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Abstract The reduction of the computational cost of

statistical circuit analysis, such as Monte Carlo (MC)

simulation, is a challenging problem. In this paper, we

propose to build macromodels capable of reproducing the

statistical behavior of all repeated MC simulations in a

single simulation run. The parameter space is sampled

similarly to the MC method and the resulting nonlinear

models are reduced simultaneously to a small macromodel

using nonlinear model order reduction method based on

projection, perturbation theory and linearization tech-

niques. We demonstrate the effectiveness of the proposed

method for three applications: a current mirror, an opera-

tional transconductance amplifier, and a three inverter

chain under the effect of current factor and threshold

voltage variations. Our experimental results show that our

method provides a speedup in the range 100–500 over 1000

samples of MC simulation.

Keywords Clustering � Monte Carlo � Model order

reduction � Nonlinear analog circuits � Perturbation
theory � Projection � Statistical simulation

1 Introduction

Process, voltage, and temperature (PVT) variations have a

huge impact on circuit performance, yield, and reliability

[1]. Circuit parameters are no longer truly deterministic

and are considered as probability distributions on their

infinite space. The problem of predicting circuit behavior

and performance for their entire parameter space is com-

pulsory to catch most of their undesired behavior prior to

their fabrication.

Traditional corner case verification methods are not

accurate and cannot guarantee that a circuit will always

behave according to its specification. Also, the methods,

which compute circuits performance bounds in presence of

parameters variability using affine interval arithmetic [2] or

global optimization [3, 4], are expensive, scale poorly with

circuit complexity, and often lead to over-conservative

results. Sampling-based methods such as MC simulation [5]

methods are easy to implement but are computationally

expensive. The enhancement of MC space sampling

schemes by performing importance sampling [6] or by

reducing the sampling discrepancy [7–9] does not work for

all circuits and scales poorly with circuit sizes. Stochastic

spectral methods [10–12], which model parameters as

stochastic processes and avoid repeated simulations, require

sophisticated solvers and quickly hit the computation limits

for nonlinear circuits with correlated parameters.

Model order reduction (MOR) [13] is a promising

technique that reduces the size and complexity of large

mathematical models. It builds compact models that

reproduce the simulated behavior of an original model in a

smaller amount of time. MOR methods for circuit simu-

lation [14] can be a key to address the challenging problem

of alleviating the computational cost of MC methods. They

can be effectively used to reduce the number of differential
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equations which have to be solved in order to estimate

circuit performances. The preliminary application of MOR

methods to address process variation for linear networks

[12, 15, 16] proves their potential. Unfortunately, the key

challenge, which has been preventing further progress in

this direction, resides in the limitations of MOR methods

for the case of nonlinear circuits.

In this paper, we propose a novel simulation method

which makes use of the recently developed MOR methods

for nonlinear circuits [17–19] and reduces the computa-

tional cost of statistical circuit analysis under process

variation. The parameter space is sampled similarly to the

MC method and the resulting nonlinear models are reduced

simultaneously to a small macromodel capable of repro-

ducing the statistical behavior of all repeated MC simula-

tions in a single simulation run. The efficiency of the

proposed method is proved for three applications: a current

mirror, a three-stage inverter chain, and an operational

transconductance amplifier. We analyze the performance of

each circuit under the effect of device mismatch and show

that they are accurate in terms of mean and standard

deviation measurement compared to a MC simulation

analysis of the original circuit model. Also, we show that

the simulation traces retain the required accuracy (less than

5% relative error).

The remainder of this paper is organized as follows.

Related work is briefly reviewed in Sect. 2. Preliminaries

are introduced in Sect. 3. The proposed approach is

described in detail in Sect. 4. Section 5 discusses experi-

mental results and Sect. 6 concludes the paper.

2 Related work

In order to address the problem of circuit parameters

uncertainty and circuit yield estimation, a few methods

have been used in practice.

