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Abstract
This paper presents a multi-objective analog circuit design optimization tool using genetic algorithm based on hierarchical

mutation scheme. The idea is to improve the convergence and diversity of genetic algorithm by incorporating hierarchy

during polynomial mutation operation. In this regard, a theoretical framework of proposed genetic algorithm is presented

using Markov chain principle. To investigate the effectiveness of hierarchy in polynomial mutation operator, the scheme is

compared with six different mutation strategies. Experiments are performed for different function evaluations to evaluate

the performance of hierarchical polynomial mutation operator. Further, to showcase the improvement in genetic algorithm,

numerous experiments are performed on twelve different test functions and two design examples. The proposed genetic

algorithm shows competitive performance over other standard optimization techniques in terms of both convergence and

diversity of solutions.

Keywords Circuit optimization � Genetic algorithm � Multi-objective optimization � Polynomial mutation

1 Introduction

Analog circuit synthesis process is typically characterized

by selecting a set of design parameters and topology. With

the rapid progress in VLSI technology, manual design of an

analog circuit is often confined to the usage of design

automation for a fixed topology in finding a solution space,

satisfying a set of design constraints. Due to high degree of

nonlinearity and interdependence among design parame-

ters, extensive computation is required to evaluate various

design parameters during circuit design process. Although

it is beneficial to reduce the computation cost associated

with generating design performance estimates by modeling

the circuit design problem in the form of a linear pro-

gramming problem and solving it using efficient opti-

mization techniques, relevant emphasis is needed to

analyze tradeoffs among various design specifications.

Many optimization techniques have been presented in

literature to address the problem associated with analog

circuit synthesis. One approach is to analyze analog circuit

design using geometric programming [1], which derives a

set of specific equations by considering design constraints

before applying it to the design process. The look-up

table approach [2] is used to approximate circuit equations

and replace device circuit models for accurate circuit

simulation during optimization. With increase in number of

design parameters and device dimension, the size of the

table grows exponentially and it becomes difficult to gen-

erate and store such large tables efficiently. Further, there

are methods, such as goal attainment method, which makes

use of weights to control the tradeoffs among design

specifications [3]. Further, nature inspired optimization

techniques, such as genetic algorithm [4, 5], particle swarm

optimization [6], differential evolution [7] etc. solve cost

functions involving design specifications, which is trans-

lated from modeling the behavior of analog circuit design
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subject to specific set of design constraints. Such nature

inspired algorithms function by emulating certain natural

phenomenon to obtain global optimum solution and

demand the design of circuit equations to be more realistic

by considering suitable design parameters.

Genetic algorithm (GA) has become one of the popular

optimization techniques in recent years after introduced by

Holland [8]. Mostly, GA has been employed as a stochastic

procedure to obtain global optimum solution for different

combinatorial optimization problems such as scheduling

problems [9], traveling salesman problem [10, 11] and in

machine learning [12]. Further, GA has been applied to

solve both single objective, multi-objective and many

objective problems in literature [13, 14]. Nondominated

sorting genetic algorithm (both NSGA-II and NSGA-III)

has been presented to handle multi- and many-objective

problems including the ability to find best possible solution

with acceptable convergence. Although other approaches

satisfy themselves by compensating for suboptimal per-

formance in certain cases, NSGA-II has an appealing fea-

ture of overcoming difficulties in traditional multi-

objective circuit optimization.

The application of NSGA-II has not been seriously

addressed in multi-objective circuit optimization as per our

knowledge. Therefore, in this paper a hierarchical version

of NSGA-II (hNSGA-II) is presented to perform analog

circuit optimization using hierarchy in generation of new

population during polynomial mutation operation. At first,

the multidimensional search space is updated with new

parent population using hierarchical polynomial mutation

strategy. Later nondominated sorting is used to obtain local

optimal solutions among neighborhood in a single hierar-

chical mutation growth. After this phase, the local indi-

viduals are checked for distinct fitness values for diversity

preservation. Once the search for unique fitness values is

completed, the local best individuals are merged with

parent population similar to NSGA-II framework. Further,

the proposed hNSGA-II framework facilitates the opti-

mization process to achieve required Pareto front [15] by

carrying out repeated calculations, and evaluates circuit

design equations comfortably. This paper also develops a

theoretical framework for hNSGA-II based on the asymp-

totic states of a homogeneous Markov chain model and

proves the existence of stationary distribution with constant

nonzero hierarchical mutation probability value (strictly

positive). Further, a strong ergodicity bound is established

to ensure the convergence to limit distribution asymptoti-

cally. For showcasing the effectiveness of proposed hier-

archical scheme in polynomial mutation operation, six

different mutation operators are incorporated in hNSGA-II

framework and compared for convergence and diversity of

Pareto optimal solutions. Further, to evaluate the perfor-

mance of proposed hNSGA-II framework, several

experiments are performed on twelve multi-objective test

functions and two design examples. The effectiveness of

hNSGA-II is shown by comparing it with standard opti-

mization algorithms.

The rest of the paper is organized as follows. Overview

of multi-objective optimization problem and NSGA-II tool

are presented in Sect. 2. The proposed hNSGA-II frame-

work is showcased in Sect. 3. A detailed performance

analysis of proposed framework is shown by running

extensive simulations on standard benchmarks and by

comparing the results with other conventional optimization

techniques in Sect. 4. The effectiveness of proposed

framework is shown by optimizing design specifications

for two design examples in Sect. 5. Section 6 concludes the

manuscript.

2 Background

2.1 Multi-objective optimization

Multi-objective optimization (MOP) is a method centered

on various conditions to satisfy behavior of contradictory

objectives or cost functions simultaneously. Contrary to

single objective optimization, the solution obtained by

MOP is not confined to a single point solution, but a set of

balanced solutions known as Pareto optimal solutions,

which when plotted forms a Pareto front (PF) in the multi-

objective search space [15]. The novelty of MOP using any

optimization technique is to evaluate a set of solutions

close to PF without loss of convergence and diversity

properties. These properties ensure to deal with non-dom-

inated solutions [13], while carrying out continuous design

space exploration. Given an n-dimensional Euclidean space

Rn and objective function vector FðxÞ, the multi-objective

optimization attempts to find the solution Fðx0Þ satisfying,
Fðx0Þ ¼ min

x2X
FðxÞ

¼ min
x2X

ðf1ðxÞ; f2ðxÞ; . . .; fmðxÞÞ
ð1Þ

where F : Rn ! Qm consists of m real-valued objective

functions and Qm is the objective space [15]. Since the

objective functions in (1) often contradict with each other,

it is impossible to find a single solution in Rn that mini-

mizes all objectives simultaneously. Therefore, multi-ob-

jective optimization finds the best tradeoffs among

objective functions in terms of Pareto optimality, which is

guided by a dominance relation between solutions. Let

a; b 2 Qm, a dominates b if and only if ai � bi 8i 2
f1; . . .;mg and ak\bk for at least one index k 2 f1; . . .;mg
[15]. A point x0 2 Qm is said to be Pareto optimal [15] if

there is no point in Rn such that FðxÞ dominates Fðx0Þ,
where FðxÞ is a vector of solutions called Pareto optimal
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vector if it contains only Pareto optimal solutions. The set

of all Pareto optimal objective vectors forms PF.

2.2 Nondominated sorting genetic algorithm
(NSGA-II)

NSGA-II employs nondominated sorting approach for fit-

ness assignment among individual solutions to solve multi-

objective optimization problems (MOPs) [15]. The algo-

rithm starts with a random generation of initial population

(range of design alternatives for design variables) of

N numbers. The current parent population (Pt) at tth gen-

eration is used to produce offspring population (Qt) with

population size N by using polynomial mutation and sim-

ulated binary crossover operator [13]. The two populations

Pt and Qt are merged together to form a mixed population

Rt (of population size 2N). The best N numbers are selected

from Rt pool using nondominated sorting approach based

on dominance principle. Nondominated solutions are

selected from Rt to fill for a population size of N in next

generation. The remaining solutions in next generation

pool are selected by employing a crowding distance

scheme [13], i.e., the solutions having largest crowding

distance values are chosen for next generation to maintain a

desired diversity.

