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Abstract The High Efficiency Video Coding (HEVC)

standard provides improved compression rates in compar-

ison to its predecessors at the cost of large increases in

computational complexity. An important share of such

increases is due to the introduction of flexible Coding Tree

structures, which best configuration is decided through

exhaustive tests in a rate-distortion optimization (RDO)

scheme. In this work, an early termination method for the

decision of such structures was designed using classifica-

tion trees obtained through Data Mining techniques. The

classification trees were trained using intermediate encod-

ing results from a set of video sequences and implemented

in the encoder to avoid the full RDO-based decision. An

average reduction of 37 % in the HEVC encoder compu-

tational complexity was achieved when using the designed

classification trees, with a negligible cost of only 0.28 % in

terms of Bjontegaard Delta-rate increase.

Keywords Early termination � Coding trees �
Data mining � Classification trees � Computational

complexity � High efficiency video coding (HEVC)

1 Introduction

The High Efficiency Video Coding (HEVC) standard,

which has been recently launched by the Joint Collabora-

tive Team on Video Coding (JCT-VC), achieved signifi-

cant compression gains in comparison to its predecessor,

the H.264/AVC standard. However, the improved com-

pression efficiency of HEVC is obtained at the expense of

significant increases in computational complexity, mainly

resulting from much more intensive processing tools, nes-

ted partitioning structures and optimization algorithms

dealing with larger amounts of data. According to [1], the

computational complexity of HEVC is said to be 40 %

higher than that of H.264/AVC when only the essential

tools are enabled. The authors in [2] claim that this com-

plexity increase can achieve 500 % if all encoding tools are

enabled.

Until recently, most research works have focused on the

inter-frame prediction process in order to reduce the

encoding complexity of H.264/AVC and previous stan-

dards, since this is considered the most complex operation

of those standards [3–6]. However, the decision of the new

partitioning structures introduced in HEVC increased sig-

nificantly the encoding computational complexity, so that

part of the research effort has been shifted to this task.

These flexible partitioning structures, namely the coding

tree units (CTUs), the coding units (CUs), the prediction

units (PUs) and the transform units (TUs), have been

claimed as the main responsible for the compression gains

achieved by HEVC, but have also been charged as the
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standard’s most computationally demanding inclusions [7].

In the HEVC Test Model (HM) [8], each CTU can be

divided into several CUs following a recursive quadtree

structure, the Coding Tree, which may assume variable

depth, according to the encoder configuration. This flexible

encoding structure allows the use of large CUs when large,

homogenous regions of a frame are encoded and the use of

small CUs in regions with a more detailed texture. This

process, though yielding optimal compression efficiency,

greatly increases the encoder’s computational complexity,

limiting its use in computationally and energy-constrained

environments.

Some authors have recently proposed heuristics for sim-

plifying the Coding Tree decision process, aiming at

decreasing the computational complexity of HEVC [9–13].

However, even though these works succeed in their goal of

decreasing the encoding complexity up to a certain extent,

the majority of them come with associated non-negligible

losses in terms of rate-distortion (R-D) efficiency. To over-

come this problem, a few approaches which apply machine

learning techniques for computational complexity reduction

have been proposed in [14–16]. However, the method in [14]

cannot be used in HEVC encoders because it was designed

for previous standards that do not useCoding Tree structures,

and the method in [15] does not take advantage of image

characteristics and/or intermediate encoding results when

training the model, which limits the encoder’s R-D effi-

ciency. The CU splitting early termination proposed in [16]

makes use of features extracted during offline encodings and

is able to reduce the computational complexity in reasonable

amounts, but the work proposed in this article yields better

compression efficiency than [16], as shown later.

The approach proposed in this article uses Data Mining

(DM) as a tool to build a set of classification trees that

allow early terminating the decision process that finds the

best Coding Tree for a CTU, relieving the encoder of the

complex task of testing all possibilities available. The

classification trees designed using DM were trained in

offline encodings and implemented in the HM encoder,

leading to computational complexity reductions that range

from 23 to 71 % in comparison to the original encoder at

the cost of negligible bit rate increases. The results out-

perform previous works both in terms of complexity sav-

ings and compression efficiency.

The rest of the article is organized as follows. Section 2

describes the partitioning structures introduced in HEVC.