MC simulation is a leading method that consists in

N repetitive simulations of a circuit model for randomly

generated parameter values. Then, the statistical distribu-

tions of circuit performance metrics are predicted from the

N obtained simulation traces. While this method is

straightforward to implement, its run time scales poorly

with the number of parameter samples and the length of

transient simulations [5].

To accelerate the convergence of the MC method, sev-

eral techniques have been developed, for example, Latin

hypercube sampling (LHS) based methods [7, 8]. The LHS

based method controls the generation of the random sam-

ples which reduces the number of required samples and

provides superior convergence rates over the MC method.

However, the LHS based method might require a prepro-

cessing time and a large memory, and its performance

becomes comparable to the MC method as the number of

random parameters increase. The quasi MC method [9],

a.k.a low divergence sampling, is a generalization of the

LHS method for the multivariate case. The LHS and the

Quasi MC methods do not always reduce the simulation

cost even though they simulate a smaller number of

experiments.

Stochastic spectral methods [10–12], which have the

same objective as the MC method, model the circuit

parameters as continuous stochastic processes and compute

the circuit response in terms of polynomial chaos (PC), in a

Hilbert space. The stochastic circuit behavior is obtained

by solving the obtained stochastic circuit model. The PC

based methods show remarkable speedup over the MC

method for RC or RLC interconnect model analysis.

However, they result in extremely large models when

random parameters are correlated and they require robust

stochastic solvers especially for nonlinear circuit models.

MC methods are typically more feasible in these situations.

In [20], the authors presented an intrusive-type

stochastic solver, named ST, to quantify the uncertainties

in transistor-level circuit analysis. The simulator is based

on generalized PC (gPC) expansions and therefore can

handle Gaussian and non-Gaussian random parameters.

The efficiency of the ST method is enhanced by allowing

decoupled numerical simulation and adaptive step size

control.

The use of stochastic spectral circuit simulators based on

gPC to handle parameters uncertainties has many limita-

tions. For example, the number of gPC expansions scales

poorly with the parameter space size. Also, it is difficult to

transform correlated non Gaussian parameters to uncorre-

lated ones in order to easily construct gPC basis, as dis-

cussed in [21]. However, it is important to notice that in

[22], an efficient framework to reduce the computational

cost associated with the stochastic simulation based on gPC

of complex systems with a large number of parameters,

such as MEMS problems, is proposed. As detailed in [23],

complex systems are decomposed hierarchically into sub-

systems which are simulated using a sparse stochastic

testing simulator based on the adaptive anchored analysis

of the variance method [24]. Then, the system level

stochastic simulation is accelerated by the use of the ten-

sor-train decomposition [25].

In [26], the authors extended the DC sensitivity-based

mismatch analysis [27, 28] for analyzing mismatch effects

on transient characteristics. The accuracy of the pseudo

noise based mismatch analysis, which only computes the

variance of a Gaussian performance variation, relies on the

assumptions of a linear perturbation model and small

mismatches.

Recently, statistical simulation methods started to ben-

efit from linear circuits MOR methods. For example, in
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[29] the authors predicted the impact of process variation

using linear MOR methods over intervals of parameters

(the asymptotic waveform evaluation method [30] and the

passive reduced order interconnect macromodeling algo-

rithm [31]). However, these methods are limited to linear

interconnect circuits, may have more than 5% estimation

error for some cases and require robust numerical methods

to avoid the interval range estimation error explosion. Also,

MOR and stochastic spectral methods have been employed

to enhance the extraction and the simulation of linear

interconnect models [15, 16] and mismatch analysis [12].

However, these methods inherit the complexity and limi-

tations of stochastic methods.

In [32], the authors proposed to first represent the per-

formance bound of analog circuits under the effect of

multiple interval valued parameter variations. They then

generate a reduced differential model using the polytope

representations [33] of circuits uncertain states and the

nonlinear systems MOR method [34]. The models are

solved using computational geometry. Unfortunately, due

to the computational cost, this method is impractical for

large nonlinear circuit models with correlated state

variables.

