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Abstract Memristor crossbar arrays carry out multiply–

add operations in parallel in the analog domain which is the

dominant operation in a neural network application. On-

chip training of memristor neural network systems have the

significant advantage of being able to get around device

variability and faults. This paper presents a novel technique

for on-chip training of multi-layer neural networks imple-

mented using a single crossbar per layer and two mem-

ristors per synapse. Using two memristors per synapse

provides double the synaptic weight precision when com-

pared to a design that uses only one memristor per synapse.

Proposed system utilizes a novel variant of the back-

propagation (BP) algorithm to reduce both circuit area and

training time. During training, all the memristors in a

crossbar are updated in four steps in parallel. We evaluated

the training of the proposed system with some nonlinearly

separable datasets through detailed SPICE simulations

which take crossbar wire resistance and sneak-paths into

consideration. The proposed training algorithm trained the

nonlinearly separable functions with a slight loss in accu-

racy compared to training with the traditional BP

algorithm.

Keywords Neural networks � Memristor crossbars �
Training algorithm � On-chip training

1 Introduction

Reliability and power consumption are among the main

obstacles for continued performance improvement in future

computing systems. Embedded neural network based pro-

cessing systems have significant advantages to offer, such

as the ability to solve complex problems while consuming

very little power and area [1, 2]. Memristors [3, 4] have

received significant attention as a potential building block

for neuromorphic systems [5, 6]. In these systems mem-

ristors are used in a crossbar structure. Memristor devices

in a crossbar structure can evaluate many multiply–add

operations in parallel in the analog domain very efficiently

(these are the dominant operations in neural networks).

This enables highly dense neuromorphic system with great

computational efficiency [1].

It is necessary to have an efficient training system for

memristor neural network based systems. Two approaches

for training are off-chip training and on-chip training. The

key benefit of off-chip training is that any training algo-

rithm can be implemented in software and run on powerful

computer clusters. Memristor crossbars are difficult to

model in software due to sneak paths and device variations

[7, 8]. On-chip training has the advantage that it can take

into account variations between devices and can use the

full analog range of the device (as opposed to a set of

discrete resistances that off-chip training typically targets).

This paper presents circuits for on-chip training of

memristor crossbars that utilize two memristors per

synapse. The use of two memristors per synapse has sig-

nificant advantages over using a single memristor per

synapse. Most recent memristor crossbar circuit fabrica-

tions for neuromorphic computing have been using two

memristors per synapse [9, 10]. Using two memristors per

synapse provides double the synaptic weight precision
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when compared to a design that uses only one memristor

per synapse. This can enable better training of the neural

networks [13].

Existing work in on-chip training circuits for memristor

crossbars include [11, 27]. Soudry et al. [11] examined on-

chip gradient descent based training of memristor crossbars

with a single memristor per synapse. They did not consider

the training of systems with two memristors per synapse

and updated synaptic weights serially column by column.

Work in [27] proposed to apply a variable amplitude

training pulse and update a crossbar in 4 steps in parallel.

Their approach needs to evaluate log[e] for multiple neu-

rons in parallel (their ‘‘e’’ is a function of the derivative of

the activation function). They did not detail design of the

required circuits to evaluate these operations.

This paper presents on-chip training circuits for multi-

layer neural networks implemented using a single crossbar

per layer and two memristors per synapse. We utilize a

novel variant of the back-propagation (BP) algorithm [14]

to reduce both circuit area and training time. The proposed

system requires four steps to update all the memristors in a

crossbar in parallel (for a training instance/data). This

enables faster training of neural networks. We design novel

circuit to generate training pulse of variable amplitude and

duration.

The rest of the paper is organized as follows: Sect. 2

describes related work in the area. Section 3 demonstrates

memristor based neuron circuit and neural network design.

Section 4 describes the proposed training algorithm and its

hardware implementation. Sections 5 and 6 describe the

experimental setup and results respectively. Finally, Sect. 7

concludes the paper.

2 Related work

Zamarreño-Ramos et al. [20] examined how a memristor

grid can implement a highly dense spiking neural network

and used it for visual image processing. They examined

STDP training to implement spiking neural networks.

