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Abstract
Memristor crossbar arrays carry out multiply–add operations in parallel in the analog domain, and can enable neuro-

morphic systems with high throughput at low energy and area consumption. Neural networks need to be trained prior to

use. This work considers ex-situ training where the weights pre-trained by a software implementation are then programmed

into the hardware. Existing ex-situ training approaches for memristor crossbars do not consider sneak path currents, and

they may work only for neural networks implemented using small crossbars. Ex-situ training in large crossbars, without

considering sneak paths, reduces the application recognition accuracy significantly due to the increased number of sneak

current paths. This paper proposes ex-situ training approaches for both 0T1M and 1T1M crossbars that account for crossbar

sneak paths and the stochasticity inherent in memristor switching. To carry out the simulation of these training approaches,

a framework for fast and accurate simulation of large memristor crossbars was developed. The results in this work show

that 0T1M crossbar based systems can be 17–83% smaller in area than 1T1M crossbar based systems.

Keywords Memristor crossbars � Neural networks � Training � Ex-situ training � Sneak paths � Low power pattern

recognition system

1 Introduction

Device variability and power consumption are among the

main obstacles for continued performance improvement of

future computing systems. Neural network applications

have diverse uses in multiple areas including pattern

recognition, signal processing, image processing, image

compression, and classification of remote sensing data.

Recently deep neural networks are becoming increasingly

popular for object recognition and computer vision appli-

cations [1]. Interest in specialized architectures for accel-

erating neural networks has increased significantly because

of their ability to reduce power, increase performance, and

allow fault tolerant computing.

Memristors [2] have received significant attention as a

potential building block for neuromorphic systems [3].

Memristor devices implemented in a crossbar structure

[3, 4] can evaluate many multiply–add operations in par-

allel in the analog domain very efficiently (these are the

dominant operations in neural networks). Memristor

crossbar based neural network systems can be orders of

magnitude more area, power, and throughput efficient

compared to the traditional computing systems [4].

Neural networks need to be trained prior to use. There

are several training algorithms that can be used, all of

which adjust synaptic weights within the network to

achieve the desired functionality. In memristor crossbars,

the training process would essentially set the conductance

of individual memristors. There are two different approa-

ches commonly used for training memristor crossbar based

neural hardware: in-situ training and ex-situ training. The

in-situ approach requires the circuit implementing the

training algorithm to be on the chip. The training data

would be applied to the system and the memristor
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conductivity values (representing synaptic weights) would

be updated iteratively [5].

In ex-situ training, a neural network is trained in soft-

ware, and the final sets of weights are then downloaded into

the physical memristor crossbars. This approach does not

require training circuits to be on the memristor chip, and

thus offloads training complexity. Although, ex-situ train-

ing is less tolerant to crossbar defects such as stuck faults

and device variations [3, 6].

Programming a memristor crossbar is challenging

because a significant amount of variation is present

between devices [7]. This means that identical voltage

pulses may not induce identical amounts of resistance

change in different memristors within a crossbar. As a

result, an iterative feed-back process is necessary for pro-

gramming memristor devices. Upon each iteration, a new

device state is measured after each adjustment pulse is

applied. This process is repeated until the target memristor

is successfully programmed.

The two different memristor crossbar layouts that are

studied in this work are 0T1M (0 Transistor, 1 Memristor)

and 1T1M (1 Transistor, 1 Memristor) crossbars. In a

1T1M crossbar, there is an isolation transistor at each

cross-point allowing any individual memristor to be

accessed and read. In a 0T1M crossbar, the lack of isolation

devices means that a read from the crossbar would be based

on multiple memristors due to sneak path currents as

explained in [16]. Sneak paths in 0T1M crossbars make

reading the resistance of an individual memristor chal-

lenging (detailed in Sect. 5.3). Therefore ex-situ training of

0T1M crossbar based neural networks becomes

challenging.

Ex-situ training in large crossbars, without considering

sneak paths, reduces the application recognition accuracy

significantly. Most of the existing works [3, 6] examined

only neural networks built with small memristor crossbars.