In this work, we are taking advantage of the recent

progress in the MOR methods which apply to the case of

nonlinear circuit models [17, 18] and using them to reduce

the computational cost of solving the large number of

nonlinear equations needed to analyze process variation

effects. We aim to use a single simulation run of a reduced

model to approximate a large number of MC simulations

without degrading the analysis accuracy. Therefore, our

method computes the statistical circuit performances in a

much smaller amount of time and can make them converge

faster to their theoretical values by increasing the number

of samples of the parameters space.

3 Preliminaries

3.1 Circuit model formulation in presence

of process Variation

Analog circuit differential models are often obtained using

the modified nodal analysis [35] method. In general this

method leads to the model given in Eq. (1)

_x ¼ f ðx; u; pÞ ð1Þ

where _x is the time derivative of the vector x, which rep-

resents the circuit voltage and current state variables, and f

is a nonlinear vector function of the state vector x, the input

u, and the circuit device model parameters p. The accuracy

of the model in Eq. (1) is directly related to the accuracy of

the circuit device models which take into consideration the

performance variation due to process, voltage and tem-

perature (PVT) variations. The effect of process variations

(PV) on a circuit device is the mathematical sum of the

effect of two variation types: (1) the inter-die variation that

affects all the devices similarly; and (2) the intra-die

variation which affect different devices differently [36]. PV

leads to variations in attributes of devices (length, width, or

oxide thickness, etc.) when integrated circuits are fabri-

cated. It affects the yield and performance (bandwidth,

gain, rise time, delay, etc.) of the produced circuits and its

effect becomes prevalent at smaller manufacturing tech-

nology processes and lower power supply voltages. For

example, device mismatches, which refers to the small

random variations in the characteristics of identically

designed devices, is a major concern in the design of

analog circuits such as digitally controlled analog circuits,

oscillators, current mirrors, or amplifiers, etc. The Pel-

grom’s model [37] for MOS transistors is used to relate the

local mismatch variance of electrical device parameters

rðDpÞ, device width W and length L, and technology

constants Ap, as given in Eq. (2). It is widely used to

express the threshold voltage vt and the current factor b ¼
lCox

W
L
mismatches.

r2 Dpð Þ ¼
A2
p

W � Lþ Sp � D ð2Þ

where D is the distance between two transistors, Sp
describes the variation of the parameter p with spacing. In

[38], a different mismatch model, which is proposed for

semiconductor devices (diodes, bipolar, etc.), is based on

the propagation of variance in Eq. (3), where e is an

electrical property and pl are the process and geometry

parameters.

r2de ¼
X

l

oe

opl

� �2

r2dpl ð3Þ

Except for very small circuits, it is difficult to analytically

predict the behavior of a circuit due to the combination of

mismatches of individual devices [1]. The impact of these

random parameter variations on circuit behavior is rather

studied with MC simulation [5] by repeating circuit sim-

ulations for randomly varied devices.

3.2 Sampling-based statistical methods

In sampling-based statistical simulation methods, the sta-

tistical characteristics of a state variable x due to a variation

of the parameter p is obtained by solving the model in

Eq. (1) N times ðxp1 ; xp2 ; . . .; xpN Þ for random generations of

the parameter p ðp1; p2; . . .; pNÞ. In order to accurately

capture the effect of the variation of the parameter p, the

entire parameter space has to be covered with a very large
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number N based on the variance of the output of interest

and the required accuracy. For example, a MC simulation

may require 1000 to 10,000 randomly generated values to

get a good confidence level on the conducted simulation

results [5]. The main challenges of the sampling based

methods are: (1) how to efficiently sample the high

dimensional parameters space for a high coverage of a

model behavior and (2) how to efficiently or simultane-

ously solve the subsequent large number of nonlinear

dynamical models. Methods like quasi MC [9], LHS MC

[7, 8], sparse sampling grids [39] and importance sampling

algorithms [6] address the first challenge. The second

challenge has been approached in different ways but is still

problematic given the increasing complexity and size of

integrated circuits. The differences of these approaches are

lead by the way how the PV effect is modeled. The

stochastic methods model PV as a stochastic process and

employ stochastic solvers to estimate circuits statistical

behavior [11, 12, 20, 21]. MOR methods can be used to

address both challenges by reducing the size of the

parameters space or reducing the models which have to be

solved iteratively for each parameter sample, respectively.