3 Hierarchical mutation based genetic
algorithm

A framework for hierarchical version of NSGA-II

(hNSGA-II) is presented in this section. The proposed

framework is based on the logic of conventional NSGA-II.

Original NSGA-II makes use of a fast nondominated

sorting approach with computational complexity OðkN2Þ
[13], where k is the number of objectives and N is the

population size. Along with this elitist-preserving

approach, NSGA-II uses crowding distance scheme to

estimate the density of solutions for any specific PF.

However, the formulation of this scheme becomes unsta-

ble when two or more solutions share a common fitness.

Although NSGA-II keeps track of convergence by giving

emphasis on nondominated solutions, there is scope of

improvement in this category by employing suitable muta-

tion or crossover strategies. The objective of our proposed

approach is to improve the convergence property by

incorporating hierarchy in the existing polynomial muta-

tion scheme of NSGA-II. A generic hierarchical approach

is presented for generation of child population during

mutation operation, i.e., each child individual is formed in

local neighborhood of its siblings along with parent pop-

ulation. The hierarchical approach for mutation operation

is illustrated in Fig. 1(a). The child population is generated

from corresponding parent population in a hierarchical

structure, which forms local blocks of manageable size. Let

us consider the generation of N local blocks and subsequent

formation of one global block combining N local blocks

and previous population. Each of the N local blocks is

modeled as a tree like structure (having height h) with child

population forming different branches. The first prime

individual in a local block is called a prime parent. Prime

parent generates a set of child individuals in first level

(h ¼ 1) and the individuals in first level generate child

individuals for second level (h ¼ 2) through mutation

operation. Hence, the individuals in first level act as parents

for individuals of second level (sub-parents) and so on. In

such manner, child population in each local block is gen-

erated using polynomial mutation operator and the process

continues till maximum height of the tree (hmax) is

achieved. The number of child individuals of prime parent

and each sub-parent is decided by the degree of branching

d, and a total of b individuals are generated in each local

block including the prime parent during each generation.

The generated local best solutions in nth local block having

d ¼ 4 moving towards PF in each level, is shown in

Fig. 1(b), where n 2 N. Further, all child individuals in a

local block along with prime parent are sorted and ranked

using nondominated sorting approach. The individuals

having highest ranks in each local block are selected as

local best individuals. The local best individuals are pulled

to global block to generate the offspring population. The

offspring population is merged with parent population to

generate a population having 2N individuals. These indi-

viduals are again sorted and ranked using nondominated

sorting approach to select the best individuals for next

generation. However, to preserve the diversity during

selection, it is necessary to select distinct local best indi-

viduals before being pulled to global block without

affecting the convergence property. Instead of performing

the ranking through traditional crowding distance

approach, we propose to perform an indirect exclusive

selection by performing hierarchical mutation operation

iteratively. For an exclusive selection, at first N local best

individuals are sorted in descending order of crowding

distance. All local best individuals are checked for unique

fitness and the individuals having unique fitness values (e)
are retained in the local best pool. The remaining N � e
local best individuals are discarded and hierarchical

mutation operation is carried out in corresponding N � e
local blocks to generate new local best individuals. The

process is continued till N local best individuals with dis-

tinct fitness values are generated. As the population in each

local block is more than one (b[ 1), where b�
Ph

i d
i, the

probability of generating local best individuals having
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distinct fitnesses is more as compare to traditional crowd-

ing distance scheme. In this regard, it accounts for the

instability of crowding distance scheme in choosing com-

mon fitness values. While performing an indirect exclusive

selection using hierarchical mutation operation, the number

of individuals in each local block also play an important

role in convergence of solutions. A detailed theoretical

framework of hNSGA-II along with convergence property

is described in following subsections.

(a) (b)

Fig. 1 a General model of

hierarchical mutation strategy,

b hierarchical growth for h ¼ 3

and d ¼ 4 showing growth

towards true PF
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3.1 Computational complexity

As hNSGA-II is based on the framework of conventional

NSGA-II, the algorithm starts by initializing parent popu-

lation P1 of first generation. The hierarchical mutation

procedure described in Algorithm 1, starts with initializing

local block of height h and random generation of degree

d for generating a temporary offspring population Ct. Once

the number of offsprings in each level d is defined, the

algorithm follows polynomial mutation operator to gener-

ate offspring population in each local block. This requires

OðhdjÞ, where j 2 ½1; h� number of computations in each

block and a total of OðhdhðMNÞÞ number of computations

(as j can go upto h) for generating the local offspring

population Ct with M-dimensional objectives. The non-

dominated sorting in line 13 of Algorithm 1 having

N population size requires OðMN2Þ computations [13]. As

the search for unique fitness value among elite local indi-

viduals is recursive, it requires OðeðMN2ÞÞ computations

with M-dimensional objectives. Once the local elite indi-

viduals are generated with unique fitness values, they are

pulled to the global block, which forms the offspring

population (Qt) of tth generation. This Qt offspring popu-

lation is combined with Pt to generate Rt having population

size of 2N. The nondominated sorting described in line 5 of

Algorithm 2 having 2N population size requires

OðMð2NÞ2Þ computations [13]. Crowding distance

assignment in line 9 requires O(k(2N)log(2N)) computa-

tions in the worst-case and quicksort involves

O(2Nlog(2N)) computations, which speaks for an overall

complexity of OðMðbN þ eN2ÞÞ for hNSGA-II procedure,
where 1� b�ð

Ph
i d

iÞ. With increase in the height of each

block, the runtime of hNSGA-II increases with an advan-

tage of reaching convergence at minimum generations. One

of the reasons for this functional advantage is the selection

of an elite offspring from a pool of randomly generated

individuals spanning alternative search spaces. Further, this

ensures the evolution process to be promising as hierarchy

in mutation operation facilitates the introduction of new

offspring individual from random locations within the

feasible space to preserve diversity in each generation.

3.2 Theoretical framework

This section presents a theoretical framework for hNSGA-II

based on asymptotic states of a homogeneous Markov chain

algorithm. As hNSGA-II is based onNSGA-II, it uses the same

basic operators such as selection, crossover and mutation to

create next generation from current population. The generation

of successive populations can be viewed as a stochastic process

with finite state space, and each operation carried out by the

operators can bemodeled as corresponding stochasticmatrices.

