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Abstract High efficiency video coding (HEVC) is the

latest video coding standard aimed to replace the H.264/

AVC standard according to its high coding performance,

which allows it to be mostly suitable for application in high

definition videos. However, this performance is accompa-

nied by a high computational complexity due principally to

the motion estimation (ME) algorithm. As in H.264/AVC,

the ME in HEVC is a highly computational demanding part

that takes the largest part of the whole encoding time.

Hence, many fast algorithms have been proposed in order

to reduce computation, but, the majority, do not study how

they can be effectively implemented by hardware. In this

paper, two hardware architectures of the diamond pattern

search algorithm for HEVC video coding with sequential

and parallel techniques, are proposed. These architectures

are based on parallel processing techniques. The sequential

and parallel VHDL codes have been verified and can

achieve at a high frequency on a Virtex-7 field-pro-

grammable gate-array design (FPGA) circuit. Compared to

other designs, our parallel design provides better efficient

implementation of available resources on FPGA. Our

architecture can meet the real-time processing of the FHD

@ 30 frames per second.

Keywords HEVC � Motion estimation � Diamond search

pattern � Hardware implementation � VHDL � FPGA

1 Introduction

With the rapid development of multimedia technologies

and network communication, video contents have recently

been presented to be of a high definition (HD) and an ultra

HD. When compared with the standard definition videos,

the resolution of the HD videos is larger and the visual

quality is better [1]. Extreme demands are put forward to

the video processing technologies. To follow these great

demands, the International ITU-T Video Coding Express

Group (VCEG) and the joint collaborative team on video

coding (ISO/IEC) moving picture express group (MPEG)

have developed the new generation of video coding stan-

dard, called high efficiency video coding (HEVC) [2].

Compared to its predecessor H.264/AVC, HEVC

offered around 50% higher compression efficiency (bit rate

saving) at the same video quality [3, 4]. The major loads at

video coding are Motion estimation (ME) and Motion

compensation (MC), whose consumption exceeds 90% of

the inter prediction time [5]. ME is more challenging and

time-consuming than MC. The HEVC ME consumes about

70% of the inter prediction time [6]. This is due to the new

block coding hierarchy.

This new concept called Coding Tree Units (CTUs) is

similar to the macroblocks in H.264/AVC. Each picture

frame is split into square blocks with a maximum size of

64 9 64, called Coding Units (CUs) [7], and recursively

subdivided into 8 9 8 square blocks. Each CU contains

some prediction and transform blocks, named Prediction

Units (PUs) and Transform Units (TUs), where a PU is the

main unit in the motion estimation algorithm. Whence the
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name quad-tree process of CU, PU and TU, as represented

in Fig. 1.

ME technique is founded on the similarity between the

current and the reference frame. This process finds the best

matched block in the future frames for every block in the

current video frame. The ME is defined by the translation

position of the picture area in the current frame compared

to the reference frame. The main goal of the ME process is

to find the motion vector (MV) (Fig. 2), which represents

the displacement of the best-matched block, in one search

window, defined in the configuration file of the HEVC

code. The motion vector is computed when the best-mat-

ched block is selected.

The matching algorithm is based on computing an error

cost function between the current and the reference frame,

known by SAD value, called Sum of Absolute Differences.

When RB and CB represent the reference pixels and the

current block, the SAD is, then, defined as:

SAD ¼
XM

i¼1

XN

j¼1

CB i; jð Þ � RB i; jð Þj j ð1Þ

There are many well-known sequential fast-search

algorithms such as the diamond search (DS) algorithm [8],

the cross-diamond search (CDS) [9], the horizontal dia-

mond search algorithm (HDS) [10], and the line diamond

parallel search algorithm (LDPS) [11]. To reduce the ME

computational complexity, the time required for the search

algorithm should be reduced. The parallelization of one

diamond pattern reduces the computational complexity of

all these algorithms, which decreases the ME in terms of

execution time, and this, in turn, leads to the decrease of

the total HEVC execution time.

This paper proposes two FPGA-based hardware archi-

tectures for diamond algorithm, with and without

parallelism, in order to get less computing time with

minimum area.

The rest of this paper is organized as follows: Sect. 2

details some related works on HEVC ME algorithm to

reduce the encoding time. In Sect. 3, an overview of the

diamond pattern in the ME is given and followed by our

proposed architectures detailed in Sect. 4. Then, experi-

mental results and their comparison and analysis are pre-

sented in Sect. 5. Finally, the conclusion is given in

Sect. 6.

