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Abstract In this letter, an ultra-low-power capacitor-

splitting switching algorithm for successive approximation

register analog-to-digital converters is proposed. To

achieve low power, the first three bit cycles consume no

power from the reference by introducing minus energy

during the third bit cycle and proper switching algorithm.

To further reduce the switching energy, only single-side

capacitors are switched from the forth bit cycle. Besides, to

add one bit, the dummy capacitor is realized by four unit

capacitors and switched to generate the least significant bit.

Compared to the Sanyal and Sun switching technique, the

proposed capacitor switching method achieves 94.19%

energy saving and 47.66% capacitor area reduction.

Keywords SAR ADC � Switching algorithm � Ultra-low
power � Minus energy � Capacitor-splitting

1 Introduction

Recently, the SAR ADC has been frequently used for

biomedical applications due to its digital feature. The

capacitor digital-to-analog converter (DAC) dissipates a

large portion of the total power. Thus, many capacitor

switching schemes [1–7] have been demonstrated for better

power efficiency. Compared to the conventional switching

scheme, the monotonic switching technique [1] achieves

81.26% less switching energy. The charge-average

switching scheme [2] obtains 93.5% saving. The Sanyal

and Sun [3], the Tong [4] and the Xie [5] switching

schemes achieve low power by introducing the minus

energy from the forth bit cycle, but they still consume

much power during the third bit cycle. The bidirectional

single-side (BBS) switching technique [6] generates the

minus energy during the LSB cycle, but it is not energy

efficient. The hybrid switching technique [7] dissipates no

switching power during the first three bit cycles, and the

Zhang switching scheme [8] introduces the minus energy

during the second bit cycle. However, both are less energy

efficient from the forth bit cycle because the monotonic

switching method is used and double-side capacitors are

switched. In this letter, an ultra-low-power capacitor-

splitting switching algorithm with minus energy is pro-

posed which consumes zero switching energy from the

reference during the first three bit cycles and only single-

side capacitors are switched from the forth bit cycle. The

dummy capacitor is also reused to add one more bit, which

further reduces switching energy. Therefore, compared to

the Sanyal and Sun switching scheme, the proposed

switching scheme reduces the switching energy by 94.19%.

2 Proposed capacitor-splitting switching
scheme with minus energy

To reduce switching energy, several methods are often

used, such as top-plating sampling, three voltage refer-

ences, and making full use of the dummy capacitor [9]. But

these techniques still consume much power from the

voltage reference. The Sanyal and Sun scheme introduces

the minus energy, which means that the DAC gives energy

back to the reference voltage sources [3]. Thus, an ultra-

low-power capacitor-splitting switching algorithm with

minus energy was proposed. The capacitor-splitting
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method is to reduce the switching energy, because only

single-side capacitors are switched from the third bit cycle.

To illustrate the proposed switching method, a 4-bit

DAC is shown in Fig. 1. The C/2 is two Cs in series. First,

top-plating sampling is conducted with bottom plates of the

most significant bit (MSB) capacitors and the LSB capac-

itors reset to ground and VREF, respectively. Then, the

sampling switches are off and the first comparison is per-

formed. The MSB is achieved, but no power is dissipated.

If MSB = 1, the LSB capacitors on the VDACP side are

switched from VREF to ground with other capacitors

unchanged. Otherwise, the LSB capacitors on the VDACN

side are switched from VREF to ground. Another compar-

ison is performed, and the MSB-1 is obtained. It does not

consume switching energy, too. From the third bit cycle,

only single-side capacitors are switched, which is based on

the MSB. If MSB = 1, only capacitors on the VDACN side

are changed. Otherwise, the same case occurs on the VDACP

side.

The switching detail of the third bit cycle is shown in

Table 1. When the MSB and MSB-1 are the same, the

MSB capacitors are switched from the ground to VCM;

when the MSB and MSB-1 are different, the LSB capaci-

tors are switched from VREF to VCM. In this bit cycle, the

minus energy is introduced, which is not non-physical. It

means the capacitors discharge and give energy back to the

reference voltage sources [3]. For an N-bit ADC, the

switching energy during the third bit cycle is
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Fig. 1 Proposed switching scheme of 4-bit DAC
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E3¼� VCM � VDACPðNÞ 2ð Þ þ VREF