Works in [10, 11] examined ex-situ training on large

crossbars, but did not consider crossbar wire resistance and

sneak paths. To the best of our knowledge, no existing

work demonstrate ex-situ training on large memristor

crossbar based neural network considering crossbar wire

resistance and sneak paths. We believe, main reason behind

this is a lack of suitable simulation tool. The SPICE sim-

ulation of a large memristor crossbar (size over

100 9 100) is very time consuming (about a day per iter-

ation). We proposed a MATLAB framework for large

memristor crossbar simulation which is very fast (less than

a minute per iteration) compared to SPICE.

Ex-situ training approaches for both 0T1M, and 1T1M

crossbars considering crossbar sneak paths have been

developed in this work. These approaches can be very

effective for deep networks which require large memristor

crossbars. The proposed ex-situ training approach is able to

tolerate stochasticity in memristor devices, and we have

examined the impact of device variation on the proposed

ex-situ training approach.

The following sections are organized as follows: Sect. 2

describes memristor based neuron circuit and neural net-

work designs. Section 3 demonstrates the challenges in

programming large memristor crossbar based neural net-

works. The proposed ex-situ training process is elaborated

in Sect. 4. Section 5 demonstrates experimental results and

finally in Sect. 6 we summarize our work.

2 Memristor crossbar based neuron circuit
and neural network

Figure 1 shows a block diagram of a two layer feed-for-

ward neural network. Each neuron in this network performs

two types of operations: a dot product of its inputs and

weights (see Eq. 1), and an evaluation of a nonlinear

function (see Eq. 2). If the inputs to a neuron, j are xi and

the corresponding synaptic weights are wi,j then the dot

product of the inputs and weights is given by:

dpj ¼
X

i

xiwi;j ð1Þ

while the neuron output is given by:

yj ¼ f dpj
� �

ð2Þ

In Eq. 2, f(dpj) is the activation function of the neuron.

In a multi-layer feed forward neural network, a non-linear

differentiable activation function (such as f(dpj) = [1/

(1 ? e-x)] - 0.5) is desired. Deep neural networks [1] are

variants of multi-layer neural networks which contain a

large number of layers with a large number of neurons per

layer. Neural networks with a large number of layers and a

high neuron count per layer enable construction of complex

nonlinear separators that allow for the classification of

complex datasets.

Layer 1
Output layerInput layer

Fig. 1 Diagram showing a two layer neural network with four inputs,

three hidden neurons, and four output neurons
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2.1 Neuron circuit

The conductance of a memristor in a crossbar can be

altered by dynamically applying an appropriate voltage

across it. The voltage across a memristor typically needs to

surpass a threshold voltage (Vwt) in order to change the

device conductance (for some devices Vwt= 1.3 V [7]). If a

voltage less than Vwt is applied across a memristor, it will

behave like a regular resistor. This paper utilizes memris-

tors as neuron synaptic weights.

The circuit in Fig. 2(a) shows the memristor based

neuron circuit design utilized in this paper. In this circuit,

each data input is connected to two virtually grounded op-

amps (operational amplifiers) through a pair of memristors.

For a given row, if the conductance of the memristor

connected to the first column (rA
?) is higher than the con-

ductance of the memristor connected to the second column

(rA
-), then the pair of memristors represents a positive

synaptic weight. In the inverse situation, when rA
?\ rA

-,

the memristor pair represents a negative synaptic weight.

As shown below, the two op-amps can be configured to

approximate a sigmoid activation function.

In Fig. 2(a), currents through the first and second col-

umns are ArAþ þ � � � þ brbþ and ArA� þ � � � þ brb�
respectively. The output of the op-amp connected directly

with the second column represents the neuron output. In the

non-saturating region of the second op-amp, the output yj
of the neuron circuit is given by

yj ¼ Rf ArAþ þ � � � þ brbþ
� �

� ArA� þ � � � þ brb�
� �� �

¼ Rf A rAþ � rA�ð Þ þ � � � þ b rbþ � rb�
� �� �

Assume that

DPj ¼ 4Rf A rAþ � rA�ð Þ þ � � � þ b rbþ � rb�
� �� �

here 4Rf is a constant
� �

When the power rails of the op-amps, VDD and VSS are

set to 0.5 V and - 0.5 V respectively, the neuron circuit

implements the activation function h(x) as in Eq. (3) where

x ¼ 4Rf A rAþ � rA�ð Þ þ � � � þ b rbþ � rb�
� �� �

. This

implies, the neuron output can be expressed as h(DPj).

h xð Þ ¼
0:5 if x[ 2
x

4
if xj j\2

�0:5 if x\� 2

8
<

: ð3Þ

Figure 3 shows that h(x) closely approximates the sig-

moid activation function, f xð Þ ¼ 1= 1 þ e^ �xð Þð Þ � 0:5.