2 Related works

The complexity in the HEVC encoder is a critical topic.

Since the motion estimation part takes the lion’s share of

the encoding time (70% of the inter prediction time [6]),

some works revolve around the reduction of the motion

estimation time which leads to the reduction in the com-

putational complexity of the total HEVC. This time

reduction is done through the software and the hardware

methods.

For the software, three types of search: Horizontal dia-

mond search (HDS), Large diamond pattern search (LDPS)

and small diamond pattern search (SDPS) are proposed in

[12, 13] to replace the TZSearch algorithm for the HEVC

encoder. Using a Windows 7 with an Intel� core TM i7-

3770 @ 3.4 GHz processor and 12 GB RAM, the proposed

algorithms allow saving around 49% of ME computational

time with a little decrease in bit-rate and PSNR compared

to the original HM8.0 test model. To reduce the HEVC

encoding time, the authors in [1] propose a fast inter CU

decision based on SAD algorithm. The simulations were

achieved on an Intel @ 2.30 GHz CPU, 32 GB RAM.

PU
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Fig. 1 Partitioning modes of coding unit
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Nalluri et al. [14] replace the 8-diamond-point and

8-Square-point by a 6-Hexagon-point in the TZS algo-

rithm, which leads to a reduction in the encoding time by

almost 50% without any degradation in the bit-rate and the

video quality. All simulations were carried out on Win-

dows 7 with an Intel� I7@2.93 GHz processor and 4 GB

RAM. In the work published by Khemiri et al. [15] one fast

ME of HEVC video encoder based on diamond pattern

search and three fast mode decisions; the coded block flag

(CBF) fast method (CFM), the early CU termination (ECU)

and the early skip detection (ESD) modes is presented. The

results, obtained on Windows 8 with an Intel� core TM i7-

3770 @3.4 GHz processor and 12 GB RAM, prove that the

HEVC complexity is saved by 56.75%, with a little

degradation in the bit-rate and the video quality, compared

to the HM.16.2 test model. In [16], the authors propose an

implementation of the Sum of Absolute Differences and

the Sum of Square Differences (SSD) algorithms on a

NVIDIA GeForce GTX 480 with CUDA language to

optimize the ME time. For class E, the time saving

obtained is around 32.14% accompanied by a non-signifi-

cant degradation in the bit-rate and the PSNR, compared to

the ME in the HM16.2 test model. Dongkyu et al. [17]

propose a parallel HEVC integer-pel ME (IME) algorithm,

where concurrent parallel reductions (CPR) are introduced.

This is done using a parallel processing architecture, per-

formed on Graphic Processing Unit (GPU) Geforce GTX

780 with 3 GB DRAM, with CUDA language. The pro-

posed algorithm gives up to 172.6 speedup comparing the

original HM10.0 test model. In 2015, Dongkyu et al.

introduce, in [18], two different algorithms into the ME,

providing an execution time 130 9 faster than that of the

HM version 10.0. The CPU and the GPU used in this work

are an Intel Core i7-2600 @ 3.4, 8 GB memory, and a

Geforce GTX 780 with 3 GB DRAM, respectively. In [6],

Jongho et al. reduce the ME time by around 50%, using the

bi-prediction method, while maintaining the same image

quality and bit-rate.

For the hardware reduction method, many efforts have

been made, but a lot of them are dedicated to the previous

video compression standard (H.264/AVC). In [19], a

rapidly SAD algorithm is proposed on Xilinx SpartanII and

Virtex-2 FPGA families for block sizes ranging from 4 9 4

to 16 9 16. [20] presents a ME design executing a variety

of block-matching search techniques. The performance

measurements of the proposed architecture have been

validated on Xilinx Virtex II Pro (XCV2P40) and Spartan 2

(XC2S150) FPGA. Kthiri et al. in [21–23], propose two

new hardware architectures of fast-search block matching

ME algorithm using LDPS for the H.264/AVC standard.

The serial and parallel hardware designs reaches a maxi-

mum frequency of 390 and 420 MHz, respectively. The

VHDL code is tested on ALTERA Stratix II and Xilinx

Virtex-5 FPGA family.