A rate-distortion-complexity (R-D-C) analysis that moti-

vates the development of the method proposed in this

article are presented in Sect. 3. The research methodology

and proposed approach are detailed in Sect. 4. Experi-

mental results, method robustness analysis and compar-

isons with related works are presented in Sect. 5. Finally,

Sect. 6 concludes this article.

2 HEVC partitioning structures

In HEVC, each frame may be divided into a set of slices,

which are parts of the frame that can be independently

decoded. A slice is composed of sequential CTU, which are

composed of one luminance Coding Tree Block (CTB) of

size W 9 W and two chrominance CTBs of size W/2 9 W/

2, where W may be equal to 8, 16, 32 or 64. The luminance

CTB together with the chrominance CTBs and associated

syntax elements form a CTU, which is the basic image data

unit of HEVC. As the same partitioning structure decisions

are applied to luminance CTB and chrominance CTBs,

from now on this article will only refer to CTUs and their

sub-divisions.

Each CTU can be divided into smaller blocks, called

CU, following a recursive quadtree structure, the Coding

Tree. The CTU is the root of the Coding Tree, which may

assume variable depth, according to the encoder configu-

ration. The Largest Coding Unit (LCU) size and the

Smallest Coding Unit (SCU) size used by the encoder are

defined in its configuration, but the maximum and mini-

mum allowed sizes for a CU are 64 9 64 and 8 9 8,

respectively, so that up to four Coding Tree depths are

possible. In the HM encoder, the Coding Tree structure is

defined by an iterative splitting process, which evaluates all

possibilities in a Rate-Distortion Optimization (RDO)

scheme, until the SCU depth is reached. Figure 1 shows an

example of a 64 9 64 CTU divided into several CUs. The

example shows the final Coding Tree division chosen after

all possibilities are evaluated. The tree leaves (grey blocks)

are the final CUs in the coding quadtree. This flexible

encoding structure allows the use of large CUs when large,

homogenous regions of a frame are encoded and the use of

small CUs in regions with a more detailed texture.

For intra and inter-frame prediction, each CU may be

divided into two or four PUs, which are separately

Fig. 1 Coding Tree structure of a CTU divided into CUs
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predicted. All PUs in a CU are predicted with either inter-

frame or intra-frame prediction. Figure 2 presents all pos-

sible PU splitting modes that can be used in the prediction

of a CU. In HM, the best PU splitting mode is chosen using

an RDO process, which evaluates and compares all possi-

bilities in terms of bit rate and objective quality.

The number of supported PU splitting modes varies

according to the CU size. Inter-predicted N 9 N PUs are

only tested if the CU is a LCU, since in the remaining cases

the same area is tested as a 2N 9 2N PU in the upper depth

of the Coding Tree. Inter-predicted N 9 N PUs are not

tested in 8 9 8 CUs to reduce memory bandwidth

requirements. Asymmetric Motion Partitions (AMP), i.e.,

2N 9 nU, 2N 9 nD, nL 9 2N, and nR 9 2N [17], are not

tested in 8 9 8 CUs to prevent the use of PUs with

dimensions smaller than 4. Finally, only the Square modes

(i.e., 2N 9 2N and N 9 N) are used in intra-predicted PUs.

The Merge/SKIP Mode (MSM) is available for all inter-

predicted CU sizes and is conceptually similar to the SKIP

mode of H.264/AVC. Although considered a different PU

splitting mode, MSM is applied to 2N 9 2N PUs, so that it

can be seen as a sub-mode of inter 2N 9 2N. WhenMSM is

used, the motion information from spatially and temporally

neighboring PUs is inherited by the current PU, forming a

larger merged region. The SKIP mode is treated as a spe-

cial case of MSM.

3 Rate-distortion-complexity-analysis

This section presents an R-D-C analysis of the HEVC

encoder when varying the maximum Coding Tree depth

allowed when encoding a video. This Coding Tree struc-

ture was chosen for the analysis because it was found to be

one of the main reasons for the high computational com-

plexity of HEVC [18]. The observations performed during

this analysis serve as motivation for the development of the

method presented throughout this article.

In the HM encoder, Max CU Depth is the encoding

parameter that controls directly the maximum Coding Tree

depth allowed for each CTU in a frame. The R-D-C

analysis was performed by encoding 10 video sequences

with different spatial and temporal resolution using four

different encoding configurations, which differ from one

another in the value of Max CU Depth (from 1 to 4). These

configurations are called here as CFGn, where n represents

the maximum Coding Tree depth specified by Max CU

Depth. The Random Access (RA) temporal configuration

[19] was used in the analysis and the resulting image

quality, bit rate and complexity were measured in terms of

Bjontegaard-Delta (BD)-rate [20] and encoding time. The

10 video sequences used in these experiments are those in

Table 1 that belong to the A set (sequences that belong to

the B set are used later in this article).

