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Abstract
Long-short term memory (LSTM) is a cognitive architecture that aims to mimic the sequence temporal memory processes

in human brain. The state and time-dependent based processing of events is essential to enable contextual processing in

several applications such as natural language processing, speech recognition and machine translations. There are many

different variants of LSTM and almost all of them are software based. The hardware implementation of LSTM remains as

an open problem. In this work, we propose a hardware implementation of LSTM system using memristors. Memristor has

proved to mimic behavior of a biological synapse and has promising properties such as smaller size and absence of current

leakage among others, making it a suitable element for designing LSTM functions. Sigmoid and hyperbolic tangent

functions hardware realization can be performed by using a CMOS-memristor threshold logic circuit. These ideas can be

extended for a practical application of implementing sequence learning in real-time sensory processing data.
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1 Introduction

Growing amount of data requires development of powerful

and reliable tools for processing it. Artificial neural net-

works (ANN) are biologically inspired architectures that

outperform most of conventional methods for data pro-

cessing in many tasks. For instance, feedforward neural

networks are quite popular for classification problems

[1, 2]. However, they are ineffective in dealing with

sequential data with long-term dependencies. Unlike

feedforward neural networks, recurrent neural networks

(RNNs) possess internal memory and are capable of

retaining order of information and sharing the parameters

across sequence.

Early RNN architectures were introduced by Hopfiled

and Jordan in the 1980s [3, 4]. Presently RNN can be

represented as a chain of neural networks each passing

information to a successor network (Fig. 1). Current state

cell S1 gets a new input X1 along with hidden layer

information of a previous cell S0 and produces an output

Y1. The algorithm used to train RNN is called backpropa-

gation through time (BPTT). It counts derivatives of the

loss at each timestep and sums it up across time for each

parameter. As the gap between timesteps gets bigger,

vanishing gradient problem arises [5]. Long Short-term

memory (LSTM) is a special configuration of RNN intro-

duced to overcome this vanishing gradient problem [6].

Similar to RNN, LSTM also has a chain-like structure

(Fig. 2) but each unit of a chain has a gated structure.

Traditional LSTM cell consists of a memory cell to store

state information and three gate layers that control flow of

information within cells and network.

2 Long sort-term memory circuit
architecture

2.1 LSTM structure

Figure 3 shows a basic LSTM cell structure. The core of a

unit is an internal state storage. The information in a cell

state is updated by forget, input and output layers.

Input gate First of all, a new input data and an output

data from a previous cell are concatenated into a single

vector. Then the vector goes through input gate, which

behavior is described by equation:
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it ¼ rðW ðiÞxt þ UðiÞht�1 þ bðiÞÞ

At the same time, concatenated vector is squashed between

- 1 and 1 by applying hyperbolic tangent activation

function:

gt ¼ tanhððW ðgÞxt þ UðgÞht�1 þ bðgÞÞ

The obtained output of gt is elementwise multiplied with

the output of the input gate it. Since the value of it is

between 0 and 1, the output it
J

gt acts as a filter which

form an intermediate cell state ~Ct.

Forget gate Decision whether to allow information

from a previous cell state to a current cell or completely

block it, is made by the output of the forget gate, which is

given by following equation:

ft ¼ rðW ðf Þxt þ Uðf Þht�1 þ bðf ÞÞ

It also takes the values between 0 and 1.

Cell state The internal state of a LSTM cell is a sum of

two components—an output of the input gate and output of

the forget gate. Since forget gate decides whether to keep

information or remove it, LSTM does not suffer from the

vanishing gradient problem.

ct ¼ ~Ct þ ft
K

ct�1

Output gate The output of an LSTM cell is a vector ht. It is

a pointwise multiplication of sigmoid layer of an output

gate and cell state squashed between - 1 and 1 by

hyperbolic tangent activation function:

ht ¼ ot
K

tanhðctÞ;

where

ot ¼ rðW ðoÞxt þ UðoÞht�1 þ bðoÞÞ :

2.2 Matrix-vector multiplication

Matrix-vector multiplication (also known as a Hadamard-

product multiplication) is a significant operation in LSTM

gating systems and its accuracy plays a vital role. The

proposed architecture for matrix-vector multiplication

implementation is based on crossbar array using a novel

device called ‘‘memristor’’.

Memristor and memristor crossbar array Memristor is a

non-volatile two-port device with variable resistor. Its

existence was first postulated by Leon Chua in 1971. He

predicted a device that maintain the relationship between

charge and magnetic flux [7]. In 2008 HP labs announced

the discovery of a device that possesses mentioned char-

acteristics [8, 9].

A memristive crossbar array (Fig. 4) consists of a large

number of intersecting rows and columns with memristors

at junctions. An input vector is applied to a row of a

crossbar and multiplied by the conductance of memristors.

The output of a crossbar is a sum of currents across each

column [10].

Memristor neuron circuit Figure 5 shows memristor

neuron circuit with three inputs and one output. Each input

is connected to a pair of memristors with conductances rþ

and r�. If rþ[ r� then resulting memristors conductance

gives a positive weight, otherwise a negative weight [11].