The application of MOR to address PV for linear networks

[12, 15, 16] proves their potential. In this paper, our con-

tribution lies in taking advantage of the recent progress in

MOR methods for nonlinear circuits and applying them to

reduce the computational cost of solving the large number

of nonlinear equations to analyze PV effects, mainly mis-

match of identically designed devices.

3.3 Nonlinear projection based model order

reduction

In the literature, model order reduction (MOR) is the

transformation of a large dynamical model described by

Eq. (1) into a smaller model which mimics its behavior

while it can be simulated in a considerably smaller amount

of time. MOR has been previously applied to the class of

nonlinear circuit models and led to faster circuit models

with acceptable accuracy levels [18, 19, 40, 41]. We con-

sider in this paper the method proposed in [17] that can be

briefly described by Algorithm 1. This MOR method

requires a differential model (Line 1) and constructs

reduced models in an iterative way until a target speedup

and accuracy requirements are checked (Line 11). The

original model is simulated (in Line 4, DC and transient

simulations) which results in a collection of trajectories for

different inputs and initial conditions. These trajectories

are captured in the form of three matrices; the state variable

X, its time derivative F and the input U. The obtained

behavior snapshot X is clustered into a set of k centroids C

in Line 5 using the k-means algorithm [42]. Then, the

model in Eq. (1) is linearized at each element of the set of

clusters C. The number k of clusters is set initially to a

minimal value and is increased iteratively until the lin-

earized model becomes accurate. The linearization matri-

ces are used to compute a unitary Krylov space projection

matrix V ðVVt ¼ InÞ using either the block Arnoldi or

block Lanczos algorithms [13]. The linearized model in

Line 6 is reduced via projection in Line 8 which leads to

Eq. (4), where F̂ ¼ Vt � F, Ĵz ¼ Vt � of
oxjx � V , Ĵu ¼ Vt � of

ouju,

and Z ¼ Vt � C. The matrices and vectors are dynamically

evaluated using the weights wðiÞ ¼ kz�ZðiÞk�1
2Pm

i¼1
kz�ZðiÞk2ð Þ�1 ; i ¼

1; . . .; k in order to approximate the behavior of the original

model.

_z ¼
Xm� k

i¼1

wðiÞ � F̂ðiÞ þ Ĵzi � z� ZðiÞð Þ þ Ĵui � u� UðiÞð Þ
� �

ð4Þ

The simulation of the reduced model in Line 9 is required

to check that it yields an acceptable speedup and accuracy

conformance criteria. The speedup is evaluated as the

simulation time ratio S ¼ TðzÞ=TðxÞ where T(z) and T(x)

are the simulation times of the reduced and the original

models, respectively. The accuracy of the reduced model is

checked by measuring the relative error between the state

variable x and its approximation x̂. If the speedup and

accuracy goals are not met in Line 11, the MOR process is

iteratively restarted with a refinement of the parameters

until the reduced model is accepted.

ALGORITHM 1: MOR Algorithm

1: Input: Equation (1)
2: Output: F̂ , Ĵz, Ĵu, Z, V
3: while < status == 0 > do
4: [F, X, U, T (x)] = Simulate(Equation (1), U, T )
5: [C, U ] = Cluster(X, F, U, k)
6: [F, Jx, Ju] = Linearize (X, U, Equation (1))
7: V = GenerateProjection(Jx, Ju)
8: [F̂ , Ĵz , Ĵu, Z] = Reduce(F, Jx, Ju, X)
9: [z, T (z)] = Simulate(Equation (4))
10: x̂ = V · z
11: status = Check(x, x̂, T (x), T (z))
12: end while
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4 Proposed methodology