Alibart et al. [9], Chabi et al. [21], and Starzyk et al. [22]

demonstrated pattern classification using a single layer

perceptron network implemented utilizing a memristive

crossbar circuit. Nonlinearly separable problems were not

studied in these works.

Memristor bridge circuits have been proposed [23, 24]

where small groups of memristors (either 4 or 5) are used

to store a synaptic weight. One of the advantages of these

bridge circuits is that either a positive or negative weight

can be stored based on the sensed voltage. Adhikari et al.

[24] examined multi-layer neural network training using

memristor bridge circuits. They utilized random weight

update rule which does not require error back propagation.

Their results showed that the training using random weight

update rule converges slowly than the training using the BP

algorithm.

Soudry et al. [11] proposed gradient decent based

learning on a memristor crossbar neural network. They

utilized two transistors and one memristor per synapse.

Synaptic weight precision of the proposed implementations

are two times more than this design. The hardware

implementation of their approach would require ADCs and

set of multi bit buffers. An error back propagation step

would require multipliers and a set of DACs. For a layer

with m inputs and n neurons, a weight update requires

O(m ? n) operations in [11] while our proposed training

approach requires O(c) operations (c is a constant).

Work in [12] proposed using two crossbars for the same

weight values. Since the switching characteristic of a

memristor often contains some degree of noise, it would be

difficult to store an exact copy of a memristor crossbar

without a complex feedback write mechanism. Our pro-

posed work is able to apply a variable pulse width during

the weight update which is not possible in the system in Li

et al. [12].

Training a multi-layer neural network requires the out-

put layer error to be back propagated to the hidden layer

neurons. Paper [25, 26] examined training of multi-layer

neural networks using a training algorithm named ‘‘Man-

hattan Rule’’. They did not detail the error back propaga-

tion step and design of the training pulse generation

circuitry. Works in [9, 25, 26] update the weights by a

constant amount, applying a constant amplitude and dura-

tion pulse. Work in [27] proposed to apply a variable

amplitude pulse during training, but did not detail the

required training circuit design. Their design is based on

the assumption that conductance change, DG � exp[V],

which is probably a very rigid assumption (where V is the

applied voltage across the memristor). Such assumption is

not made in the proposed work. Kataeva et al. [27] pro-

posed to update a crossbar in 4 steps in parallel, but did not

detail circuit to evaluate log[e] for multiple neurons in

parallel (their ‘‘e’’ is a function of the derivative of the

activation function). How these analog values are stored

and applied in parallel to a crossbar is not detailed in [27].

Our proposed design does not have these limitations.

3 Memristor crossbar based neuron circuit
and neural network implementation

3.1 Neuron circuit

A neuron in a neural network performs two types of

operations, (1) a dot product of the inputs x1, …, xn and the

weights w1, …, wn, and (2) the evaluation of an activation
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function. The dot product operation can be seen in Eq. (1).

The activation function of a neuron is shown in Eq. (2). In

a multi-layer feed forward neural network, a nonlinear

differentiable activation function is desired (e.g. tan-1(x)).

DPj ¼
Xn

i¼1

xiwij ð1Þ

yj ¼ f DPj

� �
ð2Þ

Figure 1(a) shows the memristor based neuron circuit

design utilized in this paper. This circuit has three inputs

and one bias input (b). For each input, both the data and its

complemented form are applied to the neuron circuit. Here,

a complemented input (such as �A) has the same magnitude

but opposite polarity as the original input (A). For the input

pair A and �A in Fig. 1(a), if rA
?[rA

-, then the synapse

corresponding to input A has a positive weight. Likewise if

rA
?\ rA

-, then this synapse has a negative weight. This

applies to each of the inputs. The output of the inverter pair

at the bottom of the circuit represents the neuron output.

Assume that the conductance of the memristors of

Fig. 1(a) from top to bottom are rA?, rA-, …, rb?, rb-. In

an ideal case the potential at the first inverter input (DPj)

can be expressed by Eq. (3) which indicates that this circuit

is essentially carrying out a set of multiply–add operations

in parallel in the analog domain. In Eq. (3) the denominator

is always greater than zero and works as a scaling factor.

