecture with memory blocks in recurrent hidden layers to

remember cell information over a long time. This kind of

recurrent networks solves the vanishing gradient problems

of classical RNNs by inserting input, output, and forget

gates that maintain long-term memory. LSTM cell states

are modified by gate units in order to control information

using the previous cell hidden state ht�1 and the current cell

input Xt. The forget gate ft decides the information parts

that will be forgotten from the previous state (ct�1) and the

relevant parts that will be stored in the cell state

Fig. 1 Proposed architecture
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multiplying matrix by zero or one, respectively, according

to information significances. New information was added

to the cell state based on the input gate it determinated by

wi and bi parameters. A new internal memory state ct is

defined combining ct�1 multiplied by the ft values with the

latterly computed hidden state. The final hidden state cell

output ht is calculated utilizing the output gate, which

highlights the ct parts that will be stored to the next hidden

state. The equations of the LSTM gate units are given as

follows:

ft ¼ rðwf ½ht�1;Xt� þ bf Þ ð4Þ

it ¼ rðwi½ht�1;Xt� þ biÞ ð5Þ

ct ¼ ft � ct�1 þ tanhðwc½ht�1;Xt� þ bcÞ ð6Þ

ot ¼ rðwo½ht�1;Xt� þ boÞ ð7Þ

ht ¼ tanhðctÞ � ot ð8Þ

where rðxÞ ¼ 1
1þe�x is a sigmoid activation function, wf ;i;o

are the weight matrices, bf ;i;o are the bias, and � is an

element-wise product operation.

3.3 End-to-end model

The CNN architecture has two functions: (i) a visual fea-

ture representation approach using convolutional, ReLU

and pooling layers and (ii) classification technique with

fully-connected and softmax layers. In practice, very little

research work has learned a CNN network directly from

image inputs, which is a very hard architecture that takes

days of training on large datasets such as ImageNet.

Instead, it is common to fine-tune pre-trained CNN models

using a new dataset by updating network parameters. Pre-

trained CNN networks are trained on a challenging dataset

to get network parameters. Transfer learning is done by

applying these shared pre-trained parameters as an initial-

ization or a fixed feature extractor for the representation

and classification task in order to reduce the computation

time. There are many challenging datasets utilized to define

pre-trained CNNs such as ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [8] with 1.2 million

images from 1000 classes, CIFAR10 including 60,000

images from ten categories and UCF101 with 13,320

videos divided into 101 actions. In our work, we apply

mxnet models pre-trained with ILSVRC, which include

CaffeNet [8], NiN [33], SqueezeNet [34], VGG [35], resnet

[36], resnext [37], inception-BN and Inception-v3 [38]

models, as detailed in Table 1.

4 Experimental results

We analyze in this part the obtained results of our end-to-

end architecture for human action recognition.

4.1 Dataset

To illustrate the validity of our proposed method, several

experiments are carried out based on the University of

Texas at the Dallas Multimodal Human Action Dataset

(UTD-MHAD). UTD-MHAD is a multimodal human

action dataset in an indoor environment defined by Chen

et al. in [39]. Four data modalities including color, depth,

skeleton joint positions and inertial sensor signals were

collected from a kinect camera and a wearable inertial

sensor. Twenty-seven human actions were performed in

this dataset, as detailed in Table 2. Each action was repe-

ated four times by eight subjects to get 861 total data

sequences after eliminating three invalid videos. Two dif-

ferent experiments based on the UTD-MHAD dataset are

defined in order to compare our method with the state of

the art. In the first Half-Subject (UTD-MHAD HS)

experiment, the data provided by the subject 1, 3, 5, and 7

are chosen for the training step and the remaining subject

sequences for the testing step. The second Subject-Specific

(UTD-MHAD SS) experiment consists in using the two

first repetitions in training and the last three repetitions in

testing.

Fig. 2 Convolutional layer
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4.2 Implementation details

The implementation of our end-to-end architecture is done

using the python algorithm with the flexible and efficient

mxnet deep learning library.