The values of VDD and VSS are chosen such that no mem-

ristor gets a voltage greater than Vth across it during

evaluation. Our experimental evaluations consider mem-

ristor crossbar wire resistance. The schematic of a mem-

ristor based neuron circuit considering wire resistance is

shown in Fig. 2(b).

2.2 Memristor based neural network implementation

Figure 4 shows a memristor crossbar circuit used to eval-

uate the neural network in Fig. 1. There are two memristor

crossbars in this circuit, each representing a layer of neu-

rons. Each crossbar utilizes the neuron circuit shown in

Fig. 2.

In Fig. 4, the first layer of the neurons is implemented

using a 5 9 6 memristor crossbar. The second layer of four

neurons is implemented using a 4 9 8 memristor crossbar,

where three of the inputs are coming from the three output

neurons of the first crossbar. One additional input is used as

a bias. A key benefit of this circuit is that by applying all

the inputs to a crossbar, an entire layer of neurons can be

processed in parallel within one cycle. Implementation of a

memristor based deep network is similar. As deep networks

typically have large numbers of neurons (each with a large

number of inputs), large memristor crossbars would be

required for such neural networks.

A
B

β

yj

+ -

+ -

Memristor

C

Synapse

R
Rf

R

A

B

β

C

yj

R

Rf

R+     -

+     -

Crossbar wire segment resistanceσ σ+A −A

(a) (b)

Fig. 2 Memristor based neuron circuit. A, B, C are the inputs and yj is

the output

-5 0 5
-0.5

0

0.5

x

f(x)
h(x)

Fig. 3 Plot of functions f(x) and h(x)
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2.3 Traditional ex-situ training approach

The objective of the ex-situ training process is to set each

memristor in the crossbar to a specific resistance. Because

the memristor devices have stochastic behavior, multiple

write pulses may be required to set a memristor to a target

state, and reads will have to be performed after each write

pulse to ensure correct programmability. This is essentially

a feedback write process that requires the ability to read the

resistance of each individual memristor in a crossbar.

Writing to a single memristor in a crossbar is relatively

straight forward compared to reading. To write, a voltage

drop Vw should be applied to a target memristor, while a

voltage drop less than the threshold Vth should be applied

to all other memristors [8]. Figure 5 shows how to change

the conductance of a single memristor while keeping the

conductance of the remaining memristors in the crossbar

unchanged.

Programming a 1T1M crossbar: In the ex-situ training

process, reading an individual memristor resistance levels

in a crossbar is challenging due to sneak paths. Placing a

transistor at each cross-point (Fig. 6) will ensure that only

the resistance of the target memristor is impacting the

column current during the read process as in a 1T1M

crossbar [9]. In this process, only the setect line (Sri) cor-

responding to the target memristor is enabled.

Programming a 0T1M crossbar: Ex-situ training in

0T1M crossbars has a significant area benefit over 1T1M

crossbars due to the elimination of the cross-point tran-

sistors. Figure 7 shows the circuit used to read a particular

memristor from a 0T1M crossbar. An op-amp is utilized at

the bottom of the corresponding crossbar column and a

read voltage, - VR is applied to the corresponding row.

The remaining rows and columns in the crossbar are set to

0 V. In an ideal circuit, the op-amp output can be expressed

as Vo= VR9 (Rf/R1), which is a function of only R1 as Rf

and VR are constant. But in a real circuit, the voltage Vo is

essentially a function of all the memristors in the crossbar

due to sneak path currents. Works in [3, 6, 10, 11] examine

ex-situ training in 0T1M crossbar without considering

crossbar parasitic resistance. Those approaches may work

for small crossbar based implementations but would not

perform desirably for large crossbar based implementations

(detailed in Sect. 3.3).