DPj ¼
A rAþ � rA�ð Þ þ � � � þ b rbþ � rb�

� �

rAþ þ rA� þ � � � þ rbþ þ rb�
ð3Þ

Neuron circuit in Fig. 1(a) is implementing the activa-

tion function using a pair of CMOS inverters. The power

rails to the inverters are VDD = 0.5 V and VSS = -0.5 V,

hence it provides a neuron output thresholded at 0 V. Our

experimental evaluations consider memristor crossbar wire

resistance. The schematics of the memristor based neuron

circuits considering wire resistance are shown in Fig. 1(b).

3.2 Synaptic weight precision

The precision of memristor based synaptic weights depends

on the number of memristors used for each synapse and the

resistance (or conductance) range of the memristor device.

Assume that the maximum conductance of the memristor

device is rmax and the minimum conductance is rmin. In a

design using only a single memristor per synapse, �r defines

the separation between positive and negative weights [11].

Table 1 shows that the range of synaptic weights when

using two memristors per synapse is two times that of a

single memristor per synapse design.

3.3 Multi-layer circuit design

The implementation of a nonlinear classifier requires a

multi-layer neural network. Figure 2(a) shows a simple two

layer feed forward neural network with three inputs, two

outputs, and six hidden layer neurons. Figure 2(b) shows a

memristor crossbar based implementation of the neural

network in Fig. 2(a), utilizing the neuron circuit shown in

Fig. 1(a). There are two memristor crossbars in this circuit,

each representing a layer of neurons. When the inputs are

applied to a crossbar, the entire crossbar is processed in

parallel within one cycle.

4 Memristor crossbar based multi-layer neural
network for the proposed training algorithm

4.1 Proposed training algorithm

The hardware implementation of the exact BP algorithm is

expensive as it requires ADC, DACs, lookup table (to

evaluate derivative of the activation function), multiplier

[11]. In this section a variant of the stochastic BP algorithm

is proposed as a low cost hardware implementation of the

algorithm. Proposed training algorithm enables weight

update, for a layer of neurons, in four steps as opposed to

two steps per crossbar column [11]. When implementing

back propagation training in software, a commonly used

activation function is one that is based on the inverse

tangent as seen in Eq. (4) and its derivative in Eq. (5).
(a) (b)

C
C

A
A

B
B

yj

A+

A-

Memristor

Synapse
A

A

yj

.

.

.

Fig. 1 Memristor based neuron circuit. A, B, C are the inputs and yj is

the output
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f2 xð Þ ¼ 1

p
tan�1 xð Þ ð4Þ

df2 xð Þ
dx

¼ 1

p
� 1

1 þ x2
¼ 1

p
g xð Þ ð5Þ

[where g(x) = 1/(1 ? x2)].

The proposed hardware implementation approximates

these functions using analog hardware. The neuron acti-

vation function is implemented using the double inverter

circuit in Fig. 1(a), and can be modeled using a threshold

function as in Eq. (6). This allows for an implementation

with higher speed, lower area, and lower energy.

fth xð Þ ¼ 0:5; x� 0

� 0:5; x\0

�
ð6Þ

To simplify the weight update equation for a low cost

hardware implementation, g(x) in Eq. (5) was approxi-

mated as the piecewise linear function gth(x) [see Eq. (7)].

gth xð Þ ¼ 1 � xj j=2; xj j\1:9
0:05; else

�
ð7Þ

The proposed training algorithm for the altered back

propagation algorithm is stated below:

1. Initialize the memristors with high random resistances.

2. For each input pattern x:

i. Apply the input pattern x to the crossbar circuit

and evaluate DPj values and outputs (yj) of all

neurons (hidden neurons and output neurons).

ii. For each output layer neuron j, calculate the

error, dj, between the neuron output (yj) and the

target output (tj).

dj ¼ sgn tj � yj
� �

ð8Þ

Table 1 Synaptic weight

precision
Two memristors per synapse One memristor per synapse

Maximum weight rmax - rmin rmax - �r

Minimum weight rmin - rmax rmin - �r

Range 2(rmax - rmin) rmax - rmin

A B C

y1
y2

C
B

C

A
A
B

in
pu

ts

target_2
+

-

L2,2

output_2-

L2,1

+
target_1

output_1

Layer 1 
crossbar

Layer 2 
crossbar

(a) (b)