Some hardware implementations reduce the motion

estimation time of the HEVC encoder by reducing the SAD

computational time. In [24], the authors propose a hard-

ware SAD design for gray scale images. This proposed

design allows the parallel calculation of all SAD of one

defined block of 4 9 4 dimension. The 16 SAD calculation

units generate a total of 16 values that are added in a carry

select adder to give a 12 bit result. A Dadda multiplier is

used as a partial product reduction (PPR) for addition. The

syntheses and the implementation by means of the Xilinx

FPGA, Virtex-2 XC2V1000, show that the maximum fre-

quency obtained is 133.2 MHz for 4 9 4 blocks sizes.

Nalluri et al., in [25, 26], propose two novel architectures

to compute SADs with and without parallelism on FPGA

Xilinx Virtex 5. The achieved results show that the parallel

architecture is 3.9 times faster than the non-parallel. In

[27], Yuan et al. propose a VLSI architecture for HEVC

IME that supports coding tree block (CTB) structure with

the asymmetric motion partition (AMP) mode. The archi-

tecture is acheived on Virtex-6 XC6VLX-550T with a

110 MHz system clock. Through the Xilinx Virtex-7

XC7VX550T FPGA and to compute the SAD values of the

Reference Frame

Current Frame

Search window

MV

Fig. 2 Motion estimation

process
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prediction blocks, the authors in [28] propose a highly

parallel SAD for HEVC ME based on 64 PUs working in

parallel. In [29], Alcocer et al. propose a hardware HEVC

ME implementation composed of memory areas for current

CU and reference search area pixels, 64 processing units,

one new SAD Adder Tree Block (SATB), and one block of

comparison for saving the SAD with the minimum value

and its corresponding MV. By properly grouping the

64 9 64 pixel distortions obtained before, the SATB

computes the SADs for all the possible prediction units.

The proposed architecture is synthesized and implemented

on Virtex-7 XC7VX550T-3FFG1158 FPGA. Their design

provides 247 MHz frequency.

When analyzing these previous works, we remark that

the parallelization of one diamond algorithm reduces the

computational complexity of the DS [8], the CDS [9], the

HDS [10], and the LDPS [11], which leads to the decrease

of the ME in terms of execution time, hence the decrease of

the total HEVC encoding time.

3 Diamond search in motion estimation process

In HEVC video coding, ME adopts two principal

algorithms:

• Full search (FS) algorithm [30].

• TZSearch algorithm [8].

The FS process is considered as a native algorithm. It is

based on the SAD computation of all pixels in the search

area, in order to extract the minimum SAD, which corre-

sponds to the best motion vector. ME occupies more than

96% of the intended encoding time with the FS as the main

algorithm for the inter-prediction [31].

On the other hand compared to full search algorithm,

TZ-Search reduces the computational complexity and

increases the speed-up around 23 times [32], with smaller

quality losses than FS algorithm. Moreover, despite this, as

mentioned in the introduction, this algorithm occupies 70%

of the inter prediction time [6]. It is an algorithm achieved

in the reference software HM (16.2). This algorithm is

divided into four distinct main steps: The PMV (prediction

motion vector), the first research using the diamond or the

square pattern, the raster search and the refinement. These

steps are summarized as shown in Fig. 3. In the first step

and in order to compute the median predictor of the cor-

responding block, three predictors are used: the left pre-

dictor, the up, and the upper right one. The second step

consists of performing the first search, determining the

‘‘searchrange’’ and the search pattern. This step aims to

find the search window using a diamond or square pattern.

The raster search, the third step, consists in choosing the

best distance corresponding to the best-matched point

obtained from the last search. Depending on this distance

denoted ‘‘BestDistance’’, three different cases are pre-

sented: If the best distance is equal to zero, then the process

is stopped. If 1\Bestdistance\ iRaster, a refinement

stage is directly proceeded, where the ‘‘iRaster’’ is an

adjustable parameter in the configuration file that should

not be exceeded. If Bestdistance[ iRaster which is set

appropriately, a raster scan is achieved using the iRaster’s

value as the stride length. The raster search is proceeded

when the difference obtained between the starting position

and the motion vector, obtained from the first phase, is too

large. This raster search is carried out on the complete

search window (named Full search). When the motion

vector’s distance obtained in the previous steps is not equal

to zero, the refinement step is performed to extract the

position.

The raster search is rarely used in the algorithm, since

the condition of transition to this stage (bestdist\ iraster)

is practically never verified. However, the most intense

stages in terms of execution time and computational

complexity in TZSearch, are First search and Refinement.