Table 2 shows the BD-rate increase and the average

computational complexity reduction (CCR) per configura-

tion, considering QPs 22, 27, 32 and 37. Both BD-rate and

CCR values were calculated using CFG4 as reference,

which is the baseline case. An analysis of the results in

Table 2 shows that computational complexity can be

enormously reduced by changing the value of Max CU

Depth. However, this reduction incurs in very high R-D

costs in most cases (from 5.1 to 32.8 %). To achieve a

better trade-off between computational complexity and

compression efficiency, it would be desirable to allow the

encoder to choose the best Max CU Depth for each image

region according to local characteristics. Indeed, instead of

simply limiting the Coding Tree depth indiscriminately in

the whole video sequence, the encoder should be able to

decide which depth to use in a smaller scale, such as at a

per-frame or per-CTU scale, adapting itself to the video

changing characteristics. This is the goal of the method

presented in the following sections of this article.

4 Classification trees for coding tree decision

DM techniques are used to determine the value of dependent

variables by looking at the value of some attributes in the data

set, building generalization rules that are expressed as mod-

els. Classification trees are models acquired through predic-

tive DM that are commonly used due to their low-complexity

implementation. The approach presented in this article con-

sists in building classification trees for accelerating the

HEVC encoding process. More specifically, a set of trees are

trained and implemented into HM to control the early ter-

mination of the recursive search for the best Coding Tree.
Fig. 2 Inter-frame and intra-frame PU splitting modes available in

HEVC
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4.1 Methodology

The Waikato Environment for Knowledge Analysis

(WEKA) [21], version 3.6, was used to aid the DM process

performed in this work and the HM software (version 12)

[8] was used to encode the video sequences with QPs 22,

27, 32, 37, and 42, using the RA temporal configuration

[19]. The 10 video sequences mentioned in Sect. 3 (i.e.,

those that belong to the A set in Table 1) were used to

collect the data used for training the classification trees. In

order to guarantee that the trained trees are generic enough

to be used with any video sequence, these 10 video

sequences differ broadly in terms of spatial and temporal

resolution, as well as frame rate, texture motion activity.

When building the classification trees for the early ter-

mination proposed in this work, the usefulness of each

attribute was evaluated through the information gain

attribute evaluation (IGAE) method in WEKA, which

measures the information gain [22] achievable by using a

variable to classify the data into the different classes rep-

resented in the data. This gain equates to the difference

between the number of bits per data item necessary to

convey its class identity before and after classification of

the data set using decision rules based on the variable in

question. Therefore, the information gain of a variable

indicates how relevant it is for the process of constructing a

decision tree that correctly decides to which class each data

item belongs. In the case of the WEKA software, this

information gain is measured by the Kullback–Leibler

divergence (KLD) [23] of the pre and post-classification

probability distributions. Based on this measure, a manual

analysis procedure was followed to identify the most useful

variables for the (tree) decision processes. Then, the vari-

ables with higher information gain were selected as attri-

butes for the tree training processes, as explained later.

IGAE was chosen for this evaluation because it is also used

by the C4.5 algorithm [22], which is the training algorithm

used to build the classification trees.

The C4.5 algorithm starts by taking all instances fed to it

as inputs and calculates the information gain of using each

Table 1 Test sequences used

for analysis, training and

validation

Video sequence Frame rate (Hz) Bit depth Spatial resolution Set

Blowing Bubbles 50 8 416 9 240 A

RaceHorses 30 8 416 9 240 A

PartyScene 50 8 832 9 480 A

BQMall 60 8 832 9 480 A

SlideShow 20 8 1280 9 720 A

vidyo1 60 8 1280 9 720 A

BasketballDrive 50 8 1920 9 1080 A

ParkScene 24 8 1920 9 1080 A

NebutaFestival 60 10 2560 9 1600 A

Traffic 30 8 2560 9 1600 A

BasketballPass 50 8 416 9 240 B

BQSquare 60 8 416 9 240 B

BasketballDrill 50 8 832 9 480 B

ChinaSpeed 30 8 1024 9 768 B

Kimono1 24 8 1024 9 768 B

SlideEditing 30 8 1280 9 720 B

BQTerrace 60 8 1920 9 1080 B

Cactus 50 8 1920 9 1080 B

PeopleOnStreet 30 8 2560 9 1600 B

SteamLocomotive 60 10 2560 9 1600 B

Table 2 Rate-distortion-complexity analysis when varying Max CU

Depth

Video sequence BD-rate (%) CCR (%)