Further, the probabilistic changes of real parameters within a

population using genetic operators can be formulated in the

form of transition probability matrix Pr [16], which can be

represented as the product of stochastic matrices,

Pr ¼ Ps � Pm � Pc; ð2Þ

where Ps, Pm and Pc denote intermediate transitions caused

by selection, mutation and crossover operation, respec-

tively. Let us consider each genetic operation to be per-

formed in succession. It is assumed that proportional

selection is performed with probability Ps on an initial

population vector �x 2 S having set of all possible popula-

tion states S. The conditional probability Psð�yj�xÞ of

selecting a solution vector �y 2 S from initial population

state vector �x 2 S can be represented as [16],

Psð�yj�xÞ ¼
Pk2S f ðykÞ

ðRk2S f ðykÞÞn
; if �y � �x; ð�y; �xÞ 2 S

¼ 0 otherwise

ð3Þ

Mutation operation is performed to maintain the genetic

diversity in successive generations by making changes to

the states of decision parameters (variables) of current
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generation. As mutation operation is carried out indepen-

dently on each individual decision variable by setting a

user-defined mutation probability pm to lower values (i.e.

pm 2 f0; 1g), the conditional probability Pmð�yj�xÞ that the

new population �y 2 S resembles the initial population �x 2 S

after altering real values of variables at different decimal

positions (mutation operation) can be aggregated to [16],

Pmð�yj�xÞ ¼ ppolyðxk ;ykÞm ð1� pmÞpolyðxk ;ykÞ; ð4Þ

where polyðxk; ykÞ is the polynomial mutation operator1

[17] to generate child individual yk from parent xk. Typi-

cally, crossover operation is performed to generate child

solution from two or more parent solutions. Here, simu-

lated binary crossover (SBX) operator is used for crossover

operation in hNSGA-II because of the classic property to

keep difference between child individuals proportionate to

their corresponding parent individuals. SBX coefficient

provides the flexibility to control generation of child pop-

ulation in search space, i.e. child individuals having high

SBX coefficients are more probable to provide solutions

close to optimum. Although SBX operator is used with

crossover probability Pc 2 0; 1½ �, convergence analysis can

be performed even without the knowledge of elements of

transition crossover matrix as the choice of any specific

operator does not affect the analysis.

The formal description of our proposed approach relies

heavily on the hierarchical scheme of genetic evolution.

The behavior of this scheme can be interpreted as a tree

like homogeneous time bivariate Markov chain

fðKt;GtÞ; t� 0g, where Kt represents all individuals in the

local block having height h ¼ 2 and degree d ¼ 4, and

Gt 2 N;Gt [ 0 as shown in Fig. 2. Further, the prime

parent is denoted by a and all other individuals in the local

block are denoted by strings of integers in ½1; b�, where
b�

Ph
i d

i. Moreover, the behavior of the hierarchical

mutation scheme implies few restrictions on the Markov

chain for proper functionality. All transitions are consid-

ered to be of zero probability with the following two

exceptions.

1. At each step the process can make one transition to

itself ðKtþ1 ¼ KtÞ (no change in parent population after
mutation operation) or,

2. Transition to one of its child ðKtþ1 ¼ Ktþs; for some

1� s� dÞ (change in parent population after mutation

operation).

Local block of the hNSGA-II framework represents the

evolution of child population from parent population using

mutation operation. The transition probabilities of a parent

to its children and to itself in one level, may be different

even though both transitions are from a single individual.

In view of this, Markov chain in each local block can be

illustrated as the sum of probabilities of all possible sample

paths in forward direction starting from prime individual

and ending at child individuals of final level. Therefore, the

transition probability matrix of mutation can be rewritten

as a combination of intermediate transitions described in

(4) of each probable states. The transition probability

matrix of mutation at level h having degree d can be rep-

resented as,

PðhÞ
m ð�yj�xÞ ¼ Rl2h Rj2dl p

polyljðxk ;ykÞ
m ð1� pmÞpoly

l
jðxk ;ykÞ

� �
ð5Þ

It can be pointed out that the hierarchical mutation operator

holds the key for robust convergence of hNSGA-II because

it exhibits the decision whether the algorithm achieves

limiting distribution (strong ergodicity) [18] or not. With

the increase in the height h of each local block, the number

of randomly generated individuals increase allowing the

hierarchical mutation operator to explore additional search

points in the feasible region. This proposal of augmented

upper bound in mutation operation facilitates sufficient

conditions for strong ergodicity.

3.3 Convergence analysis

Considering the search properties of hNSGA-II, various

conclusions can be made relating to the sufficient condi-

tions for hNSGA-II converging to a stationary distribution.

Proposition 1 Any state probability distribution n 2 X of

a homogeneous Markov chain is a stationary distribution

in X if it satisfies the equality, nT ¼ nTPr, where Pr is the

K t+1       t= K

5

s=6
s=5

s=2 s=3

3

s=4

42

s=1

1

7 8

s=8s=7

6

α

local blockn th

Fig. 2 Markov chain model of hierarchical strategy

1 Polynomial mutation operation is considered as it is carried out

using hierarchical scheme.
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transition probability matrix and X is the state space

containing all possible Markov states [16].

Theorem 1 For pm [ 0 and a strictly positive defined

crossover and selection probability Pc;Ps respectively,

h NSGA-II converges in limit towards a stationary distri-

bution n, where n is strictly positive, i.e. n[ 0, i.e.,

lim
r!1

Pr ¼

n

n

..

.

n

2

6
6
6
6
4

3

7
7
7
7
5

ð6Þ

Proof Let (xt; xtþ1) be the given arbitrary states at any

time point (t; t þ 1) respectively before hierarchical muta-

tion. The transition from xt to xtþ1 in one time step with

appropriate probability Pm can be given by (5). Let us

assume the corresponding relative fitness be fðt;tþ1Þ.

Depending upon the number of states in each block, there

are two possible cases.

Case 1 For xtþ1 ¼ 0, there exists exactly one state with a

relative fitness fðxt ;xtÞ [ 0 for population of fixed size N as

the state will transit to itself every time. It can be concluded

that,

Ph
mð �xtj �xtÞ ¼ p

polyljðxt ;xtÞ
m ð1� pmÞpoly

l
jðxt ;xtÞ [ 0 l; j ¼ 0ð Þ

ð7Þ

Case 2 For xtþ1 [ 0,

Ph
mð �xtþ1j �xtÞ ¼ Rl2h Rj2dl p

polyljðxtþ1;xtÞ
m ð1� pmÞpoly

l
jðxtþ1;xtÞ

� �
[ 0

l; j[ 0ð Þ
ð8Þ

Therefore, for arbitrary states ðxt; xtþ1Þ 2 X, there exists

strictly positive numbers in Ph
m. As both crossover and

selection transitions are strictly positive, the entry in Pr

consists of a product of strictly positive numbers. h

As the stationary distribution is strictly positive, all

states are considered to be associated with finite probabil-

ity. This means that a limiting behavior may be possible

and to showcase the possibility, it is important to evaluate

the entropy with respect to increase in population size

inside each local block during mutation operation. The

usefulness of hierarchical mutation scheme is shown in

Fig. 3 by presenting the variations in limiting distribution

entropy [16] with respect to b. The results illustrate the

approximate computed stationary distribution entropy on a

test problem (ZDT1) at different selected values of b. The
values of b are evaluated by considering d ¼ 4 and

1� h� 6. It can be observed from Fig. 3 that the entropy

reduces to zero with increase in b. Further, it can be

suggested that with increase in b, it may be possible to

approach limiting distribution behavior (i.e., a globally

optimal solution with probability one) by making the

probability associated with nonoptimal states as small as

required. Since mutation operation is carried out for both

polynomial and binary coded genetic evolution in such a

way to enforce the relative fitness, f [ 0 [19], it may be

possible to parameterize hNSGA-II to reduce bias towards

solutions by analyzing ergodic bound of hierarchical

mutation probability. The presence of uncertainty in tran-

sitions during hierarchical mutation to choose between next

state and current state can cause finite number of revisits to

already traversed state showing condition of transient states

(P
ðhÞ
m ð�yj�xÞ\1) (Theorem 2). Further, it may account for

few states to be recurrent (P
ðhÞ
m ð�yj�xÞ ¼ 1) if the state

transits to itself in all transitions. In such cases, variations

in population size parameter b inside local block of

hNSGA-II has important implications for recurrence and

transience conditions.

Proposition 2 In any state space X, a state xt is recurrent

if and only if
P1

m Ph
mð �xtj �xtÞ ¼ 1, transient otherwise [19].

Theorem 2 All states in X of a Markov chain are either

recurrent or all states in X are transient. Thus, if there is a

transition from xt to xtþ1 and state xt is assumed to be

recurrent, then xtþ1 is also recurrent. Equivalently if a

transition occurs from state xt to xtþ1 and state xt is

transient, then state xtþ1 is also transient. In particular, it

can be said that for an irreducible Markov chain, either all

states are recurrent or all states are transient [19].