Indeed, as shown in Fig. 4, the majority of ME time is

taken by the First search and the Refinement part. Which

represents 75 and 68%, respectively for Vidyo1 and

Kimono, of the total TZSearch time. This test is done using

the Random Access (RA) configuration using the two

sequences (Kimono and Vidyo1) recommended by JCT-

VC [33], with two resolutions (1920 9 1080) and

(1280 9 720), respectively.

Both first search and refinement are based on the dia-

mond pattern. In ME algorithm, the diamond pattern is

repeated many times with different distances ranging from

1 to 64.

So, two types of diamond pattern are tested and calcu-

lated in DS algorithm: the small diamond pattern and the

large one [34].

• The small diamond search pattern (SDSP): consisting

of four search points forming a small diamond shape.

This form is used only in the beginning, (the red one in

Fig. 5).

• The large diamond search pattern (LDSP): consists of

nine search points from which eight points encircle the

center point to compose a diamond shape. This

diamond form is used hundreds of times in a same

search.

The search path method using the diamond search

algorithm is described in Fig. 5. This pattern is axially

symmetric and have the same priority in both horizontal

and vertical direction. For each and every point, the SAD

value is determined and a comparison is effectuated to

extract the best one of every specified distance –with the

optimal value-. The ‘‘distance’’ parameter represents the
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distance from the central point to each point of the small or

the large diamond (from distance 2 to 64). At the begin-

ning, the SDSP is placed at the search window’s center

(0,0), called original point (black point in Fig. 5). This first

operation is performed for ‘‘distance’’ equal to 1 (red points

in Fig. 5).

Fig. 4 TZSearch profiling

results
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After that, the SAD is calculated for the eight blocks

corresponding to the large diamond with ‘‘distance = dis-

tance 9 2’’. Then, we repeat the process recursively for the

next LD, by multiplying the distance by two in each iter-

ation. These operations are repeated until the SAD changes

from one iteration to another. The process is stopped when

the minimum SAD is unchanged after two iterations, or

when the distance equals to search range (For HM16.2, the

maximum window is set to 64). Figure 6 gives the DS flow

chart, which describes the diamond search steps.

The DS algorithm is considered as the primary research

objective to reduce computational complexity.

The diamond search algorithm is based on several dia-

mond computation with different coordinates, i.e. diamond

with different distances, distance = 1, 2, 4, 8, 16, 32 and

64. Thus, when optimizing the time of one diamond, just

by modifying the distance parameter, the times of the other

one will be reduced, which leads to the reduction of all the

DS time and the ME time will be saved.

4 Proposed architecture

To reduce the HEVC computational complexity, the ME

time will be reduced. One method to do this is to accelerate

the diamond algorithm using FPGA device. Two hardware

diamond algorithms (sequential and parallel architecture)

are presented and compared, in this section, to obtain

higher frequencies accompanied with the least possible

area cost. Figure 7 illustrates the proposed architecture and

its decomposition into sub-modules. Through the first

module named ‘‘loading_module’’, the current CTU and

the reference block are loaded, line by line. While through

the search module, which represents the second module,

Start of SAD
bestdist=0

Small Diamond placed around the center (0,0)

Compute the SAD of the 1st block of the Small Diamond
and stock the minimum Best_SAD SAD

Compute the SAD of the 4th block of the Small Diamond
and stock the minimum Best_SAD SAD

Research on Diamond with
distance = 1

Compute the SAD of the 1st block of the Large Diamond
and stock the minimum Best_SAD SAD

Compute the SAD of the 8th block of the Large Diamond
and stock the minimum Best_SAD SAD

Research on Diamond with
distance = 2

Best_SAD SAD
bestdist distance

Compute the SAD of the 1st block of the Large Diamond
and stock the minimum Best_SAD SAD

Compute the SAD of the 8th block of the Large Diamond
and stock the minimum Best_SAD SAD

Research on Diamond with
distance = searchrange

Fig. 6 Diamond search

algorithm
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the motion vector and its coordinates according to the

diamond algorithm are calculated.

These two sub-circuits are different for the proposed

sequential architecture and the parallel one. Therefore,

their details are described and detailed in the next sub-

sections.

4.1 Sequential calculation architecture

The sequential technique is based on a serial hardware

architecture for the computation of the motion vector.