CFG3 CFG2 CFG1 CFG3 CFG2 CFG1

BlowingBubbles 5.2 21.9 41.3 25.2 49.1 70.3

RaceHorses 8.3 28.0 49.4 26.4 51.6 71.9

PartyScene 6.9 19.1 35.9 23.4 54.7 74.3

BQMall 7.2 23.0 45.3 23.2 55.1 73.4

SlideShow 12.8 29.5 52.1 22.4 52.6 73.1

vidyo1 2.6 11.4 27.3 21.7 52.4 73.4

BasketballDrive 1.4 8.3 21.0 21.6 54.1 75.9

ParkScene 3.5 11.4 24.4 20.1 52.5 75.0

NebutaFestival 0.2 1.2 4.1 27.4 59.7 80.2

Traffic 3.1 11.9 27.3 22.1 53.7 75.6

Average 5.1 16.6 32.8 23.3 53.5 74.3
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attribute to perform the classification using a determined

threshold. By iterating among all attributes and adjusting

the thresholds, C4.5 measures the information gain of each

variable and threshold pair. Then, the attribute (and its

corresponding threshold) with the largest information gain

is chosen to divide the training data into two sub-sets. The

same process is applied recursively to the two sub-sets.

When the best attribute is chosen, it is used to divide the

training data into two sub-sets and then the same process is

applied recursively.

After trained, the accuracy of the obtained trees was

observed with WEKA by applying a 10-fold cross-valida-

tion process. The level of accuracy was measured as the

percentage of correct decisions in the total amount of

instances used in the training process. Finally, the trees

were implemented in HM.

4.2 Selecting attributes and training classification

trees

The proposed early termination consists in deciding whe-

ther a CU should be split so that the encoder tests its four

smaller sub-CUs. This decision is performed using the

designed classification trees, which outcome is yes (i.e.,

Split = 1) or no (i.e., Split = 0). To reduce the problem of

class data imbalance, which occurs when there are more

training instances belonging to one class than to the oth-

er(s), following common practice [24], the training files are

composed of a data set with 50 % of CUs which have been

split into smaller CUs and 50 % of CUs which have not

been split into smaller CUs.

As the HEVC standard allows up to four Coding Tree

depths, three classification trees were trained, one for each

size that allows splitting: 64 9 64, 32 9 32, and 16 9 16.

Table 3 shows the variables that provided best perfor-

mance as measured by the information gain with respect to

the decision of splitting or not splitting a CU and were

therefore selected as attributes for the classification trees.

The values presented in Table 3 refer to the information

gain achieved with each variable considering each CU size.

The variables are described in the next paragraphs.

The Partition attribute corresponds to which PU splitting

mode was chosen for the current CU (i.e., 2N 9 2N,

2N 9 N, N 9 2N, N 9 N, 2N 9 nU, 2N 9 nD, nL 9 2N,

or nR 9 2N), independently of whether inter or intra-frame

prediction was applied. The idea behind saving this infor-

mation is that when a large PU (e.g., 2N 9 2N) is chosen as

the best option to predict a determined CU, further tests to

determine the Coding Tree configuration are probably not

necessary, so that this CU does not need being split into

smaller sub-CUs. Statistics that support this claim are pre-

sented in Fig. 3. The chart shows that most of the CUs

predicted as a 2N 9 2N PU were not split into sub-CUs. For

example, 83 % of 64 9 64 CUs predicted as a 2N 9 2N PU

did not need being split into four 32 9 32 CUs, as the

leftmost black bar of Fig. 3(a) shows. Conversely, an

average of 83.3 % of 64 9 64 CUs encoded with the

remaining modes were split into four 32 9 32 CUs (average

of all grey bars of Fig. 3(a), except for the 2N 9 2N case).

By analyzing the three charts of Fig. 3, it is possible to

notice that, on the one hand, the correlation between using

2N 9 2N PUs and not splitting the CU decreases in smaller

CUs (70 % for 16 9 16 CUs, as shows Fig. 3(c)). On the

other hand, in smaller CUs the correlation between choosing

the remaining PU modes and splitting the CU increases (on

average, 90 % for 16 9 16 CUs).