Fig. 2 a Two layer network for

learning three input functions.

b Schematic of the neural

network shown in (a) for

forward pass utilizing neuron

circuit in Fig. 1(a)

446 Analog Integr Circ Sig Process (2017) 93:443–454

123



iii. If
P

j2 output neuronð Þ
dj
�� �� ¼ 0 then goto step 2 for the

next input pattern.

iv. Back propagate the error for each hidden layer

neuron j.

dj ¼ sgn
X

k

dkwk;j

 !
ð9Þ

where neuron k is connected to the previous

layer neuron j.

v. Determine the amount, Dw, that each neuron’s

synapses should be changed (2gp is the learning

rate):

Dwj ¼ 2g� dj � gth DPj

� �
� x ð10Þ

3. If the error in the output layer has not converged to a

sufficiently small value, goto step 2.

In this algorithm, Eqs. (8)–(10) are different from the

traditional back-propagation algorithm. Instead of evalu-

ating the actual error, we evaluate a sign function of the

error. It is much simpler to store a 2 bit value than an

analog value, and this allows for a simpler hardware

implementation. Additionally, we do not need expensive

ADCs, DACs, lookup table, multiplier in this approach.

Furthermore, for a layer of neurons, the weight update

could be done in four steps which will enable faster

training (detailed in Sect. 4.4).

4.2 Training algorithm comparison

To examine the functionality of the proposed training

algorithm we have trained neural networks for different

nonlinearly separable datasets: (a) 2 input XOR function,

(b) 3 input odd parity function, (c) 4 input odd parity

function, (d) Wine [16], (e) Iris [17] and, (f) MNIST [18].

We have trained the neural networks for these datasets in

MATLAB utilizing the configurations shown in Table 2. A

neural network configuration is descried as x ? y ? z,

where the network has x inputs, y hidden neurons, and

z output neurons. We also trained these datasets using the

traditional BP algorithm for comparison. For each dataset

both training approaches utilized the same network con-

figurations, learning rates and the same maximum epoch

counts. Figure 3 shows the mean squared error (MSE)

obtained for different datasets using the proposed algo-

rithm as well as the traditional back-propagation algorithm.

We observe that the proposed algorithm converges to the

minimum specified error.

For the 2 input XOR, 3 input odd parity, and 4 input odd

parity functions, 100% recognition accuracy was achieved

with both the proposed algorithm and the traditional BP

approach. The proposed training algorithm can train non-

linearly separable functions with a slight loss in accuracy

compared to when training with the BP algorithm. For the

Wine, Iris, and MNIST datasets, recognition errors on test

dataset using the proposed algorithm were 3.3, 5, and 4.9%

respectively. Corresponding recognition errors using the

BP algorithm were 3.3, 2, and 3.5% respectively. Our test

errors for the MNIST dataset are slightly bigger than the

published best recognition error, because instead of using

softmax function in the output layer we are using binary

threshold function (for ease of hardware implementation).

The training curves for the proposed algorithm (in

Fig. 3(d), (e) and (f)) are not as smooth as the curves

obtained when using the BP algorithm because in the for-

mer one, we are utilizing a sign function of the errors.

4.3 Circuit implementation of the proposed training

algorithm

Without loss of generality we will describe the circuit

implementation of the back-propagation training algorithm

for the neural network shown in Fig. 2(a). The imple-

mentation of the training circuit can be broken down into

the following major steps:

1. Apply inputs to layer 1 and record the layer 2 neuron

outputs and errors.

2. Back-propagate layer 2 errors through the second layer

weights and record the layer 1 errors.