RGB video actions are downsampled in frame sequen-

ces of 229*229, which are used to finetune the Inception-v3

[38] mxnet model pre-trained on the ImageNet dataset. As

it can be seen from Table 1, Inception-v3 is the best pre-

trained model to encode convolutional video features. The

visual features of the UTD-MHAD dataset are extracted by

removing the last fully-connected layer of Inception-v3

CNN network. For the video action classification part, we

utilize a four-layer LSTM recurrent network with 1000

hidden layer units for UTD-MHAD HS and 1100 ones for

UTD-MHAD SS experiments, which give good results as

depicted in Figs. 3 and 4, respectively. The signum

approach [40] is implemented for model-parameter opti-

mization. we adapt our algorithm with a learning rate of

5 � 10�4, a batch size of 32, a number of epochs of 800,

and a dropout with a ratio of 0.5 in order to capture the

complexity of data. With GPU memory and these opti-

mized hyperparameters, we design our end-to-end deep

learning architecture that shows performing results.

4.3 Comparison with state-of-the-art

To verify the efficiency of our end-to-end human action

recognition architecture, we carry out the experimental

simulations based on the UTD-MHAD public dataset. Our

approach was compared with previous activity recognition

methods, as presented in Tables 3 and 4. It is clear from

these tables that our optimized architecture shows an

important advantage in recognition accuracy over current

methods. Table 3 represents the first simulation with the

UTD-MHAD HS experiment, It is found that our method

advances the approach [41] which encodes features based

Fig. 3 Accuracy variation according to number of hidden layers

Table 1 Mxnet pre-trained models

Pre-trained model Year Layer numbers Parameter size (MB) Top-1 accuracy (%) Top-5 accuracy (%)

CaffeNet 2012 5 conv ? 3 FC 233 54.5 78.3

Network in network (NiN) 2014 12 conv ? 1 softmax 29 58.8 81.3

SqueezeNet v1.1 2016 26 conv ? 1 softmax 4.7 55.4 78.8

VGG16 2015 13 conv ? 3 FC 528 71.0 89.8

VGG19 2015 16 conv, 3 FC 548 71.0 89.8

Inception-BN 2012 69 conv ? 1 FC 43 72.5 90.8

Inception-v3 2015 94 CON ? 1 FC 91 76.88 93.3

ResNet-50 2015 53 conv ? 1 FC 98 75.4 92.6

Resnext-50 2015 49 res-conv ? 1 FC 96 75.4 92.6

Table 2 UTD-MHAD dataset

actions
Swipe left Swipe right Wave

Clap Throw Arm cross

Basketball shoot Draw X Draw circle (clockwise)

Draw circle (counter clockwise) Draw triangle Bowling

Boxing Baseball swing Tennis swing

Arm curl Tennis serve Push

Knock Catch Pickup and throw

Jog Walk Sit to stand

Stand to sit Lunge Squat

28 Analog Integrated Circuits and Signal Processing (2019) 99:23–32

123



on extracting the Histogram of Oriented Gradients (HOG)

from Depth Motion Maps (DMM) by a recognition rate of

around 17%. There is also an accuracy improvement of

19.3% comparing to the kinect and inertial feature fusion

approach presented in [39]. Our solution outperforms the

score fusion [32] method using the naive Bayesian

approach by a rate of 7.9%. The second UTD-MHAD SS

experiment results are given in Table 4. These results show

as well that our proposed architecture enhances the meth-

ods defined in [48] and in [32] by a recognition rate of

1.3% and 6.9% respectively. This finding further

strengthens our conviction that the end-to-end deep learn-

ing approach is an effective way to improve human action

system performances.

4.4 Runtime and memory consumption

These experiments are carried out in computer with a GPU

and a Central Processing Unit (CPU). The CPU is an Intel

XEean E5-2620v4 with memory of 32 GB DDR4-2400 and

8 cores. The GPU is a Quadro M4000 with memory of 8

GB GDDR5, 1664 core numbers and 256 bits of memory

interface, and PCI Express 3:0� 16 of system interface.