4.1.1 Loading_module

The reference search area proposed in our architecture,

consists of 144 9 144 pixels, is shown in Fig. 8. Where,

the horizontal size of the search area is equal to horizontal

size of the search window (64 pixels) in addition to the

CTU line size (64 pixels) more 16 pixels. The same way is

applied for the vertical size where 144 pixels are used

instead of 64.

On the other hand, the source block is composed of

64 9 64 pixels. Figure 9 shows the data disposition of the

source block.

The loads of data from the camera are synchronized

through the ‘‘Adaptator_module’’ by delivering the control

signal ‘‘start_cam’’. This is shown in Fig. 10. To store the

reference search area and the source area in the memory,

and since the data-bus is 32 bits, the transfer of the data is

carried out at the rate of 32 bits per every one-clock cycle,

until a line is complete. This mechanism is done line by

line. Each memory point contains one source line followed

by one reference line. Therefore, to load the first line of the

source and the first line of the reference, 52 clock cycles

are needed (52 = (144 ? 64) 9 8/32). Where 36 clock

cycles are needed for storing a reference line and 16 clock

cycles for one source line. The lines loading of reference

and source blocks are described as in Fig. 10.

The start of writing in the memory is reported with

‘‘start_RAM’’ signal, delivered by the Adaptator_module.

This mechanism is repeated 64 times to load the source

block. As to what concerns the reference search area, it

requires 144 times to load. That is to say 64 times plus 80

times. It is worth clarifying that the loading for the source

and the reference blocks is simultaneous. The writing end

is known by the signal Read when ‘‘Read’’ = ’1’. This is

done in order to indicate that the data is ready for com-

putation in the next module. Furthermore, if ‘‘Read’’ = ’1’,

from the memory, we can read the different stockpiled

pixels by giving just the address of the preferred pixel,

delivered by the control_unit. Hence, limiting the access to

the memory. The outputs of this Loading_module, which

are reference and source lines of 64 pixels, will be the input

of the search module. Additionally, the loading module is

controlled by the control_unit. This control unit signals the

start of finding the appropriate MV to the search module by

a ‘‘start_SAD’’ signal.

4.1.2 Search_module

Using the hardware component presented in Fig. 11, we

can calculate the SAD value for the eight-reference block

of the diamond.

This is done to choose the best estimated motion vector

having the best SAD. The proposed architecture is made up

of four sub-modules. First, we have the control_unit, the

most sensitive circuitry throughout our application, since, it

is responsible for the addressing, the timing and the

Block diagram of the system architecture for diamond algorithm

Search_moduleLoading_memory

Clock
Reset

Data_in

Start_cam

32 bits

Line_src
512 bits

Line_ref
512 bits

Start_SADStart_SAD

MVX_Best

Best_SAD

MVY_Best

endend

Address_Best

20bits

Fig. 7 Block diagram of diamond algorithm
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synchronization between all sub-modules: the Loading_-

module, the SAD_module and the comparator_module.

Additionally, the control_unit selects the pixels associ-

ated to each reference block. The ‘‘donefinal’’ signal

indicates the calculation end of the corresponding SAD of

the current block. Once the calculation of the first block is

completed (‘‘donefinal’’ = ’1’), we move to the next block

in order to compute its appropriate SAD value. The x and y

signals on 7 bits are the coordinate addresses of the top-

right-point of the block whose corresponding SAD we want

to find. This mechanism will be repeated until the eight

SADs of one diamond are computed. Finally, these eight

SAD values enter the comparator_module to extract the

Best_SAD. The ‘‘end’’ signal indicates the end of calcu-

lation for all the blocks of the diamond.

4.1.2.1 SAD_module Figure 12 shows the hardware

component, SAD_module, and its sub-modules. This

module is used to compute the absolute difference and the

sum between all reference and source pixels. The SAD_-

module is composed of two sub-circuits: ‘‘Difference

module’’ and the ‘‘Accumulator’’, to calculate their

addition.