The DNeighDepth attribute is computed based on the

difference between the Coding Tree depths used in

neighboring CTUs and the depth of the current CU. The

rationale of considering such variable is that there exists a

strong correlation among maximum depths of spatially and

Table 3 Information gain of the attributes in each tree

Attribute 64 9 64 32 9 32 16 9 16

Partition 0.352 0.336 0.269

DNeighDepth 0.311 0.262 0.249

Ratio(2N 9 2N, MSM) 0.112 0.168 0.255

NormDiffRD(2N 9 2N, MSM) 0.109 0.163 0.249

RD(2N 9 2N) 0.035 0.042 0.053

RD(MSM) 0.034 0.061 0.108

RD(2N 9 N) 0.033 0.036 0.044

RD(N 9 2N) 0.031 0.032 0.042

SkipMergeFlag 0.046 0.066 0.065

MergeFlag 0.020 0.035 0.046
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Fig. 3 Occurrence of a 64 9 64 CUs, b 32 9 32 CUs, and

c 16 9 16 CUs split and not split into smaller CUs according to the

PU mode chosen (i.e., Partition)
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temporally neighboring CTUs, as shown in [10]. The

attribute DNeighDepth is calculated as follows. First, for

each neighboring CTU, the average depth among all its

composing CUs is computed. The top-left, top, top-right

and left CTUs in the current frame, as well as the co-

localized CTUs in the first frames of both reference lists

(List 0 and List 1) are considered as neighbors, so that up to

six average depths are calculated. Figure 4 shows the four

neighboring CTUs in the current frame and the co-local-

ized CTUs in the reference frames, with the variables

representing the average CU depths assigned to them. Let

us call these averages as A1 to AN, where N is the number of

neighboring CTUs available for the current CTU. The CTU

assigned with label C in Fig. 4 represents the current CTU.

Finally, the value of DNeighDepth is calculated as an

average of the averages A1 to AN, minus the depth of the

CU currently being encoded, as shown in (1). If the current

CU depth is much smaller than the average of average

depths of neighboring CTUs, the splitting process should

probably continue due to spatio-temporal correlation

among neighboring CTUs.

DNeighDepth ¼

PN

i¼1

Ai

N
� CurrDepth ð1Þ

Figure 5 shows the distribution of DNeighDepth for

different CU sizes. The curves show that there is a clear

relationship between the distribution of DNeighDepth and

the CU splitting decision. CUs that are not split into

smaller CUs have DNeighDepth values that cluster towards

low magnitudes, while the opposite occurs for those CUs

that are split into smaller CUs. Since the two distributions

do not fully overlap, it is possible to determine an optimal

decision threshold that minimizes the classification error

rate. WEKA computes these thresholds during the process

of training the decision trees.

The Ratio(2N 9 2N, MSM) shown in Table 3 is calcu-

lated as a simple division between the R-D costs of

encoding the current CU as an inter-predicted 2N 9 2N PU

and as MSM PU, as shown in (2). The NormDiffRD(2N 9

2N, MSM) value is the normalized difference between the

RD(2N 9 2N) and RD(MSM) costs, calculated as per (3).

The reason for considering these values in the IGAE

analysis is that when a compression gain (i.e., a drop in

R-D cost) is observed due to the use of motion-compen-

sated prediction in a CU instead of encoding it with MSM,

the block probably belongs to a medium/high-motion or

complex-textured image region and usually in this type of

situation it is advisable to split a CU into smaller CUs.

Figure 6 shows the distribution of Ratio(2N 9 2N, MSM)

for different CU sizes. The smaller information gain level

of this parameter in comparison to the two previously

analyzed cases is also clear in the charts, which shows the

Split and Not Split areas more overlapped than in the charts

of Figs. 3 and 5.

Ratioð2N � 2N;MSMÞ ¼ RDð2N � 2NÞ
RDðMSMÞ ð2Þ

NormDiffRDð2N � 2N;MSMÞ

¼ RDð2N � 2NÞ � RDðMSMÞ
RDðMSMÞ

�
�
�
�

�
�
�
� ð3Þ

The R-D costs for inter 2N 9 2N, MSM, 2N 9 N and

N 9 2N PU splitting modes were also separately consid-

ered in the IGAE analysis and are represented in Table 3.