Proof If there is a transition between xt and xtþ1 and xt is

recurrent, then xtþ1 must be recurrent because every time xt
is revisited after some interval with a success probability,

xtþ1 will also be revisited with a finite time interval. As xt
is recurrent, it will be visited a number of times with a

4 16 64 256 1024 4096
β

0

1

2

3

4

5

6

L
im

it
in

g 
di

st
ri

bu
ti

on
 e

nt
ro

py

Fig. 3 Variation of limiting distribution entropy with local block

population b
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probable success rate making xtþ1 to be recurrent. Even-

tually, this can be viewed to be a sequence of random walk

repeating itself at regular intervals.

3.4 Conditions for ergodicity

Mutation operation plays a prominent role in robust con-

vergence of a simple genetic algorithm. With inclusion of

hierarchical mutation operation, the number of individuals

participating in genetic evolution process is comparatively

more than NSGA-II, which in turn increases the search

space of hNSGA-II and ensures a rigid schedule bound for

ergodicity. In this section, we present a schedule bound for

hierarchical mutation in hNSGA-II that will establish

strong ergodicity. There are a number of conditions to

showcase the existence of ergodicity in the proposed

Markov chain. One of the necessary and sufficient condi-

tions for ergodicity is the existence of a non-trivial measure

[20], l satisfying (9).

lhmð�yÞ�
Z

X

lhmðd�xÞPh
mð�yj�xÞ ð9Þ

According to general state space context, it is quite difficult

to verify the criterion in (9). Therefore, a Doeblin condition

[21] can be established along with the condition in (9)

satisfying (10) having a probability measure (l) and a fixed

integer d; 0\d� b, that can account for a schedule bound

for ergodicity of the proposed Markov chain model, i.e.,

Ph
mð�yj�xÞ� d; 8�x 2 X ð10Þ

Theorem 3 Following both conditions in (9) and (10), a

sufficient condition for the proposed Markov chain to be

ergodic is the existence of a non-trivial measurable func-

tion g such that [20],
Z

X

Ph
mðd�yj�xÞghmð�yÞ� ghmð�xÞ � 1; 8�x 62 X ð11Þ

and for a fixed integer d[ 0,
Z

X

Ph
mðd�yj�xÞghmð�yÞ ¼ xð�xÞ� d\1; 8�x 2 X ð12Þ

Proof Considering g to be a non-measurable function as

described in Theorem 3 and let there is a transition from

state �x to state �y using mutation probability, Ph
m having

height h of a each local block, then at ðt þ 1Þth time point,

ghmðtþ1Þð�xÞ ¼
Z

X

Ph
mðtÞðd�yj�xÞghmð�yÞ; t� 1

If there exists an intermediate state space j; jc 2 X, such

that X ¼ j [ jc then

ghmðtþ2Þð�xÞ ¼
Z

X

Ph
mðtÞðd�zj�xÞ

Z

X

Ph
mðtÞðd�yj�zÞghmð�yÞ

� �

�
Z

j
Ph
mðtÞðd�zj�xÞxð�zÞþ

Z

jc
Ph
mðtÞðd�zj�xÞ½ghmð�zÞ� 1�

�
Z

j
Ph
mðtÞðd�zj�xÞ½xð�zÞþ 1�

þ
Z

jc
Ph
mðtÞðd�zj�xÞghmð�zÞ�Ph

mðtÞðXj�xÞ

�ðdþ 1ÞPh
mðtÞðjj�xÞþ ghmðtþ1Þð�xÞ� 1

ð13Þ

Iterating (13) and dividing by t, we have

1

t
ghmðtþ2Þð�xÞ� ðdþ 1Þ 1

t
Rt
i¼1P

h
mðiÞðjj�xÞ

� �

þ 1

t
ghmð2Þð�xÞ �

1

t
Rt
i¼11

�ðdþ 1Þ 1

t
Rt
i¼1P

h
mðiÞðjj�xÞ

� �

þ 1

t
ghmð2Þð�xÞ � 1

ð14Þ

As per [20], for 8x,

lim
t!1

1

t
Rt
i¼1P

h
mðiÞðjj�xÞ ¼ pðjj�xÞ ð15Þ

exists and pðjj�xÞ is finite when j 2 X. With increase in

time point as t ! 1 and by the non-negativity of ghmðtÞ and

finiteness of ghmð2Þ in (14), we have

pðjj�xÞ� 1

dþ 1
� 1

b
[ 0 ð16Þ

where for a finite population size b, there exists a schedule
bound for ergodicity of proposed Markov chain model.

4 Performance analysis

4.1 Parametric study

In this subsection, we perform a parametric study for pop-

ulation size parameter b of hierarchical polynomial mutation

operator. As the performance of proposed hierarchical

scheme can be characterized for different population sizes of

each local block (b), the performance can change with

change in b. For a constant degree d, height h can be

increased to postulate variations in both convergence and

diversity of Pareto optimal solutions at different values of b
for a number of generations. To measure the performance in

terms of convergence towards optimal Pareto front and

diversity of solutions along Pareto front, three different

quality metrics are evaluated, i.e. Generational Distance

(GD), Inverted Generational Distance (IGD) and
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Hypervolume (HV). GD metric [22] is used to measure

minimum Euclidean distance between generated final indi-

viduals and sample points on true Pareto front. Smaller value

of GD indicates a better convergence towards true Pareto

front. On the other hand, both IGD metric [22] and HV

metric [23] are a measure of both convergence and diversity

of solutions along true Pareto front on a single scale. If the

IGD value is close to zero, it means the solutions have better

convergence and diversity, and HV is a fair measure of the

maximum area covered by the nondominated solutions with

respect to a reference point. In view of this, several experi-

ments are carried out on ZDT1 test function for a number of

generations and it can be observed from Fig. 4 that with

increase in b, solution (optimal PF points) attempts to attain

smaller (best) GD (Fig. 4a) and IGD (Fig. 4b) values and

higher HV (Fig. 4c) values at fewer generations. One of the

reasons for these best values at fewer generations for higher

b value can be due to the increase in number of offsprings in

each local block with increase in b. It can be seen from

Fig. 4(c) that with increase in number of generations, HV

values also increase. However, the HV values remain

unchanged after 500 number of generations (for b ¼ 256 and

700 generations for other b values). As intermediate traces of

PF exist at fewer generations, the population has to be

evolved over sufficient number of generations (500 gener-

ations for b ¼ 256) to account for the convergence and

diversity metric to saturate during function evaluations.