We have to do the SAD64 9 64: i.e., we have 64 ref-

erence pixels minus 64 source pixels. Hence, we need an

Abs_Diff_module composed of 64 Diff_Abs units. DIn-

deed, all pixels from the first current and reference pixels

[Pixel_ref(0), Pixel_src(0)] to the latest current and refer-

ence pixels [Pixel_ref(63), Pixel_src(63)], are introduced to

the SAD_module. The entrance of the data in the Differ-

ence_module is simultaneous and carried out two by two:

the first reference [Pixel_ref(0)] and first current [Pix-

el_src(0)] pixels enter the first ‘‘Abs_Diff (0)’’, and the last

reference pixels [Pixel_ref(63)] and last current pixels

[Pixel_src(64)] enter the 64th ‘‘Abs_Diff (63)’’. All the

results obtained from ‘‘Abs_Diff (0)’’ to ‘‘Abs_Diff (63)’’

blocks enter the following module; the ‘‘Accumulator’’,

where a sum of all the input values is carried out two by

0 1 63
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two. Finally, we obtain the SAD value in three clock

cycles.

4.1.2.2 Comparator_module Using the comparator_-

module, presented in Fig. 13, each obtained SAD value

will be compared to the previous one in order to extract

their minimum. The position details of the MV are the

output of the control unit, which delivers the ‘‘end’’ signal

indicating the end of calculation of all the blocks of the

diamond. This permits to choose the new line search for the

following diamond with another distance (as described in

the previous sub-section).

4.2 Parallel calculation architecture

The parallel method uses a parallel hardware architecture

for the calculation of the MV. To obtain the best real-time

performances, this parallel architecture uses some parallel

Processing Elements (PE) executed in parallel.

Indeed, this architecture permits a parallel calculation of

eight SAD values.V

This is done by the extraction of the eight lines corre-

sponding to each reference block, at the same time. All

modules which differs from those defined previously, are

described in this sub-section. The major differences

between both architectures (sequential and parallel) used in

this work, are the Loading_module, the SAD_module and

the comparator_module. Figure 14 shows the parallel

architecture of our algorithm.

SAD

Clock

Reset

Start_SAD

20bits

8bits

8bits
8bits

8bits
8bits

Pixel_src(0) Pixel_src(63)………………... Pixel_ref(0) Pixel_ref(63)………………...

Abs_Diff (0) Abs_Diff (63)

Abs_Diff_module

8bits

11bits

SAD_module

Accumulator

Line_src Line_ref

Abs_Diff (7)

Acc_0

8bits

Abs_Diff (56)

8bits

11bits

Acc_7

Acc_final

Pixel_src(1) Pixel_src(62) Pixel_ref(1) Pixel_ref(62)

8bits

8bits

Fig. 12 SAD design

Clock
Reset

Best_SAD

MVX_Min

MVY_Min

Address_Best

Comparator_module
SAD_1 to SAD_8

Done_final

20bits

20bits

Fig. 13 Comparator_module

Analog Integr Circ Sig Process (2018) 94:259–276 269

123



4.2.1 Loading module

The only difference between the Loading_module for the

sequential and the parallel architectures is the number of

output blocks. Instead of a reference and a source block, we

have now eight-source and eight-reference search areas.

The eight reference blocks (from Block_ref_1 to

Block_ref_8) are extracted in parallel. Thus, eight line

pixels related to each reference block are selected at the

same time. This extraction needs one clock cycle. Then,

these eight lines pass to the next module (SAD_module_-

par) to compute their corresponding SAD values. In

Fig. 15, an example of large diamond extraction, with a

distance equal to 2, positioned in the center (0,0) in the

reference area, is shown.

4.2.2 SAD_module_par

The SAD_module described in the previous section, is

replaced by another component ‘‘SAD_module_Par’’ in

parallel mode, which uses some parallel processing ele-

ments (PE) executed in parallel. This parallel module,

SAD_module_Par, shown in Fig. 16, is made up of eight

sub-blocks (PE1,…,PE8) for calculating the eight SAD

values (from SAD_1 to SAD_8) corresponding to each

block position in the diamond pattern. The computation is

performed in parallel. After four clock cycles, the eight

sub-blocks results are obtained and ‘‘donefinal’’ signal

passes to ‘1’. Then, ‘‘donecontrol’’ signal passes in turn to

‘1’, indicating the activation of the comparator_module to

extract the best_SAD of all the eight.

4.2.3 Comparator_module

This module permits the determination of the MV and its

coordinates. This is known when extracting the best SAD

with minimum value obtained from several positions of the

diamond. The position information are supplied again to

the control unit to select the next line search for the fol-

lowing diamond with another distance. Figure 17 shows

the comparator module used in the parallel architecture.