3 Large crossbar ex-situ training challenges

3.1 Large crossbar simulations

Recall that large deep networks require large memristor

crossbars. The SPICE simulation of large memristor

crossbars (size over 100 9 100) is very time consuming

(about a day per iteration). This section presents a

MATLAB framework for large memristor crossbar simu-

lation which is very fast (less than a minute per iteration)

compared to SPICE, and is as accurate as SPICE when

yj

R

Rf

R+  -

+  -

C

β

A

B

In
pu

ts

Layer 2 crossbar

D

β

Outputs

Layer 1 crossbar

Fig. 4 Schematic of the neural network shown in Fig. 1

(a) (b)

0 V0 V0 V

Vw /2 

-Vw /2 

0 V

0 V

0 V

0 V0 V0 V

-Vw /2 

Vw /2 

0 V

0 V

0 V

Fig. 5 Demonstration of the write operation in a crossbar: a increasing

memristor conductance (upward arrow) and b decreasing memristor

conductance (downward arrow)

-VR

Sr1

Sr2

Sri

SrN

+    - Rf

Vo

Fig. 6 Accessing a memristor in

a 1T1M crossbar. Each of the

select lines (Sr1, Sr2,…, SrN)

enables a row of memristors in

the crossbar
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accounting for crossbar wire resistances and driver

resistances.

Consider the M 9 N crossbar in Fig. 8. There are MN

memristors in this crossbar circuit, 2MN wire segments,

and M input drivers. For any given set of crossbar input

voltages, 2MN node voltages need to be determined. The

Jacobi method of solving systems of linear equations is

used to determine these unknown voltages. All the nodes

within the crossbar rows (Vri,j for i = 1,2,…,M and

j = 1,2,…,N) are initialized to the applied input voltages,

while each of the nodes on the crossbar columns (Vci,j for

i = 1,2,…,M and j = 1,2,…,N) are initialized to 0 V (due to

the virtually grounded op-amp circuits in Fig. 2(a)).

Then currents through each of the memristors (I(mi,j) for

i = 1,2,…,M and j = 1,2,…,N) are determined based on the

initial values of Vri,j, Vci,j and the known memristor

resistances. The currents through the horizontal and verti-

cal wire resistors (I(wri,j) and I(wci,j) for i = 1,2,..,M and

j = 1,2,…,N) are determined based on the measured cur-

rents through the memristors using the Kirchoff’s current

law. The voltage drops across the wire resistances are

determined based on the measured currents through them.

Then the crossbar node voltages (Vri,j and Vci,j for

i = 1,2,…,M and j = 1,2,…,N) are adjucted (based on the

voltage drops across the wire resistances and the applied

input voltages). This process is repeated until the node

voltages reach a stable solution.

We have compared the crossbar simulation results

obtained from SPICE and the MATLAB framework for

crossbars of sizes 100 9 100, 200 9 200, and 300 9 300.

In these three crossbars 1 V is applied as input to the

leftmost point of each row, while the bottom of the

crossbar columns are grounded. The conductance of the

each memristor in the crossbars is set to 0.55 lS [7] and

each wire segment resistance is set to 5 X. In an ideal

circuit (ignoring the crossbar wire resistance) the potential

across the memristors will be 1 V. Figure 9 shows the

voltage drop across the memristors in the crossbar from

SPICE simulation and the difference between SPICE and

the MATLAB framework results. In Fig. 9 (left column),

the voltage across the memristors are plotted from the 1st

row to the last row, and from left to right within each row.

Figure 9 (left column) shows the potential across the

memristors in crossbars of different sizes obtained through

SPICE simulation. Right column shows the difference of

the corresponding potentials across the memristors in the

crossbars, obtained form SPICE and the proposed

MATLAB framework based simulations. We can observe

that the corresponding results from both simulations are

very close (absolute values of the difference of the corre-

sponding values are less than 2 9 10-6). These results also

imply that sneak paths were properly evaluated in the

MATLAB simulations.

3.2 Impact of sneak paths in a large crossbar

From Fig. 9 it can be seen that as we increase the crossbar

size impact of sneak paths become more severe. In the

300 9 300 crossbar potential across the memristors were

between 0.8 V to 1 V. We also have examined the impact

of sneak paths in a 617 9 400 crossbar which is utilized in

a neural network implementation in the following subsec-

tion. Conductance of each memristor in the crossbar is 0.55

lS and 1 V is applied as input to the leftmost point of each

row. We could not simulate such big crossbar using our

version of the LTspice-IV. Figure 10 shows the resulting

voltage drop across each memristor in this crossbar

obtained through the MATLAB framework. In an ideal

circuit, the voltage across each memristor would be 1 V.