3. Update the synaptic weights.

The circuit implementations of these steps are detailed

below:

Table 2 Neural network

configurations
Dataset Neural network configurations Number of training data Learning rate

2 input XOR 2 ? 5 ? 1 4 0.1

3 input odd parity 3 ? 7 ? 1 8 0.07

4 input odd parity 4 ? 12 ? 1 16 0.07

Wine 13 ? 20 ? 3 118 0.05

Iris 4 ? 15 ? 3 99 0.05

MNIST 784 ? 800 ? 10 50,000 0.07

Analog Integr Circ Sig Process (2017) 93:443–454 447

123



Step 1: A set of inputs is applied to the layer 1 neurons,

and the layer 2 neuron outputs are measured. This

process is shown in Fig. 2(b). The terms dL2,1 and dL2,2

are the error terms and are based on the difference

between the observed outputs (ti) and the expected

outputs (yi). The error values could be ? 1, - 1 or 0.

Thus these errors can easily be recorded in binary form

for later use.

Step 2: The layer 2 errors (dL2,1 and dL2,2) are applied to

the layer 2 weights as shown in Fig. 4 to generate the

layer 1 errors (dL1,1 to dL1,6). Assume that the synaptic

weights associated with input i, neuron j (second layer

neuron) is wij = rij
? - rij

- for i = 1, 2, …, 6 and j = 1,

2. For the proposed algorithm, in backward phase we

want to evaluate

(a) 2 input XOR (b) 3 input odd parity

(c) 4 input odd parity (d) Wine

MNIST(f)Iris(e)
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0

0.5
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M
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BP
proposed
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0 100 200 300 400
0

0.1

0.2

0.3

0.4

Epoch

M
S

E

BP
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Fig. 3 Mean squared errors

versus training epoch for both

the proposed training algorithm

and a traditional BP algorithm

. .
 .

Training 
Unit (L1)

Back propagated 
errors for layer 1

Error inputs from layer 2
-

+-
+

-
+

Fig. 4 Schematic of the neural network shown in Fig. 2 for back

propagating errors to layer 1
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dL1;i ¼ sgn RjwijdL2;j

� �
for i¼ 1;2; . . .;6 and j¼ 1;2:

¼ sgn Rj rþij � r�ij

� �
dL2;j

� �

¼ sgn Rjr
þ
ij dL2;j� Rjr

�
ij dL2;j

� �

ð11Þ

The circuit in Fig. 4 is essentially evaluating the same

operations as Eq. (11). Alibart et al. [9] utilized similar

design for neuron circuits to implement linear separators.

In this approach complexity of back propagation step

will be O(1).

Step 3: The training units use the inputs, errors, and

intermediate neuron outputs (DPj) to generate a set of

training pulses. The training unit essentially implements

Eq. (10). To update a synaptic weight by an amount Dw,

the conductance of the memristor connected to the

corresponding uncomplemented input will be updated by

amount Dw/2 (where Dw/2 = g� dj � gth DPj

� �
� xi)

and the memristor connected with complemented input

by amount -Dw/2.

For design simplicity the error term dj, in the training

rule, is discretized to a value of either 1, - 1 or 0. The key

impact of dj is to determine the direction (by conductance

increase or decrease) of the weight update along with input

xi. The magnitude of the weight update is determined by

the values g 9 gth(DPj) 9 xi. Voltage across a memristor

needs to surpass a threshold, Vth to change its conductance

[15]. For making the desirable changes to memristor con-

ductance values, we need to apply a voltage of appropriate

magnitude and polarity for a suitable duration across the

memristor. We are determining training pulse magnitude

on the basis of neuron input and duration on the basis of

ggth (DPj) for a neuron j.

The circuit in Fig. 5 will be used to pulse the memristor

crossbar during training when sign of (xi 9 dj) and DPj are

positive. The output of neuron j is essentially producing the

sign of DPj. For each combination of sign of xidj and DPj,

inputs to the training pulse generation circuit in

Fig. 5(b) are shown in Table 3. The inputs are taken such

that during weight increase Vwai[ 0, Vwd = VSS for the

training period (so that potential across the memristor is

greater than Vth). During weight decrease, we want to have

Vwai\ 0, Vwd = VDD for the training period (so that

potential across the memristor is less than -Vth).

The training pulse Vwdj is determined by the DPj value

of each neuron. To determine the DPj value of a neuron we

need to access the crossbar column implementing the

neuron (the input of the inverter pair in the neuron circuit,

Fig. 1(a)). We cannot access the DPj values of the neurons

and update the weights of the neurons at the same time. In

this circuit we propose to store the DPj values in capacitors

as Vcj (after applying the input to the network) and use it to

determine the training pulses of appropriate durations.