Fig. 1 Unfolded recurrent neural network

Fig. 2 LSTM network

Fig. 3 LSTM unit structure
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ðV1 � rð1Þþ þ V2 � rð2ÞþÞ � ðV1 � rð1Þ� þ V2 � rð2Þ�Þ ¼
¼ ðV1ðrð1Þþ þ rð1Þ�Þ þ V2ðrð2Þþ þ rð2Þ�Þ

The idea of this circuit can be further extended to imple-

ment vector-matrix multiplication of gating layers in

LSTM. The sum of two memristances gives a required

resulting weight, which can take both positive and negative

values.

2.3 Activation layer circuit

Activation function in a traditional LSTM cell squashes

each element of the output of vector-matrix multiplier

either between 0 and 1 or - 1 and 1. To perform sig-

moid and hyperbolic tangent function the CMOS-mem-

ristive thresholding circuit has been used. It is depicted

in the Fig. 6. Memristor-inverter combination sets the

threshold level whereas the breakworn voltage of a

Zener diode determines the maximum height of the

output voltage.

2.4 Voltage multiplier circuit

Implementation of a pointwise multiplication (also known

as Hadamard or Schur product) is presented in the Fig. 8. It

consists of one NMOS transistor T1, two differential

amplifiers, two inverters, buffer and IV converter circuits.

3 Results

The responses of a circuit in the Fig. 6 for sigmoid and

hyperbolic tangent functions are provided in the Fig. 7.

The utilized CMOS technology in the circuit is 0.18um. To

obtain hyperbolic tangent values the corresponding volt-

ages should be set Vdd1 ¼ 1:3V;Vss1 ¼�0:5V ;Vp1¼
0:4V;Vn1 ¼�1:2V ;Vdd2 ¼ 1:3V ;Vss2 ¼�1:1V;Vp2¼ 0:5V

Fig. 4 A memristor crossbar array with 4 inputs and 4 outputs

Fig. 5 Memristor neuron circuit diagram

Fig. 6 Activation circuit

Fig. 7 Activation circuit response: a sigmoid; b hyperbolic tangent
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and Vn2¼�0:4V . The MOSFET transistor sizes are:

Mp1 ¼Mp2 ¼ 0:18lm=3lm, Mn1¼ 0:18lm=4lm, Mn2¼
0:18lm=4:5lm.

Voltage multiplication (Fig. 8) is performed by a tran-

sistor T1(CMOS 0.18um technology, T1 ¼ 2 lm=2 lm) .

Voltages to be multiplied Vin1 and Vin2 (see Fig. 9) are

applied to the gate and drain of the transistor T1. The

resulting output current is converted back to voltage by IV

converter. Obtained voltage has an opposite sign therefore

it is inverted again by Inverter 2. Since voltage applied to

drain of transistor T1 should take only negative value and

must not exceed the range (- 0.45:0)V, a differential

amplifier 1 is used between input 1 and T1. Similarly, as

transistor T1 gate voltage should always take positive

values and lay in the range (0:0.45)V, a differential

amplifier 2 is used between input 2 and transistor T1.

In our LSTM unit, Hadamard product is used to multiply

LSTM gate outputs, which take values between (0:1) if

activation function is a sigmoid and between (- 1:1) if

activation function is hyperbolic tangent. Considering

requirements for input values of transistor T1, Vin1 is set to

be an output hyperbolic tangent function and Vin2 is an

output of sigmoid function. By this, sigmoid fulfill the

requirement of positive input voltage entering gate of T1 as

its values are between 0 V and 1 V. As hyperbolic tangent

function values are between (- 1:1)V and the drain input

value can be only negative voltage, switches 1 and switch 2

are utilized to control multiplier output voltage polarity. If

hyperbolic tangent output value is in the range (0:1)V,

switch 1 passes a signal through Inverter 1 and buffer. Then

inverted negative voltage enter the drain of T1 and multi-

plied with Vin1. Switch 2 is open and the resulting Vout is

taken from IV converter output. Figures 9 and 10 illustrate

operation of the voltage multiplier circuit. Total area of one

voltage multiplier circuit is 2,871.00 lm2 and power con-

sumption 8.517 mW (Fig. 11).

Fig. 8 Two voltages

multiplication circuit

Fig. 9 Voltage multiplier

inputs, a multiplier input 1,

b multiplier input 2
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4 Conclusion

This work proposes a hardware architecture design for

implementation of LSTM algorithm for processing and

storing sequential data. The architecture was designed

based on 0.18 lm CMOS technology and novel devices

called memristors. Utilization of memristor crossbar array

for realization of vector-matrix multiplication within gate

layers allows high scalability along with compatibility with

CMOS technologies due to its nanoscale size and absence

of leakage. The simulation results of the circuits for real-

ization of basic computational operations of the traditional

LSTM showed that they can be used to design other types

of LSTM configuration.
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