5 Implementation and performance results

The proposed architecture is first, implemented and

designed with VHDL language (VHSIC Hardware

Description Language). Next, it is verified with RTL sim-

ulations using Mentor Graphics ModelSim. A VHDL test

bench is then used to send pixel data to the diamond

architecture and to store computation results. Afterwords,

the implementation is synthesized, placed and finally rou-

ted to a Virtex-7 FPGA, using Xilinx ISE 13.1 [35]. The

eight SADs and their obtained minimum are also compared

to the results found by software for some reference and

source blocks, to validate the results. Both architectures are

suitable for 64 9 64 CTU size and 144 9 144 search area

size.
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The two proposed hardware architectures do not have

the same results in terms of area and execution time. The

synthesis results comparison for the proposed architectures,

with and without parallelism, are given in Table 1.

Comparing these two implementations on Virtex-7, the

number of occupied pins for each architecture is 56, which

represents 9% of the total number. In addition, these results

show that the parallel architecture occupies 21 and 2%

more than the sequential version, for ALTU and Register,

respectively. But the maximum frequency of the parallel

version is reduced by around 21 MHz compared to the

sequential one.

Moreover, the delay of the parallel version is 423.6 ns

less than the sequential version. To process one block of

64 9 64 pixels, the total delay can be calculated using

Eq. (2).

delayfrm ¼ N64�64 �
1

Max freq

� �
ð2Þ

We note that N64�64 represents the minimum clock

cycles number required for the calculation of one

64 9 64 pixels block, which is equal to 108 and 13.5 clock

cycles respectively for the non-parallel and the parallel

architectures, (these values are obtained in the synthesis).
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Table 2 compares the two proposed architectures; the

parallel and the sequential one, against previous works.

The proposed sequential and parallel architectures were

compared against previous works [24–29], as shown in

Table 2. The area results are not ever comparable as they

are implemented on different technologies. It is obvious,

from Table 2, that our architectures outperform the archi-

tecture of [24–27]. In fact, for [24], when Rehman et al.

proposed a hardware architecture for the SAD technique,

which provides the correct position of the target within the

frame/image, the maximum frequency found is lower than

our frequency, by around 86.49 and 65.48 MHz, for the

sequential and the parallel architectures, respectively. Their

benefit is in LTU resources, almost 6% of the total, since

the design is for 4 9 4 block sizes. Furthermore, compar-

ing to the three SAD architectures suitable for motion

estimation of HEVC video encoding, proposed by Nalluri

et al. [25, 26] on Virtex-5 against our parallel architecture,

the maximum frequency of our design is 45.062, 47.788

and 54.165 MHz less than the three SAD architectures.

Additionally, it is 24.06, 26.786 and 33.163 MHz less than

our sequential architecture. For the total clock cycles

required for the calculation of one block of 64 9 64 pixels,

our two architectures are the best. Indeed, our sequential

architecture requires 148 clock cycles, less than the

sequential architecture proposed in [25]. As to our parallel

architecture, it requires 50.5 and 3.5 clock cycles, less than

that of the first and the second stage parallel architecture

proposed in [25]. Yuan et al. [27] presented another

architecture, based on a parallel VLSI architecture for IME.

The synthesis results achieved by Virtex-6 XC6VLX-550T,

using Xilinx ISE tool, give a decrease in the frequency of

almost 88.733 MHz compared to our results, but their

architecture is suitable only for 32 9 32 block sizes.

Regarding the obtained results for the 64 9 64 CTU size,

the authors in [28] present a parallel SAD architecture

designed for FS algorithm with a search area of

104 9 104 pixels. The synthesis results, obtained by Vir-

tex-5 technology, give a frequency around 348 MHz.
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Compared to our proposed architecture, their frequency is

higher than ours, since our design uses a search area bigger

than 104 9 104 pixels, exactly 144 9 144 pixels. In

addition, our benefit is in LUTs, since for our architecture

we use 6035 and 22915 slice logic, for the sequential and

the parallel architectures, respectively, which is lower than

the 25173-slice logic used in [28]. As Alcocer et al. [29],

the Virtex-5 and 7 technology are used for synthesis and

implementation of the integer motion estimator, in the case

of a 104 9 104 search area, where the processing is done

in parallel on all sizes from 64 9 64 up to 4 9 4. For

surface level, we have a big advantage (27% against

100%). Also in the case of the speed level, we have a lower

cycle number (13.5 cycles against 112 cycles). So, for [29],

the SAD calculation of one block size of 64 9 64 pixels

required (14 9 8=112) clock cycles. In addition, our

sequential delay is almost the same as that obtained by

[29], but when comparing the delay of our parallel

implementation, which is equal to 67.93 ns, it is lower than

that in [29], which is 453.4 ns, since our frequency is lower

(198.733 MHz against 247 MHz). This is may be due to

the search area used in the test (144 pixels against 104

pixels) and to our proposed calculation of the eight SADs

in parallel.