Also present in the table are the MergeFlag and Skip-

MergeFlag, which are binary variables used by the encoder

to identify CUs that have been predicted with MSM and

SKIP mode, respectively. These flags were included in the

analysis because CUs encoded with MSM and SKIP modes

generally belong to low-motion or very homogeneous

image regions, which are rarely encoded with small CUs.

Table 4 presents the topological characteristics of the

obtained classification trees, including their depth, the

number of test nodes and the number of leaves. It isFig. 4 Neighboring CTUs used in the calculation of DNeighDepth

Fig. 5 Occurrence of a 64 9 64 CUs, b 32 9 32 CUs, and

c 16 9 16 CUs split and not split into smaller CUs according to the

average of CU depths in neighboring CTUs (i.e., DNeighDepth)
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important to emphasize here that the depth in Table 4

refers to the number of decision levels in the obtained

classification trees (i.e., the height of the classification tree)

and does not have any relationship with the coding tree

depth mentioned along this article. Table 4 shows that all

classification trees are composed of \10 decision levels,

which means that their associated computational com-

plexity is negligible.

5 Experimental results

In order to evaluate the accuracy and the performance of

the early termination method, the three classification trees

presented in the previous section were implemented in the

HM encoder (version 12) and a set of ten video sequences

was used to validate the proposed method. In all tested

cases, the Random Access (RA) temporal configuration

[19] was used with QPs 22, 27, 32, and 37.

5.1 Classification accuracy and R-D-C efficiency

analysis

To guarantee the trustfulness of this evaluation, the

experiments described in this section use the ten video

sequences that belong to the B set in Table 1, so that none

of the sequences used in the analysis presented in Sect. 3

and in the training process presented in Sect. 4 was used

here. The classification accuracy of each tree was measured

as the percentage of CUs that were classified in the same

class chosen by the original HM encoder (without any

modification), i.e. Split or Not Split. Table 5 presents the

classification accuracy of each tree. Notice that the

designed trees achieve very good accuracy, with values

slightly larger than 84 %. However, these results account

the case of splitting a CU that should not be split into

smaller CUs as an inaccuracy, even though it does not

harm the encoding R-D efficiency. In fact, the R-D effi-

ciency could only be harmed when a CU that should be

split is not split due to the early termination. The third

column of Table 5 shows the number of incorrect early

terminations caused by inaccuracies in the classification

trees, which are the cases that could actually cause R-D

efficiency loss due to choosing incorrect coding tree

depths.

To illustrate the classification accuracy, Fig. 7 presents

the 100th frame of the BasketballDrill video sequence and

its corresponding CU boundaries according to the Coding

Tree defined for each CTU. In this specific case, the

sequence was encoded with QP 32. The frame

Fig. 7(a) was encoded using the original HM encoder,

while the frame in Fig. 7(b) was encoded with an HM

encoder modified to include the Coding Tree early termi-

nation algorithm. It is possible to perceive that the differ-

ences between the boundaries in Fig. 7(a) and (b) are not

expressive, which confirms that the early termination per-

forms a correct Coding Tree determination in most cases.

Table 6 presents average R-D-C results for the proposed

early termination method. The table shows that an average

CCR of 37 % is achieved with negligible R-D efficiency

losses when the early termination method is implemented

in the HM encoder. Notice that, even though the CCR

achieved with the proposed method is between those

achieved with configurations CFG2 and CFG3 presented

earlier in Table 2 (53.5 and 23.3 %, respectively), the

associated BD-rate increase is much smaller in this case.

While those configurations incurred in BD-rate increases of

5.1 and 16.6 %, the use of the proposed classification trees

incurs in a BD-rate increase of only 0.28 %, which is 18

and 59 times smaller than the incurred by CFG2 and CFG3,

Fig. 6 Occurrence of a 64 9 64 CUs, b 32 9 32 CUs, and

c 16 9 16 CUs split and not split into smaller CUs according to the

ratio between the 2N 9 2N and MSM R-D costs (i.e.,

Ratio(2N 9 2N, MSM))

Table 4 Topological characteristics of obtained classification trees

CU size Depth Test nodes Leaves

64 9 64 5 6 19

32 9 32 8 20 33

16 9 16 9 23 44

Table 5 Accuracy of obtained classification trees

CU size Classifier accuracy (%) Incorrect depth (%)

64 9 64 84.2 7.1

32 9 32 84.5 7.5

16 9 16 84.6 6.9
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respectively. The rightmost column of Table 6 shows the

ratio between BD-rate and CCR, which is mostly useful for

comparisons with similar works that yield different CCR

levels, as we show later in Sect. 5.3.