We propose to transform the problem of statistical simu-

lation into a problem of reducing the size of a large non-

linear dynamical model using nonlinear circuits MOR

methods [17]. Instead of using a traditional statistical

analysis approach of performing repeated simulations of a

circuit model for a large number of samples of uncertain

parameters, we propose to reduce a larger differential

model built with different instances of the circuit model

each of which corresponding to different samples of the

uncertain parameters. Then, the obtained reduced model is

simulated only once to perform the job of N-points MC

simulation. Figure 1 depicts the four main steps of the

methodology. First is the model replication step where we

build a large differential model out of N instances of the

circuit model Model(p, x) for the randomly generated

parameter samples (Modelðx; u; p1; p2; . . .; pNÞ). Then, we
reduce the obtained large model using the MOR method

described in Sect. 3.3. After that in the reduced model

simulation step, we simulate the resulting reduced model.

Finally, we perform a backward projection of the reduced

model simulation traces into the state space of the N circuit

instances and use them in the statistics generation step to

compute the statistical behavior of Model(p, x). The details

of each step are provided in the sequel.

4.1 Model replication

In this first step of the statistical simulationmethodology, we

build a large differential model out of N instances of the

circuit model Model(p, x) for the randomly generated

parameter samples (Modelðx; u; p1; p2; . . .; pNÞ). First, a

number of N parameter samples (p1; p2; . . .; pNÞ) are gener-
ated according to the circuit technology specification or

some PV estimation formulas such as the Pelgrom’s model

[37] provided in Eq. (2). The parameter distribution is used in

N instances of the circuit model, as shown in Eq. (5). This

system of differential models (Modelðx; u; p1; p2; . . .; pNÞ)
can be viewed as a single differential model with a large state

vector formed by the states vectors of all the N instances of

the circuit model.

_xp1 ¼ f ðxp1 ; u; p1Þ
_xp2 ¼ f ðxp2 ; u; p2Þ
..
. ..

. ..
.

_xpN ¼ f ðxpN ; u; pNÞ

ð5Þ

where xpi ; i ¼ 1; . . .;N is the state vector of the original

circuit Model(x, u, p) when the parameter p is set to the

sample pi. The model replication step is implemented using

a script that copies N times the original circuit model while

it sets the corresponding parameter sample according to the

perviously generated random parameter distribution.

4.2 Model order reduction

The MOR method described in Algorithm 1 is modified

and customized for an efficient reduction of the large

model in Eq. (5), as described in the following three steps.

4.2.1 Linearization points generation

The main steps for generating the linearization points for

the N circuit model instances are summarized in Algorithm

2. In Algorithm 1, the linearization points are selected by

clustering a snapshot of the original circuit model simula-

tion. In this case, performing a simulation of the N circuit

instances to generate a snapshot from which we can select

linearization points is computationally expensive and the

main objective of this work is to avoid it. Consequently, as

shown in Algorithm 2, first we simulate only one instance

of the original circuit model in Line 3 and use clustering to

generate the necessary linearization points of the simulated

model in Line 4. The snapshot of the circuit model simu-

lation (DC and transient simulations) when the parameter p

is set to the mean value lp ¼ 1
N

PN
i¼1 pi is divided into

clusters using the agglomerative hierarchical clustering

method in MATLAB [43]. As a result, a number of k

clusters is obtained and it leads to an accurate piecewise

linear approximation of Modelðx; lpÞ in each cluster

c ¼ 1; 2; . . .; k, as given in Eq. (6).
Fig. 1 Fast statistical simulation method
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_x ¼ f ðxðcÞ; uðcÞ; lpÞ þ Jx � ðx� xðcÞÞ
þ Ju � ðu� uðcÞÞ

ð6Þ

where x(c) is the cluster centroid, u(c) is the input that

corresponds to x(c), Jx ¼ of
ox
, and Ju ¼ of

ou
. Then, in Lines

5–14, we employ a small perturbation model around each

cluster centroid in Line 9, that is given in Eq. (7), to find

the linearization points needed for all the N instances of the

model subject to PV. Finally, it is also possible that the

parameter variation changes the DC operating behavior and

in this case we must verify that the linear approximation is

still valid. Basically, we solve the DC equation of the

circuit model again with the new parameter value as shown

in Lines 10–12. Therefore, any DC behavior change of the

circuit instances due to PV is captured into the set of

clusters.