With more population size, the diversity can be preserved by

exploring extra search space by combining all new off-

springs of each local block. Another reason for best values at

fewer generations can be the reduction in selection pressure

by generatingmore offsprings through proposed hierarchical

mutation strategy. With decrease in selection pressure, the

convergence issues are addressed to a great extent by miti-

gating the instability in crowding distance scheme. How-

ever, b cannot be increased to any arbitrary value. As b
accounts for the variations in limiting distribution entropy of

mutation operation, it should be kept within finite limits

(0\b\N) for better performance of hNSGA-II (as descri-

bed in Sect. 3.4).
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Fig. 4 Performance of hNSGA-II on ZDT1 test function at different generations for various population sizes of local block (b), a mean GD

values, b mean IGD values, c mean HV values
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4.2 Comparison with other mutation strategies

As mutation operator operates on an individual indepen-

dent of other population members, it plays an important

role in making overall search efficient [24]. Therefore, it is

necessary to investigate the effectiveness of proposed

hierarchical mutation operator by comparing the perfor-

mance with other mutation operators. Hierarchical

scheme for six different mutation operators (Adaptive Levy

mutation [25], Cauchy mutation [26, 27], uniform mutation

[28], nonuniform mutation[28], Gaussian mutation [29]

and Adaptive-mean mutation [26]) are implemented and

also incorporated to study the search efficiency of hNSGA-

II framework. This study is extensive in evaluating the

performance of proposed hierarchical polynomial mutation

operator. Further, a total 30 decision variables (p ¼ 30) are

considered during evaluation and each variable is bounded

within xi 2 ½0; 1�; where 1� i� 30. Crossover probability

is kept at 0.9 and mutation probability is set to 1 / p for all

mutation schemes. Both crossover and mutation distribu-

tion indices are set to 20 during the entire process. As

various mutation operators are employed within hNSGA-II

framework, different parameters are addressed each time a

mutation operator is exercised. During Cauchy mutation, a

Cauchy density function [27], fcauchy ¼ 1
p

t
t2þx2

, where scale

parameter t is set to 1 during operation. Adaptive Levy

mutation scheme is employed by using parameter a fixed at

1.7 for all experiments. Box-Muller transform is adopted to

generate Gaussian distribution from uniformly distributed

numbers during Gaussian mutation operation. Population

size of each local block, b is kept at 256 for achieving

hierarchy (as described in Sect. 4.1) during all operations.

All mutation operators exercised using hierarchical

scheme are compared based on convergence and diversity

of solutions (mean GD values, mean IGD values and mean

HV values), while 200 population individuals are allowed

to evolve over 100 generations on ZDT1 test function. For

each mutation operation, 30 independent runs are per-

formed and the results are shown in Fig. 5. It can be

observed from Fig. 5(a, b) that proposed hierarchical

polynomial mutation operator performs better than other

mutation operators as corresponding GD and IGD values

are minimum. Further, it is observed from Fig. 5(c) that the

proposed hierarchical polynomial mutation operator has
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Fig. 5 Performance analysis of several mutation strategies on ZDT1 test function showcasing mean, a GD values, b IGD values, c HV values at

different generations (100–1000)
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larger HV value as compared to other mutation operators.

As the proposed hierarchical scheme is performed on top of

polynomial mutation operator, the inherent probability

distribution of creating an offspring population is similar to

polynomial mutation operator, which is instrumental in the

convergence of Pareto optimal solutions. Moreover, the

implicit generation of distinct fitness values in each gen-

eration favors the preservation of diversity among Pareto

optimal solutions.

4.3 Performance of hNSGA-II on multi-objective
test functions

In this subsection, different sets of multi-objective test

functions are solved using hierarchical polynomial muta-

tion based hNSGA-II framework. These test functions have

been used as standard benchmarks in literature. To

demonstrate the applicability of hNSGA-II, a total of

twelve test problems with two different groups of bench-

marks are considered (both constrained and unconstrained

test problems). With the aim of giving a complete overview

of performance of hNSGA-II, several standard optimiza-

tion algorithms (NSGA-II-DE [30], MOEA/D-DE [30],

NSGA-II [13], �-MOEA [17], NSGA-IIa [31] and

ssNSGA-II [31]) are considered for evaluation on all

unconstrained benchmarks (ZDT1, ZDT2, ZDT3, ZDT4,

ZDT6, Schaffer, Fonseca, and Kursawe test functions

[13]). For the purpose of comparison, we have used the

authors implementation of all algorithms. However, the

implementation framework of NSGA-II-DE and MOEA/D-

DE does not have any provision of constraint handling

management. Therefore, during showcase of results, we are

forced to leave the spaces blank during the analysis of

constrained benchmarks (Binh2, ConstrEx, Ozyczka2 and

Tanaka test functions [13]). During evaluation of all

algorithms, a population size of 200 is considered to evolve

over 500 generations. For all NSGA-II and MOEA variants

(i.e., NSGA-II, NSGA-IIa, ssNSGA-II, NSGA-II-DE,

MOEA/D-DE and �-MOEA) and proposed hNSGA-II

approach, the crossover probability is kept at 0.9. Mutation

probability is set to 1 / p for all algorithms, where p is the

number of decision variables. The crossover and mutation

distribution indices are set to 20 as commonly used in lit-

erature. The population size parameter (b) of each local

block is set to 256 to have a reasonable amount of offspring

population to preserve sufficient diversity across the

obtained PF. Table 1 represents the mean and standard

deviations of GD values for hNSGA-II along with other

standard optimization algorithms based on 30 independent

runs. It can be seen from Table 1 that GD values are better

for seven out of twelve benchmarks (ZDT1, ZDT2, ZDT3,

Fonseca, Kursawe, Ozyczka2 and Tanaka [13]), while the

performance is inferior for both ZDT4, ZDT6, Schaffer,

Binh2 and ConstrEx benchmarks. This indicates that the

resulting Pareto fronts from hNSGA-II are closer to the

optimal Pareto fronts as compared to those computed by

other standard optimization algorithms. From Table 2, it

can be seen that hNSGA-II obtains lowest (best) values for

the IGD metric in seven out of twelve benchmarks (ZDT1,

ZDT2, ZDT3, Schaffer, Fonseca, Kursawe and Tanaka).

This points out that the obtained Pareto fronts of multi-

objective test problems are closer to true Pareto fronts and

the non-dominated solutions are better spread for hNSGA-

II than other algorithms. Again to showcase the perfor-

mance of hNSGA-II as a measure of both convergence and

diversity in a concise manner, HV metric is evaluated for

all benchmarks (as described in Sect. 4.1). It can be seen

from Table 3 that hNSGA-II obtains best (highest) HV

values in six out of twelve benchmarks. In view of the

results, hNSGA-II shows better performance than other

algorithms (seven out of twelve, seven out of twelve, and

six out of twelve for GD, IGD and HV metric respectively).

The usage of hierarchical scheme in polynomial mutation

to generate an elite offspring appears to be fruitful in order

to achieve better convergence and diversity of solutions

along true PF. However, the reason for better performance

can be attributed to the generation of individuals having

unique fitness values during mutation operation of hNSGA-

II.

5 Application to analog/RF circuit
optimization

At the lowest level of design hierarchy, the process of

circuit synthesis comes down to the step of circuit opti-

mization that makes use of sizing principle and biasing

performances of all devices in the circuit to meet certain

design constraints. Once an appropriate topology is selec-

ted during design process, certain performance specifica-

tions are represented as objective functions by formulating

a set of physical equations that relate the device charac-

teristics to design parameters. However, it is difficult to

solve these equations explicitly under a set of design

constraints. Therefore, it is necessary to employ numerical

optimization techniques to implicitly analyze these equa-

tions while optimizing the circuit under certain design

constraints.

The design of analog and RF circuits has become

complex with the advent of deep submicron technology. It

has imposed a discontinuity on the seer practice of

knowledge-based sizing [32] which has been a popular

choice of design methodology since the beginning of

semiconductor design and manufacturing. However, with

increase in integration density and complexity, the use of

simple models designed using this methodology will lead
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to false design. Therefore, new approaches [33, 34] are

presented in literature to handle the design complexity of

integrated circuit chip. These approaches appear to trans-

late the problem of circuit design into a function mini-

mization or maximization problem, which can be solved

through numerical techniques [33]. Mostly, it starts with

the development of an efficient performance evaluator

framework, which evaluates the minimization (maximiza-

tion) function [33]. This function is created based on the

behavior of circuit topology [33, 35, 36] and they rely on

the analytical equation formulation. The efficiency of the

evaluator lies in the efficient design of circuit equations.