However, due to the sneak paths in the crossbar, the actual

voltage drop across these memristors is less than 1 V. In

+    -

. . .. . .

Rf

Vo

R1
-VR

0 V

0 V

0 V

-

+

Rf

-VR

R1

Vo

Fig. 7 Reading a particular memristor from a 0T1M crossbar. In an

ideal case, the circuit at right is functionally equivalent to the circuit

at left

y1

.

.

.In
pu

ts

. . .

yN/2

VM

V1

yj

R

Rf

R+  -

+  -

Vri,j

Vci,j

I(wrp,q)

I(wcp,q)

Fig. 8 Schematic of a M 9 N crossbar implementing a layer of N/2

neurons
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fact, the minimum potential across a memristor in the

crossbar is 0.55 V.

Plots in Fig. 10 assume the schemetic of the crossbar as

shown in Fig. 8. Potential across the memristors in

Fig. 10(b) are plotted from left to right in a row. In

Fig. 10(c), potential across the memristors are plotted from

top to botton in a column. Figure 10(b) shows that in a row

from left to right potential across the memristors gradually

decreases. Reasoning behind this is in a row the rightmost

memristor has relatively longer wire in the path from a

driver to a sink. Figure 10(c) shows that in a column from

top to bottom potential across the memristors gradually

increases. Reasoning behind this is in a column the bottom

memristor has relatively shorter wire in the path from a

driver to a sink (see Fig. 8).

3.3 Impact of sneak paths in ex-situ training
of 1T1M crossbars

Existing ex-situ training approaches train neural networks

without considering sneak paths that may occur within a

crossbar. For small scale neural networks (e.g. network for

Iris dataset) traditional ex-situ training works satisfactorily

[3, 6]. But for large neural networks, traditional training

approach does not work well. We have examined ex-situ

training for ISOLET dataset [12] using the existing

approach (which does not consider crossbar sneak path

currents). The ISOLET dataset has 6238 training data and

1559 test data belonging to 26 classes. Each data sample

has 617 attributes. We have considered the following

neural network configuration: 617 ? 200 ? 26 (617

inputs, 200 hidden neurons and 26 output neurons).

We programmed the weights obtained using the sim-

plified ex-situ training approach (that ignores wire resis-

tance) into a crossbar where each wire segment has a

resistance of 5 X. Recognition error on test dataset in

software was 9.49%. After the trained weights were pro-

gramed into 1T1M crossbars, we used the proposed

MATLAB framework for the evaluation of the neural

network which accounts sneak path currents. In this case

the recognition error is increased to 13.08%. This is due to

the presence of sneak paths in the recognition phase (as all

the cross-point transistors are turned on and entire crossbar

is processed in parallel).
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4 Proposed ex-situ training process

We have examined ex-situ training approach using both

0T1M, and 1T1M crossbars that accounts for crossbar

sneak paths. The neural networks trained in software

essentially account for the wire resistance within memristor

crossbars (using the framework described in Sect. 3.1).

After training we have the trained memristor conductances

which need to be programed in the crossbars. We quantized

the conductances into 8 bit representations before pro-

gramming the memristors.

Programming a 1T1M crossbar: Reading the conduc-

tivity of a particular memristor in a 1T1M crossbar is

straightforward, as the crosspoint transistors are able to

effectively eliminate sneak paths. As a result, programming

memristor conductance values in a 1T1M crossbar is also

straight forward. During evaluation/recognition of a new

input, all the transistors in a 1T1M crossbar will be turned

on. Thus the recognition phase is still prone to sneak path

currents. However, since the memristor conductance values

were determined in software considering the crossbar sneak

paths (using the proposed simulation tool), this should not

be a problem.

Programming a 0T1M crossbar: On the other hand,

reading a single memristor from a 0T1M crossbar is

complex due to sneak paths as stated in the previous sec-

tion. In Fig. 7, Vo is essentially a function of all the

memristors in the crossbar due to these unwanted sneak

paths. If other memristor conductance values are known,

we can determine expected value of Vo for a target value of

R1 (in Fig. 7) from the software simulation of the circuit.