4
� VCM

� ��

� VDACPðNÞ 2ð Þ � 0
� ��

� 2N�4C � VREF

� VDACPðNÞ 2ð Þ þ VREF

4
� VREF

� �
� VDACPðNÞ 2ð Þ � VREF

� �� �

�2N�4C ¼ �2N�7CV2
REF

ð1Þ

or

E3¼� VCM � VDACPðNÞ 2ð Þ � VREF

4
� VCM

� ��

� VDACPðNÞ 2ð Þ � VREF

� ��
� 2N�4C ¼ �2N�7CV2
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ð2Þ

From the forth bit cycle, related capacitors are changed

according to the first two bits, too. When the MSB and

MSB-1 are the same, the related capacitor in the MSB part is

switched from VCM to ground or VREF based on the third bit;

when the MSB and MSB-1 are different, the related capac-

itor in the MSB part is switched from ground to VCM or the

related capacitor in the LSB part is switched from VCM to

ground, which is also based on the third bit. The former

switching procedure is repeated until the LSB is achieved.

The output waveform of the proposed switching scheme is

shown in Fig. 2(a). The related common-mode voltage is

shown in Fig. 2(b) which affects the ADC linearity [10].

2.1 Switching energy

The behavioral simulations of different capacitor switching

schemes and proposed capacitor-splitting switching

scheme for 10-bit SAR ADC were performed in MATLAB.

Figure 3 shows the average switching energy for these

switching schemes against the output code. The proposed

switching technique consumes only 9.24 CV2
REF average

Table 1 Switching during the

third bit cycle
Switched capacitors during the third bit cycle

MSB = 1&&MSB-1 = 1 The MSB capacitors on the VDACN side from ground to VCM

MSB = 1&&MSB-1 = 0 The LSB capacitors on the VDACN side from VREF to VCM

MSB = 0&&MSB-1 = 1 The LSB capacitors on the VDACP side from VREF to VCM

MSB = 0&&MSB-1 = 0 The MSB capacitors on the VDACP side from ground to VCM
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Fig. 2 Output waveform (a) and the related common-mode voltage (b) of the proposed switching scheme
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switching energy from the reference and achieves 99.32%

energy saving compared to the conventional switching. In

Table 2, the comparisons for these switching methods are

made and the Sanyal and Sun method [3] is chosen as a

reference. The Tong [4], the hybrid [7], and the Zhang [8]

switching techniques consume 31.4, 15.88, and 11.22

CV2
REF average switching energy, respectively. If the minus

energy is considered, the switching energy is 1.24 CV2
REF,

94.19% less. Besides, 268 unit capacitors are required,

47.66% less compared to the Sanyal and Sun technique.

Therefore, the proposed approach is more area efficient and

energy efficient.

2.2 Linearity

The switching energy is directly proportional to the value

of the unit capacitor C. Thus, C should be as small as

possible. However, the value of C is usually determined by

the capacitor matching. Assume that the unit capacitor is

Gaussian-distributed, modeled with a nominal value of Cu

and a standard deviation of ru. For a binary-weighted

capacitor array, each capacitor is unit capacitors in parallel.

The parasitic effect of top-plate parasitic capacitance is

ignored because it just leads to a gain error with no effect

on the linearity performance. The bottom-plate parasitic

capacitance of C in C/2 is also ignored for simplicity

because it is little. Figure 4 shows behavioral simulation

results of 512 Monte Carlo runs of 10-bit DAC with pro-

posed switching scheme. The DNL and INL (integral

nonlinearity) curves are the root-mean-square (rms) values,

and C is Gaussian random variable with standard deviation

of 1% (ru/Cu = 0.01). rDNL,MAX and rINL,MAX are 0.225

LSB and 0.228 LSB, respectively.

3 Conclusion

An ultra-low-power capacitor-splitting switching algorithm

with minus energy and single-side capacitor switching for

SAR ADCs is proposed. Compared to Sanyal and Sun

Table 2 Comparison of different switching schemes for 10-bit SAR ADC

Switching schemes Average switching

energy CV2
REF

� � Energy savings

(%)

Number of required

unit capacitors

Capacitor area

reduction (%)

Sanyal and Sun [3] 21.33 Reference 512 Reference

Tong [4] 31.4 -47.21 256 50

BBS [6] 192 -800 512 0

Hybrid [7] 15.88 25.55 512 0

Zhang [8] 11.22 47.4 512 0

Proposed 9.24 56.68 268 47.66

Proposed with minus energy 1.24 94.19 268 47.66
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switching scheme, the proposed switching scheme achieves

94.19% energy saving and 47.66% capacitor area reduc-

tion. Thus, the proposed capacitor-splitting switching

algorithm is often used for low-power and small-area SAR

ADCs.
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