Although a number of deterministic algorithms have been

presented to perform circuit design, the assessment of

Table 1 The GD statistics (mean and SD values) based on 30 independent runs of hNSGA-II for different multi-objective test problems keeping

b ¼ 256

GD metric

Problem NSGA-II-DE MOEA/D-DE NSGA-II �-MOEA NSGA-IIa ssNSGA-II hNSGA-II

ZDT1

Mean 2.3897e-03 3.2241e-03 1.1517e-01 1.5656e-03 1.8665e-01 8.2189e-01 1.4490e-03

SD 8.2341e-04 1.2564e-05 4.5101e-03 1.2950e-04 1.0490e-03 4.9559e-03 5.0660e-05

ZDT2

Mean 2.0976e-01 2.7419e-01 2.0507e-01 2.5425e-03 1.4225e-01 0.1250e?01 2.3122e-03

SD 3.7761e-04 4.8112e-03 2.1270e-03 0.1812e-03 1.5926e-03 9.0625e-01 3.1245e-05

ZDT3

Mean 2.3542e-01 1.7304e-01 9.6721e-02 1.7512e-03 2.1417e-01 3.5356-01 1.6974e-03

SD 6.2060e-03 1.9120e-03 3.0611e-03 0.0512e-03 2.3206e-02 2.4369e-02 5.3871e-05

ZDT4

Mean 7.2736e-02 1.7458e-03 4.0117e?01 5.9214e-03 1.6630e-01 3.3299e?01 0.2816e?01

SD 4.1730e-04 3.0129e-05 7.0126e-02 2.2344e-04 2.8151e-03 6.6099e-02 3.1011e-02

ZDT6

Mean 2.3307e-01 2.8336e-01 0.2416e?01 5.9950e-03 1.8020e-01 0.2981e?01 2.0486e-01

SD 7.0183e-02 7.2300e-02 4.0181e-01 1.1209e-03 1.3987e-02 2.0804e-02 4.6200e-03

Schaffer

Mean 8.4757e-01 8.5561e-01 1.1460e-02 9.0352e-03 1.1128e-02 4.1867e?02 1.0514e-02

SD 1.0070e-03 1.1200e-03 1.0123e-03 1.2420e-04 2.2706e-03 0.4116e-01 2.2311e-04

Fonseca

Mean 2.0977e-01 2.7198e-01 2.4156e-03 5.3019e-03 1.1666e-01 5.3519e-02 1.2167e-03

SD 2.1231e-03 3.4230e-03 1.5621e-03 2.3120e-03 3.1184e-02 3.9624e-03 6.7810e-04

Kursawe

Mean 1.7926e?01 1.7886e?01 7.3262e-03 1.0987e-02 6.8233e-01 7.9358e-03 4.3495e-03

SD 4.6431e-01 2.4451e-01 2.3113e-04 3.9841e-03 3.3847e-02 1.6395e-04 4.0192e-04

Binh2

Mean – – 1.8161e?01 0.6896e?01 1.6991e-01 9.5720e-03 1.9121e-01

SD – – 2.3001e-01 3.9841e-03 3.3847e-02 1.6395e-04 4.0192e-04

ConstrEx

Mean – – 6.0349e-03 1.4202e-03 2.8380e-01 1.7491e-03 7.2328e-03

SD – – 1.5887e-05 5.3812e-05 2.5671e-03 5.0045e-05 1.7242e-05

Ozyczka2

Mean – – 0.2725e?01 1.6004e?00 5.0831e-02 1.8653e-01 2.2431e-02

SD – – 1.7752e-01 0.3041e-01 2.8847e-04 3.3040e-03 2.1790e-04

Tanaka

Mean – – 1.1905e-02 1.7084e-02 9.3017e-02 1.7205e-02 8.1449e-03

SD – – 4.6172e-04 2.1430e-04 4.7349e-04 2.3310e-04 3.1295e-05

The results in boldface indicate the best values
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initial design point requires prior knowledge or additional

design equation formulation. This favours the usage of

indeterministic approaches, like use of nature-inspired

algorithms in circuit design. A number of efforts on nature-

inspired algorithms have been made in literature to capture

the design space boundaries of analog and RF circuits.

Genetic algorithm (GA) is employed as one of the popular

optimization routines for optimization of analog and RF

circuits in both industry and academia [4, 37]. Several

variants of GAs are also being employed to design CMOS

operational amplifier circuits with constrained topologies.

Genetic programming is used as an analog synthesis tool in

several filter designs and circuit synthesis problems [4].

With the advent of new and complex circuits, it is

Table 2 The IGD statistics (mean and SD values) based on 30 independent runs of hNSGA-II for different multi-objective test problems keeping

b ¼ 256

IGD Metric

Problem NSGA-II-DE MOEA/D-DE NSGA-II �-MOEA NSGA-IIa ssNSGA-II hNSGA-II

ZDT1

Mean 1.8796e-03 5.4652e-03 7.9356e-02 4.5175e-03 1.7856e-02 5.9368e-02 5.3687e-04

SD 2.3201e-05 3.2131e-05 1.2910e-03 1.1810e-04 1.8179e-03 6.9291e-03 1.4121e-05

ZDT2

Mean 1.6733e-01 2.2529e-01 1.4510e-01 4.3611e-03 1.1558e-02 8.8897e-01 2.3605e-03

SD 0.1214e-01 2.0805e-02 2.4139e-03 7.0231e-03 3.1240e-03 4.1001e-02 1.0012e-04

ZDT3

Mean 2.4908e-01 2.1255e-01 7.2018e-03 1.2465e-02 1.8420e-02 3.7037e-02 8.0021e-04

SD 1.5988e-02 3.1282e-02 2.7836e-04 2.4660e-03 2.1680e-03 1.0476e-03 1.0798e-05

ZDT4

Mean 5.7595e-02 1.2372e-03 1.4407e?01 1.4264e-02 1.8139e-02 0.2155e?01 0.2497e?01

SD 1.2400e-03 2.0912e-04 2.1740e?00 5.1265e-03 1.3541e-02 1.5251e-01 1.3100e?00

ZDT6

Mean 1.8216e-01 2.5408e-01 8.4401e-01 1.6614e-02 1.3146e-02 2.2793e-01 2.2087e-02

SD 5.6002e-02 1.4320e-02 1.4013e-02 1.8120e-03 2.1457e-03 1.2841e-02 1.0756e-03

Schaffer

Mean 0.1467e?01 0.2560e?01 2.2365e-03 3.2884e-02 1.8185e-02 2.9532e?01 2.0502e-03

SD 0.2003e?00 0.4109e?00 4.8701e-05 2.3212e-05 6.6150e-03 0.6603e?00 1.0028e-05

Fonseca

Mean 1.2627e-01 1.7374e-01 7.8359e-04 1.3212e-02 2.1680e-02 8.3367e-03 5.3678e-04

SD 7.9835e-02 4.4459e-02 2.0024e-05 2.6004e-03 3.2780e-03 1.0258e-04 3.0901e-05

Kursawe

Mean 1.8181e?01 1.829e?01 1.2120e-02 8.7333e-02 1.0476e-01 6.0136e-03 5.1619e-03

SD 1.2530e?00 1.3156e?00 2.1240e-03 2.1756e-03 1.6538e-02 1.5224e-05 1.0967e-04

Binh2

Mean – – 3.8746e-02 1.5039e-01 1.3822e-02 9.9204e-05 4.3515e-02

SD – – 3.4132e-04 2.7792e-03 4.8685e-04 1.9055e-07 1.1563e-04

ConstrEx

Mean – – 2.6953e-03 1.0047e-02 1.3330e-02 1.7491e-03 2.4158e-03

SD – – 4.01551e-05 4.0237e-04 1.5281e-04 1.3506e-05 1.0328e-05

Ozyczka2

Mean – – 6.1283e-01 3.7564e?00 4.3907e-02 1.4653e-02 2.1583e-01

SD – – 8.9101e-03 4.7949e-01 5.3761e-04 4.5504e-03 1.3102e-03

Tanaka

Mean – – 1.3635e-03 4.9998e-03 2.5803e-02 5.1985e-03 9.5842e-04

SD – – 7.7346e-05 2.6201e-05 6.0021e-03 2.3179e-05 1.3069e-06

The results in boldface indicate the best values
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necessary to come up with new design strategies using

efficient techniques. Therefore, many nature-inspired

algorithms like, particle swarm optimization (PSO) [6],

simulated annealing (SA) [36], ant colony optimization

(ACO) [38], etc. are also suggested as one of the design

space boundary exploration techniques for circuit opti-

mization. These techniques are employed to design effi-

cient recursive digital filters with infinite impulse response

[39] and for finite impulse response (FIR) filters [40, 41].