For programming memristors in a 0T1M crossbar we

propose to initialize all the memristors in the crossbar with

the lowest possible conductance value of the device. Then

the memristors in the crossbar will be programmed one by

one. Thus when programming a particular memristor in the

crossbar, we will know the conductance of the rest of the

memristors in the crossbar. During programming, for each

memristor the expected read voltage will be evaluated in

software, based on the initialization of the memristors

(lowest conductance) and the already programmed con-

ductances. These expected read voltages account the sneak

paths. A target conductance will be programmed in the

physical memristor crossbar based on the corresponding

expected read voltages. Thus the ex-situ training process

takes sneak paths into consideration for a 0T1M crossbar.

Recognition accuracy for both types of crossbar designs

(0T1M and 1T1M) would be about the same as both

approaches take sneak paths into consideration. But the

0T1M systems are more area efficient than the 1T1M

systems.

Training circuits needed: We assumed that the ex-situ

programming process will be coordinated by an off-chip

system and so added only the necessary hardware needed

to allow the external system to program the crossbars.

These include two D-to-A converters, along with a set of

buffers and control circuits per crossbar. The use of two

D-to-A converters per crossbar will serialize the pro-

gramming process for each crossbar. We assume this is not

a problem as this system will be programmed once and

then deployed for use. A proposed circuit for the training is

shown in Fig. 11. Since memristors will be programmed

one at a time, only one of these circuits is required per

crossbar.

5 Experimental evaluations

5.1 Training datasets

We have examined the proposed ex-situ training approach

on three different datasets. Each of these datasets require a

nonlinear separator for classification, and hence, each

requires the use of a multi-layer neural network.

Iris dataset: We have utilized the Iris dataset [13] con-

sisting of 150 patterns belonging to three different classes:

Iris Setosa, Iris Versicolour, and Iris Virginica. Each pat-

tern consists of 4 attributes/features which were normalized

such that the maximum attribute magnitude is 1. We

trained a two-layer neural network consisting of 15 neurons

in the hidden layer and 3 in the output layer.

KDD dataset: We used a four-layer deep network when

utilizing the KDD dataset [14]. We used 20,000 data for

training and 5000 data for testing. The neural network

configuration was 41 ? 100 ? 50 ? 20 ? 1 in this

case.

ISOLET dataset: Described in Sect. 3.3.

. . .. . .

R1
-VR

0 V

0 V

0 V

+ - + -

D-to-A D-to-A

Increase 
Resistance

Decrease 
Resistance

No Change

-

+

Rf

x+∆/2 x-∆/2

Read current

Read voltage

Fig. 11 Circuit used to program a single memristor to a target

resistance. Here x is the target read voltage and D determines the

programming precision
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5.2 Memristor model

An accurate memristor model [15] of a HfOx and AlOx

memristor device [7] was used for simulations. The

switching characteristics for the device model are dis-

played in Fig. 12. This device was chosen for its high

minimum resistance value and large resistance ratio.

According to the data presented in [7] this device has a

minimum resistance of 10 kX and a resistance ratio of 103.

The full resistance range of the device can be switched in

20 ls by applying a 2.5 V pulse across the device.

5.3 Results

Programming 1T1M crossbar: To demonstrate the pro-

gramming flow, consider the programming of the mem-

ristor in the 1st row and 398th column for the ISOLET

dataset. The conductance of the memristor obtained from

software simulation (using the proposed simulation tool)

was 0.923 lS. For the 1T1M system, read current would be

Vr/[(618 ? 400)Rw? 1/9.22e-7] or 0.918 lA, where

Vr= 1 V, is the applied read voltage and Rw= 5 X, is the

crossbar wire segment resistance.

Programming 0T1M crossbar: For a 0T1M crossbar we

are assuming that the memristors will be programmed one

by one, from the first row to the last row and from left to

right within each row. When we are programming the

memristor in the 1st row and 398th column of the 0T1M

crossbar, the memristors in the 1st column through the

397th column of this row will have already been pro-

grammed. The conductance values of the memristors in the

other rows are the lowest conductance of the device (0.1

lS). The desired read current for this memristor is 0.675

lA when applied read voltage is 1 V (as evaluated by the

software implementation of the crossbar).

Notice that the two read currents for the two types of

crossbars are different (0.918 lA for 1T1M crossbar and

0.675 lA for 0T1M crossbar). Absence of isolation tran-

sistor in the 0T1M crossbar making sneak current paths

problem worse and hence the target read current is different

from the target read current in the 1T1M crossbar for the

same memoristor. If a programming approach on 0T1M

crossbar attempts to target 0.918 lA (which does not

considers sneak current paths) read current for this partic-

ular memristor would end up with very different conduc-

tance value (instead of the desired 0.923 lS). Therefore,

the ex-situ training which does not considers crossbar

sneak path currents accurately would not perform

satisfactorily.