Because of the inherent normalization operation in the

neuron circuit, Vcj will be in the range [- 0.5 V, 0.5 V].

Assume that a = 1.9/0.5 is a scaling factor which will be

used to scale up Vcj.

The amplitude of Vwai can be expressed as Vth -

Vb ? xi (see Fig. 5(a)). The training circuit utilizes a tri-

angular wave VD2 (see Eq. (12)) to modulate the training

pulse duration based on g 9 gth(DPj). Duration of VD2, TD2

determines the learning rate. Effective training pulse

duration is TD2(1 - a|Vcj|/2) or TD2(1 - |DPj|/2) which is

consistent with the training rule. Detail description on the

training circuit is given in appendix.

VD2 tð Þ ¼

4t

aTD2

if 0� t� TD2=2

2

a
� 4

aTD2

t � TD2

2

� 	
if TD2=2\t� TD2

0 otherwise

8
>>><

>>>:

ð12Þ

4.4 Writing to memristor crossbars

For the assumed layout of the memristor crossbar, con-

ductance increase requires potential across a memristor

(row to column) greater than Vth and conductance decrease

requires potential less than -Vth. As a result, in the same

row or same column conductance of different memristors

cannot be increased and decreased simultaneously. Fur-

thermore, any two weight update operations of the four

scenarios in Fig. 6(a) cannot be done simultaneously. For

example, if we update M1 and M4 simultaneously, M2 and

-

+ip3=Vcj

ip4=V
Vwdj

-

+

R

R

R
ip1=-xi

ip2=-(Vth-Vb)

.

.

.

. . .

Vwai

VDD

VSS

Memristor
(a)

(b)

Fig. 5 Training pulse generation module for the proposed training

algorithm. Inputs to the circuit are mentioned for the scenario shown

in the first row of Table 3. Vwai determines training pulse amplitude

which is modulated based on input xi. Vwdj determines training pulse

duration which is modulated based on ggth(DPj)
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M3 will also be updated to the undesirable direction (in-

crease as opposed to decrease). For each combination of

sign(dj) and sign(xi) shown in Table 4, one exclusive write

step is required. This implies, entire memristor crossbar

implementing a layer of neurons could be updated in four

steps.

Now we will describe the conductance update procedure

for all the memristors corresponding to positive inputs

(xi[ 0) and positive neuron errors (dj). This step will

update all the memristors belonging to case 1 (which will

update multiple memristors residing in different rows and

columns simultaneously). In Fig. 6(b) memristors M1 and

M5 will be updated in this step. This weight update

approach is different from the existing approaches which

update each crossbar column in two steps [11]. Vwai pro-

duced by the circuits similar to Fig. 5(a) will be applied to

the crossbar rows corresponding to input xi[ 0 and 0 V

will be applied to the rest of the rows. Vwdj produced by the

circuits similar to Fig. 5(b) will be applied to the crossbar

columns corresponding to error dj[ 0 and 0 V will be

applied to the rest of the columns. Weight update

procedures for the other three cases in Table 3 are similar

to the procedure used for case 1.

For a layer of neurons the weight update requires

O(c) operations where c is a constant. The training units are

only active in the training phase. When evaluating new

inputs, only the forward pass will be executed and there

will be no power consumed by the training units, com-

parators, or op-amps used in error back propagation step.

5 Experimental setup

MATLAB (R2014a) and SPICE (LTspice IV) were used to

develop a simulation framework for applying the training

algorithm to a multi-layer neuron circuit. SPICE was

mainly used for detailed analog simulation of the mem-

ristor crossbar array and MATLAB was used to simulate

the rest of the system. A wire resistance of 5X between

memristors in the crossbar is considered in these simula-

tions. Each attribute of the input was mapped within

[-Vread, Vread] voltage range. We have performed simu-

lations of the memristor crossbar based neural networks

both considering memristor device variation, and stochas-

ticity and without considering device variation, and

stochasticity. We assumed a maximum 30% deviation of

memristor device response due to device variation and

stochasticity. That is, when we want to update a memristor

conductance by amount x, corresponding training pulse

would update the conductance by a value randomly taken

from the interval [0.7x, 1.3x]. Table 5 shows the simulation

parameters. The resistance of the memristors in the cross-

bars were randomly initialized between 0.909 and 10 MX.