The GPU implementation is provided by the python algo-

rithm based on the mxnet deep learning library to extract

and classify RGB human action videos. Table 5 provides

the runtime and memory consumption of feature extraction

and classification parts provided in the UTD-MHAD HS

dataset experiment.

Convolutional feature extraction utilizing the pre-trained

Inception-v3 model takes 6 h of computing time and 566

MiB of memory cost with Quadro GPU. Human action

classification based on the LSTM network is executed

during 2.2 h with 1123 MiB of memory consumption.

Figure 5 compares the execution time between CPU and

GPU for the classification part given with UTD-MHAD HS

dataset experiment. The network classification step lasts

2.2 h and 50.4 h on GPU and CPU, respectively. Quadro

GPU speeds up the used solution compared with CPU with

a factor of around 23.

4.5 Discussions

The main concern of the paper is to define an efficient end-

to-end architecture for human activity representation and

classification. Particular attention is paid to optimize net-

work hyperparameters to get a low computational cost and

an accurate solution. As depicted in Tables 3 and 4, our

Fig. 4 Accuracy variation according to number of LSTM layers

Table 3 Comparison of state-of-art for UTD-MHAD HS experiment

References Year Architecture Score (%)

[41] 2012 DMM–HOG 81.5

[39] 2015 Kinect 66.1

[39] 2015 Inertial 67.2

[39] 2015 Kinect and inertial 79.1

[42] 2015 DMM 73.4

[43] 2015 LOGP for decision fusion 88.4

[44] 2016 GF ? LF 84.8

[45] 2016 Deep CNN 87.9

[46] 2017 3D HOT-MBC 84.4

[47] 2017 VDDM ? CRC 85.1

[32] 2017 Score fusion with naive Bayesian 90.5

Our method 2018 End-to-end CNN-LSTM 98.4

Table 4 Comparison with the

state of art for UTD-MHAD SS

experiment

References Year Architecture Score (%)

[48] 2016 Kinect 85.1

[48] 2016 Inertial 88.3

[48] 2016 Kinect and inertial 97.2

[32] 2017 Score fusion of CRC, SRC, and KELM 91.6

Our method 2018 End-to-end CNN-LSTM 98.5

Table 5 Runtime and memory consumption for UTD-MHAD HS

Time (h) Memory consumption (MiB)

Feature extraction 6 566

Classification 2.2 1123

Analog Integrated Circuits and Signal Processing (2019) 99:23–32 29

123



end-to-end architecture achieves a recognition rate of

98.4% for UTD-MHAD HS and 98.5% for UTD-MHAD

SS dataset experiments. These findings point to the use-

fulness of our method as an efficient action information

representation and classification solution. This used tech-

nique improves the best published results by a rate of 7.9%

and 1.3% for the UTD-MHAD HS and UTD-MHAD SS

dataset experiments respectively. The obtained experi-

ments are in good agreement with other studies which

demonstrate the effectiveness of the deep learning model

for activity recognition. It is noticeable that end-to-end

neural network techniques are not new, but we optimize in

this paper the network parameters in order to make the

model more powerful for action recognition. The results

have a number of possible limitations, namely the execu-

tion of the used algorithm in real time. A hardware

implementation can be applied utilizing field-pro-

grammable gate arrays and compared with GPU results,

which may speed up our proposed architecture.

5 Conclusion

In this paper, we have described an optimized end-to-end

deep learning architecture for human action recognition.

First, color action videos have been sampled into sequence

frames. Second, convolutional feature vectors have been

encoded from the frames based on an Inception-v3 model

pre-trained in the ImageNet dataset. Finally, video action

classification has been done using deep LSTM network.

The evidence from this study points towards the idea that

the end-to-end deep learning model is a powerful method

to represent and classify complex informations. The find-

ings insure that we have succeeded in describing an

accurate model by optimizing network parameters. Further

work needs to carry out the hardware implementation of

our algorithm in order to get a faster and accurate method.
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