Besides these research efforts, several commercial design

tools have also been introduced for circuit sizing in the past

few years, such as NeoCircuit [42], Genius’s ADA [43],

Barcelona Design [44], etc. However, these techniques are

employed to optimize a single cost function instead of an

optimally located space spanned by a number of cost

functions (multi-objective optimization). As circuit

Table 3 The HV statistics (mean and SD values) based on 30 independent runs of hNSGA-II for different multi-objective test problems keeping

b ¼ 256

HV Metric

Problem NSGA-II-DE MOEA/D-DE NSGA-II �-MOEA NSGA-IIa ssNSGA-II hNSGA-II

ZDT1

Mean 0.63629 0.66644 0.65754 0.56680 0.06493 0.05936 0.66661

SD 0.01321 0.01421 0.01214 0.01518 0.00032 0.00021 0.03309

ZDT2

Mean 0.40421 0.33118 0.32413 0.32840 0.07865 0.04019 0.43185

SD 0.00214 0.00534 0.00231 0.00491 0.00011 0.00009 0.01098

ZDT3

Mean 0.48564 0.51609 0.51313 0.70033 0.00696 0.002151 0.78175

SD 0.00207 0.01082 0.01202 0.03689 1.964e-05 5.093e-05 0.04129

ZDT4

Mean 0.46089 0.66464 0.65182 0.48224 0.07544 0.15132 0.64885

SD 0.00403 0.09049 0.07091 0.00510 0.000781 0.001051 0.03092

ZDT6

Mean 0.46790 0.40472 0.37734 0.21348 0.13621 0.18285 0.21876

SD 0.00602 0.004192 0.00238 0.00157 0.00045 0.00084 0.05603

Schaffer

Mean 0.63977 0.79363 0.66207 0.61400 0.78868 0.35681 0.66182

SD 0.04873 0.05092 0.04704 0.03546 0.05241 0.00310 0.03812

Fonseca

Mean 0.40921 0.31551 0.30796 0.27937 0.06522 0.15471 0.30507

SD 0.00319 0.00592 0.00531 0.00462 0.00013 0.00025 0.00901

Kursawe

Mean 0.42537 0.43047 0.39946 0.25383 0.03120 0.16538 0.49325

SD 0.00340 0.00400 0.00143 0.00487 0.00040 0.00053 0.00561

Binh2

Mean – – 0.65098 0.64326 0.99475 0.72786 0.75096

SD – – 0.05289 0.06164 0.15123 0.08931 0.09231

ConstrEx

Mean – – 0.63811 0.70660 0.99030 0.72916 0.73804

SD – – 0.05037 0.03033 0.17546 0.05861 0.07500

Ozyczka2

Mean – – 0.36205 0.43741 0.0 0.27652 0.45255

SD – – 0.00246 0.00104 0.0 0.00093 0.00269

Tanaka

Mean – – 0.33427 0.62590 0.11264 0.23295 0.65115

SD – – 0.00135 0.01902 0.00062 0.00330 0.03962

The results in boldface indicate the best values
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modeling is often affected by uncertainties and errors at

many levels, it is necessary to analyze the trade-offs among

performance specifications to avoid any measurement

errors and presence of inconsistent solutions during design.

To overcome these problems, several multi-objective

techniques are presented in literature with emphasis on

nature-inspired algorithms. A hybrid combination of SA

and PSO is also suggested in [45] to find solutions to cope

with design specifications at circuit-level and exploration

of trade-offs of different analog circuits. Among all pre-

sented multi-objective techniques, NSGA-II [13] is

employed as a leading optimizer in various analog and RF

IC synthesis tools [46, 47].

In this section, the proposed hNSGA-II method is

employed to optimize the performance of circuit. All cir-

cuit design parameters are given as input bounds to opti-

mize two contradicting design costs which are realized by

evaluating a Pareto front. Here, an analog circuit (two-

stage operational transconductance amplifier) and an RF

circuit (low noise amplifier) are taken as case studies to

showcase the performance and applicability of proposed

hNSGA-II method by optimizing different design costs

subject to the set of design constraints.

5.1 Case study 1: two-stage operational
amplifier

Operational amplifiers are depicted as one of the funda-

mental components of analog circuit due to flexible con-

trollability. A case study of a two stage operational

amplifier has been considered as shown in Fig. 6 to

showcase the effectiveness of proposed hNSGA-II method.

The design problem is formulated as a multi-objective

optimization problem to analyze tradeoff between maxi-

mum gain and minimum power consumption. The closed-

form expressions are approximated according to the design

reported in [48]. Subsequently, the details on design

M1 M2

M4

M5

M7

Vin (−)

Vbias (+)

Vbias (−)

C
V

 c

C  load

 out

M3

Vin (+)

M6

VddFig. 6 Two-stage operational

amplifier circuit [48]

Table 4 Two-stage operational

amplifier variables and ranges
Variables Description Lower bound Upper bound

W1, W2 (lm) Width of M1 and M2 0.48 0.9

W3, W4 (lm) Width of M3 and M4 2.11 2.7

W6 (lm) Width of M6 30.1 38.88

Id6 (lA) Forward drain current of M6 16 20

Table 5 Two-stage operational amplifier constraints and

specifications

Specifications Description Constraints Results

/ (�) Phase margin � 60 60

Pmax (mW) Max. power consumption � 300 256

SR (A/lF) Slew rate � 20 20

ICMR (V) Input common mode range [0.8, 1.6] 0.8

GBW (MHz) Gain bandwidth product � 30 29.5

Y (mV) Vmin
in � Vss �

ffiffiffi
I5
b

q
� Vmax

T1
� 100 100
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variables are listed in Table 4 and all design constraints are

summarized in Table 5. The supply voltage is kept constant

at 1.8 V for suitable operation of transistors. Before starting

the process of optimization, channel lengths of 0.18 lm are

selected and inversion coefficient is kept at below unity

(’ 0:8) for M1 and M2 transistors.

However, other transistors are allowed to operate at

the strong inversion side to minimize their Vsat
DS or drain

thermal-noise current inputs. This suggests that the gain

of the amplifier can be maximized at an expense of

power consumption. During optimization of two-stage

operational amplifier, 200 populations are allowed to

evolve over 500 generations till all design constraints are

met for efficient realization of proposed approach. Final

values of all constraints after optimization of gain and

power of the amplifier are listed in Table 5. Figure 7

shows the distribution of final nondominated solutions

obtained by several optimization techniques including

proposed hNSGA-II approach for achieving maximum

gain and minimum power consumption of two-stage

operational amplifier. It can be concluded from the
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Fig. 7 Plot of nondominated fronts for gain (max) and power consumption (min) of two-stage operational transconductance amplifier by

a NSGA-II, b �-MOEA, c NSGA-IIa, d ssNSGA-II, e hNSGA-II

Fig. 8 Low noise amplifier circuit [50]

Table 6 LNA variables and ranges

Variables Description Lower bound Upper bound

W1, W2 (lm) Width of M1 and M2 1 100

Id (mA) Forward drain current 0.1 4.5
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distribution of solutions that NSGA-II with hierarchical

mutation strategy can produce better approximations of

final nondominated solutions over a finite search space

than other optimization techniques. Further, it can be

seen from Fig. 7(e) that using hNSGA-II approach,

voltage gain maximizes sub-linearly for a fixed biasing

at an expense of core 256 mW power consumption under

several design constraints (see Table 5). This sub-linear

plot of Pareto front (PF) can be distinguished by two

regions. In the first region, where gain is less than

67:5 dB, gain increases with an increase in power con-

sumption at a slower pace. In second region, power

consumption increases significantly with a small increase

in gain. However, it is not desirable to achieve such

higher gain at an expense of significant power

consumption.