Table 3 Inputs to the training

module for different scenarios

of the proposed training

algorithm

Sign of djxi Sign of DPj Weight update ip1 ip2 ip3 ip4 VDD VSS

? ? Increase - |xi| - (vth - vb) Vc VD2 0 V -Vb

? - Increase - |xi| - (vth - vb) �VD2 Vc 0 V -Vb

- ? Decrease |xi| - (-vth ? vb) VD2 Vc Vb 0 V

- - Decrease |xi| - (-vth ? vb) Vc �VD2 Vb 0 V

M2

M1 M3

M4

. . .

. . .

. . .

. . .

case1

case2

case3

case4

xi>0

xj<0

k>0 l<0

M2

M1 M3

M4

. . .

. . .

. . .

. . .

case1

case2

case3

case4

xi>0

xj<0

k>0 l<0

M5

M6

. . .

. . .

. . .

case1

case2

m>0

(a) (b)

Fig. 6 a Memristor crossbar

weight (conductance) update

scenarios. Upward arrow

indicates increase of

conductance and downward

arrow indicates decrease of

conductance. b Updating

multiple memristors in a single

step. Upward arrow indicates

increase of conductance and

downward arrow indicates

decrease of conductance

Table 4 Weight update scenarios

sign(dj) sign(xi) Weight update

Case 1 ? ? Increase

Case 2 ? - Decrease

Case 3 - ? Decrease

Case 4 - - Increase
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Simulation of the memristor device used an accurate

model of the device published in [19]. The memristor

device simulated in this paper was published in [7]. This

device was chosen for its high minimum resistance value

and large resistance ratio. According to the data presented

in [7] this device has a minimum resistance of 10 kX, a

resistance ratio of 103, a threshold voltage of about 1.3 V,

and the full resistance range of the device can be switched

in 20 ls by applying 2.5 V across the device. The fol-

lowing parameter values were used in the model in the

simulations: Vp = 1.3 V, Vn = 1.3 V, Ap = 5800,

An = 5800, xp = 0.9995, xn = 0.9995, ap = 3, an = 3,

a1 = 0.002, a2 = 0.002, b = 0.05, x0 = 0.001.

Table 5 Simulation parameters
Memristor RON 10 kX

Memristor ROFF 10 MX

Maximum read voltage, Vread 0.5 V

Threshold voltage 1.3 V

Memristor switching time for write voltage 2.5 V 20 ls

Crossbar each wire segment resistance 5 X

Maximum deviation of memristor device response due to device variation and stochasticity 30%

Learning rate (maximum training pulse duration) 5–8 ns

2 input XOR 3 input odd parity

Iris4 input odd parity

Wine
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E
no device var.
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Fig. 7 SPICE training results

for the proposed algorithm for

both cases: without considering

memristor device variation,

stochasticity (no device var.)

and considering device

variation, stochasticity (device

var.)

Analog Integr Circ Sig Process (2017) 93:443–454 451

123



6 Results

We have examined the training of the memristor crossbar

arrays for five of the datasets in Table 2. We do not show

the SPICE training result for the MNIST dataset as the

simulation of a memristor crossbar large enough for this

application would take very long time. Figure 7 shows the

training graphs obtained from the SPICE simulations for

different datasets utilizing the training process described in

Sect. 4. The results show that the neural networks were

able to learn the desired classification applications in both

cases: without considering device variation, stochasticity

and considering device variation, stochasticity.

We have evaluated the recognition errors on test data for

these memristor based neural networks. For Iris, and Wine

datasets and the errors were 3.92, and 5.22% respectively

when device variation, stochasticity were not considered.

Corresponding recognition errors considering device vari-

ation, stochasticity were 6.5, and 5.55% respectively.

These test errors are close to the errors obtained through

software implementations (Sect. 4.2).