Figure 8 shows R-D efficiency results for the two

encoder versions, i.e. the original (HM12) and the one with

the proposed early termination method (CT ET). Fig-

ure 8(a) and (b) show results for the BQTerrace and the

SteamLocomotive video sequences, which are those that

presented the best and worst R-D efficiency results,

respectively. Notice that the charts show overlapped curves

even in the worst-case video sequence, which means that

the R-D efficiency of both encoder versions is almost the

same, even though the computational complexity is 37 %

smaller in the proposed method.

5.2 Method robustness analysis

To evaluate the robustness of the method proposed in this

work, a set of experiments that deliberately alter the

obtained classification trees was performed. The goal of

such analyses was to identify how much the results pre-

sented in Sect. 5.1 depend on the attribute thresholds

acquired during the training process and how much these

thresholds depend on the video sequences used to train the

classification trees. Four modifications were performed

directly on the implemented trees and the results in terms

of BD-rate, BD-PSNR and CCR (with reference to the

original HM encoder) were observed and compared to the

encoder with the original classification trees proposed in

Sect. 4. Table 7 presents the average results for each set of

experiments, which are detailed in the next paragraphs. For

reference, the results obtained with the original decision

trees are reproduced in the first line of Table 7 (Training

Set A).

In the first and second set of experiments (Thresh-

old ? 5 % and Threshold - 5 %), the thresholds tested in

each level of the classification trees were increased or

decreased in 5 %, respectively. These are important eval-

uations because small variations on the threshold values are

expected if some training conditions change, such as the

number of video sequences, the QP, the characteristics of

each video (resolution, frame rate, texture), and the number

of frames. By forcing the thresholds to ?5 or -5 %, we

can evaluate the impact in terms of compression efficiency

and computational complexity if a slightly different set of

trees was used. The results in Table 7 show that the com-

pression efficiency and the CCR do not change signifi-

cantly in comparison to the Training Set A.

In the third set of experiments (Termination-5 %), the

thresholds were modified in such a way that, considering a

uniform distribution of values for a certain attribute, the

chances of terminating the CU splitting process earlier were

decreased in 5 % (or, in other words, the chances of con-

tinuing the splitting process were increased in 5 %). Thus,

the threshold values were increased or decreased in 5 %,

accordingly to the choice that their tests represent. For

example, if testing a certain attribute leads to an early ter-

mination if its value is smaller than x, threshold x was

increased in 5 %, so that the chances of early terminating the

CU splitting process were decreased in 5 %. Similarly, if

testing a certain attribute leads to an early termination if its

value is larger than x, threshold x was decreased in 5 %, so

that the chances of early terminating the CU splitting pro-

cess were decreased in 5 %. Table 7 shows that the CCR

decreased 7 % and the compression efficiency (BD-rate)

increased 0.02 % in these experiments, respectively. This

was already expected, since the chances of early terminating

the CU splitting process were decreased in 5 % (thus, more

optimal decisions are performed). These experiments may

provide initial insight for the future development of a

complexity control algorithm that can dynamically adjust

the amount of early terminations according to a desired level

of computational complexity reduction.

Finally, the fourth set of experiments (Training Set B)

analyzed the influence of the video sequences used in the

(b)

(a)

Fig. 7 CTUs divided into CUs in the 100th frame of the Basket-

ballDrill video sequence encoded with QP 32 by a the original HM

encoder and the b HM encoder with the proposed Coding Tree early

termination
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training process on the overall performance of the proposed

method. For that purpose, the whole process described in

Sect. 4 was repeated for the video sequences belonging to

set B of Table 1 (instead of those in set A). The new

obtained decision trees were then implemented in the HM

encoder and evaluated with the video sequences belonging

to set A of Table 1 (instead of those in set B). Notice in the

last line of Table 7 that the CCR and the compression

efficiency results are slightly worse, but still very similar to

those obtained with training set A (first line), which means

that the method presents good results regardless of the

training/testing set.