xðc; lp þ dpÞ ¼ xðc; lpÞ þ dp
ox

op
ð7Þ

Figure 2 illustrates the clusters generation step for a two

state variable circuit (a tunnel diode oscillator). It describes

six clusters (k ¼ 6) and their perturbed centroid points

which together form the centroid of twenty circuit instan-

ces (N ¼ 20). The perturbation effect is shown as a devi-

ation the nominal parameter circuit model cluster while

always being within the real trajectories of the perturbed

circuit models. In the case where the parameter variation

highly affects the DC circuit behavior, we must verify that

the linear approximation is still valid. Basically, we solve

the DC equation of the circuit model again with the new

parameter value as shown in Lines 10–12. Therefore, all

DC behavior variation of the circuit instances due to PV is

captured into the set of clusters.

4.2.2 Linearization of system of equations

In this step the set of differential models in Eq. (5) is

reformulated as follows:

_y ¼ f �ðy; u; pÞ ð8Þ

where y ¼ ½xS1 ; . . .; xSm � is the new state variable that con-

sists of groups of state variables. The state variables in each

group exhibit almost the same dynamical behavior range

and have the same order of magnitude. For example, cur-

rents are grouped together, and voltages are divided into

groups based on their range and the sign of the oxi
ou
. As a

result, the state variable of each group have a similar

behavior and can be reduced efficiently using the proper

0 0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

0.4
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1

x
1
 [V]

x 2 [m
A

]

 

 

Fig. 2 Example of perturbed clusters centroids

ALGORITHM 2: Linearization Points Generation
1: Input: Equations (1) and (7)
2: Output: x(c, pi), c = 1 . . . k, i = 1 . . . N,
3: Xμp = Simulate(Model(x, u, μp)){Equation (1)}
4: x(c, μp) = Cluster(Xμp ), for c = 1 . . . k
5: for i = 1 . . . N − 1 do
6: δp = pi − μp

7: ∂x
∂p

= ∂ẋ
∂p

· ∂x
∂ẋ

8: for c = 1 . . . k do
9: x(c, pi) = Perturb(x(c, μp), δp, ∂x

∂p
){Equation (7)}

10: if (Model(x(c, μp), u(c), μp) = 0) then
11: x(c, pi) = Solve(Model(x, u(c), pi) = 0){Equation (1)}
12: end if
13: end for
14: end for
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orthogonal decomposition (POD) reduction method

described in [13]. The step of grouping state variables is

performed manually, in this work, however a classification

algorithm [43] can perform it automatically based on the

circuit simulation traces.

The function f � in Eq. (8) represents m system of

equations labeled S1; . . .; Sm. Each system Si is represented

with equations that are functions of the state variable xSi ,

the new input uSi (the original circuit input u as well as

other state variables from the remaining systems

S1; . . .; Sm), and a subset of the randomly generated

parameters p1; . . .; pN . Thereby, the new model in Eq. (8)

can be described by Fig. 3(a). Then, each system Si is

locally linearized using the linearization points generated

in the previous step. As a result, each linearized system Si
is described by Eq. (9).

_x ¼
Xl

c¼1

WðxÞ � ½f �SiðxðcÞ; uSiðcÞ; pÞ

þ ASi � ðx� xSiðcÞÞ þ BSi � ðuSi � uSiðcÞÞ�
ð9Þ

where ASi ¼ of �

oxSi
, BSi ¼ of �

ouSi
, and W(x) are the weights

computed using Eq. (10) that enable the aggregation of

l� k linearized models over the clusters boundaries.

WðxÞ ¼ kx� xSiðcÞk
�1

Pl
c¼1 kx� xSiðcÞk

� ��1
ð10Þ

4.2.3 Reduction of system of equations

A reduction basis Vi of size nSi � qi is computed using the

POD reduction method described in [13]. This step corre-

sponds to Line 7 of Algorithm 1 where qi � nSi . Then, Vi

is used to reduce the matrices that appear in the multiple

input linear systems in Eq. (9). It results in the reduced

systems Ŝi for i ¼ 1. . .m, as given in Eq. (11).