We have examined the impact of memristor device

stochasticity by allowing random deviations from the

programmed memristor conductance when a write pulse is

applied. The maximum deviation could be ± 50% of the

expected change in conductance. That is, when the con-

ductance of a memristor is supposed to be updated by

amount x, the corresponding programming pulse would

update the conductance by an arbitrary value randomly

taken from the interval [0.5x, 1.5x]. We assumed a pro-

gramming pulse width of 2 ns, and thus needed several

pulses to successfully program the intended final resistance

level.

Figure 13 shows iterative change in conductance of the

memristor (in 0T1M crossbar) during the programming

process. We can observe that after about 82 iterations, the

memristor was programmed to the desired conductance

within the programming precision boundaries. Table 1

shows the recognition error for the different test datasets

obtained from the software implementations, as well as the

proposed ex-situ training approach. Recognition accuracy

for both types of crossbar designs (0T1M and 1T1M) are

about the same, as both approaches take sneak paths into

consideration.

5.4 Area analysis

We have examined the area savings of 0T1M crossbar

based neural network implementations over 1T1M crossbar

based designs. We assumed memristors were fabricated on

top of the transistor layer for both the 0T1M and 1T1M
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Fig. 12 Simulation results displaying the input voltage and current

waveforms for the memristor model [15] that was based on the device

in [7]. The following parameter values were used in the model [15] to
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designs. We have approximated the area of each system in

terms of the number of transistors used. In the area cal-

culations, we have accounted for the circuits contributing

to the neural network programming and evaluation.

Table 2 shows the area savings of 0T1M crossbars over

1T1M crossbars when implementing neural networks of

different configurations. We can observe that a 0T1M

crossbar based system can provide between 17% and 83%

area reduction over the 1T1M crossbar based systems. This

result shows that larger crossbars benefit from greater area

reduction in a 0T1M based architecture.

5.5 Impact of device variation

1T1M crossbar: Due to device variations, conductance

ranges of different memristors in a crossbar may not be

same, and it is not possible to program a memristor to a

value beyond its conductance range. Prezioso et al. [6]

examined the presence of variation in minimum conduc-

tivity between devices in a crossbar. To cope with this

issue, software training could be restricted such that the

trained conductance values are within the conductance

range of most of the memristors in a physical crossbar.

Thus the impact of device variation in ex-situ training of

1T1M crossbars could be minimized.

0T1M crossbar: When performing ex-situ training on a

0T1M crossbar we assumed all the memristor conductance

values will be initialized to the minimum device conduc-

tance. In a physical crossbar not all the memristors will be

at the same exact conductance value due to device varia-

tions. We have examined the impact of this issue when ex-

situ training 0T1M crossbars. From [6] it can be seen that

the minimum conductance values between memristors in a

crossbar is normally distributed and the standard deviation

of the distribution is 0.07 lS. For the device considered in

this paper, mean of minimum device conductance was 0.1

lS. The recognition error for the ISOLET dataset, con-

sidering such device variation, when ex-situ training a

0T1M crossbar was 10.5%. This is slightly greater than the

error obtained when device variation is omitted, but still

lower than the error obtained when ignoring the impact of

sneak paths (Sect. 3.3). Greater standard deviation of the

lowest device conductances would induce slightly more

recognition error. Table 3 shows the recognition error for

different standard deviations of the lowest device

conductances.

6 Conclusion

Existing ex-situ training approaches for memristor cross-

bars do not consider sneak paths and may only work for

smaller neural network implementations. This paper pro-

poses an ex-situ training approach for both 0T1M and

1T1M crossbars that accounts for crossbar sneak paths. A

framework for fast and accurate simulation of large

memristor crossbars was also developed so that crossbars

with sneak paths can be simulated very quickly. Proposed

ex-situ training approaches provide better recognition

accuracies compared to the traditional approach for large

neural networks. The ex-situ training approach is also able

to tolerate the stochasticity in memristor devices. In

regards to area, the 0T1M systems are about 17–83%

smaller in size when compared to the 1T1M systems (this

includes programming circuit area).
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