On the other hand, our architecture can meet the real-

time processing of the FHD @ 30 frames per second when

running at 198.733 MHz.

Taking into account to the obtained results, our parallel

design presents better efficient implementation of available

resources on FPGA.

6 Conclusions

According to its high coding performance, the HEVC video

standard, which replaces the H.264/AVC standard, is

mostly suitable for application in high definition videos.

However, this performance is accompanied by a high

computational complexity due, mainly, to ME algorithm,

which takes the largest part of the whole encoding time.

Whence, many fast algorithms have been proposed in order

to reduce computation, but, the majority, do not study how

Table 1 Synthesis results of the proposed architecture on Virtex-7

Device Xc7v2857-

1ffg1157

Xc7v2857-

1ffg1157

–

Design Non-parallel

DS architecture

Parallel

DS architecture

Difference (for parallel architecture)

Total pins 56 (9%) 56 (9%) 0

Total LTUs (out of 178,800) 11,701 (6%) 49,258 (27%) 21% More

Total registers (out of 35,760) 4697 (1%) 13,351 (3%) 2% More

Max frequency (MHz) 219.735 198.733 21.002 MHZ less

Clock cycles required for calculation of one block 64 9 64 108 13.5 85% Less

Total delay for one 64 9 64 block (ns) 491.5 67.93 423.57 Less

Table 2 Comparative table of the proposed architectures with other designs

Design Architecture FPGA LTUs Frequency (MHz) Clocks cycles Delay (ns) CTU size

Rehman et al. [24] SAD Arch. Virtex-2 657 (6%) 133.245 – – 4 9 4

Nalluri et al. [25] 1-Stage Paral. Arch.

2-Stage Paral. Arch.

Virtex-5

Virtex-5

15,453 (22%)

29,484 (43%)

171.947

165.57

64

16

372.2

96.63

64 9 64

64 9 64

Nalluri et al. [26] Sequential arch

1-Stage Paral. Arch.

2-Stage Paral. Arch.

Virtex-5

Virtex-5

Virtex-5

11,124 (16%)

15,453 (22%)

29,484 (43%)

174.673

171.947

165.57

256

64

16

1465.59

372.2

96.63

64 9 64

64 9 64

64 9 64

Yuan et al. [27] VLSI architecture Virtex-6 55,346 (16%) 110 – – 32 9 32

Medhat et al. [28] Parallel SAD Arch. Virtex-5 25,173(36%) 348 – – 64 9 64

Alcocer et al. [29] SAD Arch. Virtex-5

Virtex-7

–

47,063(100%)

159

247

112

112

704.4

453.44

64 9 64

64 9 64

Proposed DS Sequential

DS Parallel

Virtex-7

Virtex-7

11,701 (6%)

49,258 (27%)

219.735

198.733

108

13.5

491.5

67.93

64 9 64

64 9 64
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they can be effectively implemented by hardware. Two

new diamond hardware units suitable for HEVC based

motion estimation engine, with sequential and parallel

architectures, have been proposed in this paper to decrease

the HEVC complexity in terms of execution time. These

architectures are implemented on Virtex-7 FPGA Xilinx

ISE. The synthesis results show that the parallel architec-

ture requires the same time of one SAD obtained by the

sequential architecture, which allows a gain of 8 times,

compared to the sequential one. In addition, the Clock

cycles required for the calculation of one block 64 9 64

and the delay of the parallel version obtained, are better

than all the results found in previous work. As a conclu-

sion, our parallel design provides better efficient imple-

mentation of available resources on FPGA.

We think that the proposed diamond module can be

adopted for variable block sizes with some modifications

and can give excellent results, as the variable block sizes

proposed for the H.264/AVC in [36]. In addition, we will

make efforts to implement our proposed hardware design

in the HM reference software.
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