Proposed system enables faster weight update opera-

tions at low cost hardware implementation of the proposed

variant of the BP training algorithm. Table 6 shows the

time required for the major operations during training. We

assumed, for the traditional BP based system, weight

update for multiple layers could be done in parallel. Total

training time in the proposed system (Proposed_time) and

in a state of the art system [11] (BP_time) can be expressed

as follows.

Proposed_time = #_of_epoch 9 #_of_sample 9

(forward_pass_time ? backward_pass_time ?

L2_weight_update_time ? L1_weight_update_time)

BP_time = #_of_epoch 9 #_of_sample 9

(forward_pass_time ? backward_pass_time ? max

{L2_weight_update_time, L1_weight_update_time})

Table 7 compares the training times for the proposed

system and a traditional BP algorithm based system [11].

For the examined benchmark datasets, proposed training

system was up to 8.79 faster than training using existing

approaches. It could be observed that bigger networks

provide greater speedup.

7 Conclusion

In this paper we have designed on-chip training systems for

memristor based multi-layer neural networks utilizing two

memristors per synapse. We have examined training of the

memristor based neural networks utilizing the proposed

variant of the BP algorithm. For a training instance, weight

update operation of an entire memristor crossbar in the

proposed system is done in four steps which enables faster

training. We have demonstrated successful training of

some nonlinearly separable datasets through detailed

SPICE simulations which take crossbar wire resistance and

sneak-paths into consideration. The proposed training

algorithm can train nonlinearly separable functions with a

slight loss in accuracy compared to training with the tra-

ditional BP algorithm.

Appendix

The inputs to the training circuit in Fig. 5 (as shown in

Table 8) are taken such that during weight increase

potential across the target memristor (Vwai - Vwd) is

greater than Vth for the training period. During weight

decrease Vwai - Vwd is less than -Vth for the training

period. Table 8 shows the potentials of different nodes

along with the potential across a target memristor during

training. Here Vcj is the normalized dot product (DPj) of

inputs and weights stored in the capacitor. Evaluation of

Vwd is detailed in the following paragraph. Value of Vb is

chosen such that max{xi} ? Vth - Vb\Vth, and

-max{xi} - Vth ? Vb[- Vth. As a result conductance of

Table 6 Time required for major operations during training

Operation Time (ns)

Forward pass 10

Output layer error calculation and store 5

Determine whether nonzero error or not 5

Back propagate error and save error 20

Proposed system entire level 2 weight update 120

Proposed system entire level 1 weight update 100

Single weight update step (BP) 20

Table 7 Training time

comparison
Dataset Epoch BP Epoch proposed BP time (ls) Proposed time (ls) Speedup

2 input XOR 30 30 71.4 31.2 2.3

3 input odd parity 40 40 254.4 83.2 3.1

4 input odd parity 50 50 1036 208 5.0

Iris 250 250 43,436.3 6435 6.8

Wine 150 150 40,251.7 4641 8.7
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the desired memristors are updated only in the training

period (TD2(1 - a|Vcj|/2)).

VD2 tð Þ ¼

4t

aTD2

if 0� t� TD2=2

2

a
� 4

aTD2

t � TD2

2

� 	
if TD2=2\t� TD2

0 otherwise

8
>>><

>>>:

Training pulse duration is modulated by the term

g 9 gth(DPj) in the training rule [Eq. (10)]. This is

implemented using the voltage signal VD2 in Fig. 5(b), as

triangular wave [Eq. (12)]. In this circuit, when djxi[ 0

and DPj[ 0 the comparator gets VDD = 0 V and

VSS = -Vb (see Table 8). When Vcj[VD2 then amplitude

of Vwdj will be VSS whose value is -Vb. Vcj is greater than

VD2 for the duration TD2(1 - aVcj/2) where TD2 is the

duration of the triangular wave and a = 1.9/0.5 = 3.8 (see

Fig. 8). The value of TD2 determines the learning rate, g.

The time duration TD2(1 - aVcj/2) is consistent with the

term ggth(DPj) in the training rule [Eq. (10)]. Similarly for

the other cases in Table 8 potential Vwd could be evaluated.
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