5.2 Case study 2: low noise amplifier (LNA)

The design of LNA is a relatively complex process as there

exists tradeoffs among different performance specifica-

tions, such as noise figure (NF), transducer power gain,

power consumption, area etc. Here, a case study of source

degenerate cascode LNA is taken as shown in Fig. 8 to

demonstrate the applicability of proposed hNSGA-II

method. LNA is designed in 0:18lm CMOS technology

with 1.8 V power supply centered around 2.4 GHz fre-

quency using Cadence Virtuoso [49]. Although the design

of LNA is subjected to keep a minimum NF (� 2:5), a

power consumption of 8 mW is maintained with a mod-

erately high quality factor (Q 2 ½3; 5�) and a drain current

of 1 mA excluding the bias reference circuit. Further, it is

crucial to maintain a low NF without sacrificing much gain

during the design process. Otherwise noise gets transmitted

to other blocks of receiver system. In view of this, design

problem is transformed into a multi-objective constrained

optimization problem with an objective to minimize NF

and to maximize gain2 (S21 in dB) of LNA. The closed-

form expressions of NF and other design constraints are

based on the design as reported in [50]. Table 6 summa-

rizes the ranges of variables specified during optimization

of LNA. The details of different specifications and con-

straints during optimization process, and the results

obtained after optimization are shown in Table 7.

In order to have a qualitative study of LNA design,

simulation results of S-parameters and NF at different

frequencies are plotted and shown in Fig. 9. It shows that

NF and gain are minimum and maximum respectively at

2.4 GHz center frequency. To start the process of opti-

mization, initial values are assigned to design parameters

from first-cut design of LNA. A total of 200 populations

are evolved over 500 generations to ensure an optimal PF

during LNA optimization. Figure 10 plots the distributions

Table 7 LNA constraints and

specifications
Specifications Description Constraints Results

S11 (dB) Input reflection coefficient @ 2.4 GHz � � 20 - 20.02

S12 (dB) Reverse isolation @ 2.4 GHz � � 50 - 53.22

S21 (dB) Forward power gain @ 2.4 GHz � 10 13.01

S22 (dB) Output reflection coefficient @ 2.4 GHz � � 0:9 - 1.88

NFmin (dB) Min. noise figure @ 2.4 GHz � 2:5 0.67

Pmax (mW) Max. power consumption @ 2.4 GHz � 8 7.87

fcf (GHz) Center frequency [2.1, 2.7] 2.4

Cgs=Ctot Capacitance ratioa � 1 0.92

Q Quality factor [3, 5] 3.5

Zmin
out (X) Min. output impedance (real part) � 50 500

aRatio of intrinsic gate capacitance of M1 to total capacitance (Ctot = Cgs ? Cext ? Cp)

1 2 3 4 5

Frequency (Hz) ×10 9

-80

-60

-40

-20

0

20

Y
 (

dB
)

 NF
 S11
 S21
 S22
 S12

Fig. 9 Different S-parameters and noise figure of LNA

2 Here, transducer power gain (GT ) is considered as gain, which can

be represented as, GT = jS21j2 or GT = 20log|S21| in dB as the source

and load impedances are matched to the reference impedance during

the design of LNA.
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of final nondominated solutions found in several opti-

mization techniques including proposed hNSGA-II for

LNA optimization. It can be seen from Fig. 10 that the

distribution of nondominated solutions in the PF is quiet

nonuniform, i.e., solutions are crowded in a corner of the

PF rather being distributed in the objective space or the

distribution of solutions is not continuous along the PF, for

each optimization technique except hNSGA-II approach.

Figure 10(e) represents an optimal PF for minimum NF and

maximum gain (S21 parameter) of LNA generated using

hNSGA-II approach. It can be seen from this plot that with

increase in gain below 15 dB, NF increases slowly and

after that NF starts to increase significantly at high gain

values. LNAs having high NF deteriorates the performance

of a receiver system significantly by transmitting input

signals coupled with large noise to other blocks. Therefore,

the feasible region of operation is to operate at a minimum

noise figure of 0.67 dB at a moderate gain of 13.01 dB with

a power consumption of less than 8 mW.

5.3 Performance evaluation

To measure the performance in terms of convergence

towards optimal Pareto front and diversity or spread of

solutions along Pareto front, Hypervolume (HV) metric

[23] is evaluated for all peer algorithms including proposed

hNSGA-II algorithm. Both median and interquartile range

(IQR) values of HV metric obtained after 25 independent

runs are listed in Table 8 (IQR is reported within braces).

As HV is a fair measure of the maximum area covered

by the nondominated solutions, Pareto fronts having higher

HV values represent better quality of optimized solutions

in terms of both convergence and diversity of solutions. It

can be observed from Table 8 that the proposed hNSGA-II

algorithm achieves superior HV values in both test circuits

with statistical confidence (‘þ’ symbol denotes a confi-

dence level of 95% [51]).
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Fig. 10 Plot of nondominated fronts for gain (max) and noise figure (min) of low noise amplifier by a NSGA-II, b �-MOEA, c NSGA-IIa,

d ssNSGA-II, e hNSGA-II

Table 8 Median and IQR of the HV metric for analog/RF circuit

optimization problems

Algorithm Two-stage opamp Low noise amplifier

NSGA-II 0.6045 (4.12e-04) [?] 0.6012 (3.12e-04) [-]

�-MOEA 0.6073 (4.18e-04) [?] 0.6210 (1.12e-03) [-]

NSGA-IIa 0.6101 (3.92e-04) [?] 0.6273 (4.20e-04) [-]

ssNSGA-II 0.6602 (2.01e-04) [?] 0.7225 (1.71e-04) [?]

hNSGA-II 0.6828 (3.76e-04) [?] 0.7478 (3.28e-04) [?]

‘opamp’ denotes operational amplifier
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6 Conclusion

This paper presents a multi-objective framework based on

hNSGA-II and its application in optimization of analog and

RF circuits. A new hierarchical scheme in polynomial

mutation operation is employed in this framework to pro-

duce random generation of improved individuals to

enhance the possibility of independent local search in each

generation. The stochastic behavior of proposed framework

is demonstrated by developing a Markov chain model with

bounded ergodicity. Superiority of hierarchical scheme in

polynomial mutation operation is shown by comparing the

performance with six other mutation operators. Applica-

bility of proposed hNSGA-II method is shown by carrying

out extensive simulations on several multi-objective test

problems, and the effectiveness of this method is verified

by generating optimal Pareto fronts for a two-stage oper-

ational amplifier and a cascode low noise amplifier with

inductive source degeneration. Although simulation results

support improvement in the performance of hNSGA-II,

there is still scope of improvement in both convergence and

diversity preservation of Pareto optimal solutions by pre-

serving unique fitness values in each generation. A com-

prehensive study of hierarchical scheme with real and

binary mutation operators can be performed in future to

extend the application of proposed method to analyze

multi-objective optimization problems having large scale

decision variables. Further, the hierarchical scheme can be

subjected to parallelization by using efficient parallel

strategies over multicore and manycore platforms to reduce

the number of function evaluations during optimization

process.
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