Obviously, as the training video sequences used in the

fourth set of experiments are not the same as those used in

Sect. 4, the obtained classification trees are slightly dif-

ferent. However, their structure is very similar and the

main differences are in the threshold values. Table 8 shows

the topological characteristics and the decision accuracy of

the trees trained with set B. Notice that the tree depth, the

number of test nodes and the number of leaves are very

close to those in the trees presented in Table 4. Similarly,

the classifier accuracy and the percentage of incorrect

coding tree depth choice are close to those presented in

Table 5, even though they are slightly smaller. As expec-

ted, this small decrease in accuracy leads to the slightly

smaller compression efficiency results presented in the last

line of Table 7.

5.3 Comparison with related works

The best related works found in the literature have been

analyzed and compared to the schemes proposed in this

article. In order to allow for a fair comparison, only those

works that reported BD-rate results and CCR values rela-

tive to the overall encoding process using the original HM

as reference were selected. Besides, all the compared

works were also tested with the Main profile, the RA

configuration, QPs 22, 27, 32, 37, and at least seven video

sequences with four different spatial resolutions.

Table 9 presents the compared results in terms of BD-

rate, CCR and the ratio between these two values. We can

conclude from the table that the early termination

scheme proposed in this article achieved the best BD-rate/

CCR relationship among all related works. While the

related works present BD-rate/CCR ratios varying from

1.20 to 4.42, the proposed early termination presents a ratio

of only 0.76, which means that it offers a much more

efficient Rate-distortion-complexity trade-off. Also, notice

that the best related work [9] is actually only applicable to

intra-predicted CUs, which means that its complexity

reductions are only achieved in All Intra (AI) temporal

configurations.

Finally, it should be noticed here that this work presents

a detailed description on top of the research published in

Table 6 Rate-distortion-

complexity results for the early

termination

Video sequence BD-rate (%) BD-PSNR (dB) CCR (%) BD�rate

CCR

BQSquare -0.01 0.00 23 -0.03

BQTerrace -0.01 0.00 28 -0.03

BasketballDrill ?0.43 -0.02 30 1.41

BasketballPass ?0.13 -0.01 24 0.53

Cactus ?0.21 -0.01 41 0.51

ChinaSpeed ?0.13 -0.01 29 0.45

Kimono1 ?0.55 -0.02 44 1.25

PeopleOnStreet ?0.09 0.00 16 0.56

SlideEditing ?0.35 -0.06 71 0.50

SteamLocomotiveTrain ?0.97 -0.02 60 1.61

Average ?0.28 -0.01 37 0.76
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Fig. 8 Rate-Distortion efficiency for the a BQTerrace and

b SteamLocomotive video sequences encoded with the original HM

encoder and the HM encoder with the proposed early termination

Table 7 Robustness analysis results

Experiment BD-rate (%) BD-PSNR (dB) CCR (%)

Training Set A ?0.28 -0.01 37

Threshold ?5 % ?0.32 -0.01 35

Threshold -5 % ?0.21 -0.01 34

Termination -5 % ?0.26 -0.01 30

Training Set B ?0.37 -0.02 32
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[25], mainly focusing on the coding tree structure decision

and on the method robustness analysis.

6 Conclusions and future work

This article presented an early termination method that

reduces the computational complexity of the HEVC

encoder. The method was developed making use of Data

Mining tools to build classification trees that exploit

intermediate encoding results and halt the process that

decides the best Coding Tree structure for each CTU. The

classification trees were trained and validated through

extensive experiments using distinct sets of video sequen-

ces in each phase. Experimental results have shown that an

average complexity reduction of 37 % can be achieved

when the early termination method is used, with a BD-rate

increase of only 0.28 %, yielding a better R-D-C efficiency

than the best related works published so far. The proposed

method does not add any computationally intensive oper-

ations to the HEVC encoder, since the classification trees

use only intermediate encoding results computed during

normal HEVC encoding. Therefore, a similar strategy can

be seamlessly incorporated to any other HEVC encoder

implementation with very small increase in the computa-

tional burden of the encoding.

This work also presented a set of four extensive exper-

iments that were performed to assess the robustness of the

proposed method. The experiments revealed that the high

accuracy of the classification trees and the high R-D effi-

ciency of the modified HEVC encoder are not biased to the

video sequences used for training and testing, so that other

different sequences still yield very similar results. Besides,

the robustness analysis provided initial insightful conclusions

for the future development of a complexity control mecha-

nism that is able to adjust the classification tree thresholds

dynamically according to the desired level of computational

complexity reduction.
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