_z ¼
Xl

c¼1

WðzÞ � ½f̂ �SiðxðcÞ; uSiðcÞ; pÞ

þ ÂSi � ðz� zðcÞÞ þ B̂Si � ðuSi � uSiðcÞÞ�
ð11Þ

where z is the state variable of the reduced system Ŝi,

f̂ �SiðxðcÞ; uSiðcÞ; pÞ ¼ VT
i � f �SiðxðcÞ; uSiðcÞ; pÞ, ÂSi¼Vt �ASi �V ,

B̂Si¼Vt �BSi , and zðcÞ¼Vt �xðcÞ. The local reduced linear

models are also weighted to enable models aggregation in

the reduced state space using the weight function in

Eq. (10).

Figure 3(b) depicts the reduced systems of equations Ŝi
and how the backward projection of their state variables is

used to form the state variable y of the original problem in

3(a). In fact, the reduced model has a size q ¼
Pm

i qi and a

state variable ½zS1 ; zS2 ; . . .; zSm �. The full order state variable
that approximate the state vector y is ŷ ¼ ½x̂S1 ; x̂S2 ; . . .; x̂Sm �,
where x̂Si ¼ Vi � zSi ; i ¼ 1; . . .;m.

4.3 Reduced model simulation and statistics

generation

Algorithm 3 provides a description of the steps for the

reduced model simulation, the statistics generation of a

circuit performance Pf , and the comparison with the MC

simulation method. In Lines 3-8, the reduced model is

simulated and the state vector ŷ that can be compared with

MC simulation traces is reconstructed via the backward

projection ŷ ¼ ½V1 � zS1 ;V2 � zS2 ; . . .;Vm � zSm �. The circuit

behavior performance Pf statistics using the reduced model

are generated in Line 6 and the runtime TRM is saved in

Line 7. In Lines 8–14, the MC simulation is conducted for

the original circuit model Modelðx; u; p1; p2; . . .; pNÞ in

Eq. (5). The circuit behavior performance Pf statistics

using the MC method are generated in Line 13 and the

runtime TRM is saved in Line 14. Finally, the reduced

model speedup over the MC method and its accuracy are

evaluated in Lines 15 and 16, respectively.

(a) (b)Fig. 3 Block subdivision.

(a) Original model. (b) Reduced
model
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ALGORITHM 3: Statistics Generation
1: Input: Equations (1) and (11),

Pf , V1, . . . , Vm, p1, . . . , pm

2: Output: [μRM (Pf ), σRM (Pf ), μMC(Pf ), σMC(Pf ), Speedup,Accuracy]
%% Reduced Model Simulation

3: TRM = current time
4: [zS1 , zS2 , . . . , zSm , U ] = Simulate(Equation (11))
5: ŷ = [V1 · zS1 , V2 · zS2 , . . . , Vm · zSm ]
6: [μRM (Pf ), σRM (Pf )] = ComputeStats(Pf , ŷ, U)
7: TRM = current time − TRM

%% MC Simulation
8: TMC = current time
9: for i = 1 . . . N do
10: xMC(i) = Simulate(Equation (1), U, pi)
11: end for
12: y = [xMC(1), . . . , xMC(N)]
13: [μMC(Pf ), σMC(Pf )] = ComputeStats(Pf , y, U)
14: TMC = current time − TMC

15: Speedup = TMC
TRM

16: Accuracy = Sim Error(y, ŷ)

5 Applications

We apply the proposed statistical simulation method on

three circuits; a current mirror, an operational transcon-

ductance amplifier and a three inverter chain under the

current factor (b) and threshold voltage (vt) process vari-

ation. For all applications, N values of the variations db and

dvt are generated based on the Pelgrom’s simplified model

[37]. The mean values of b and vt are set to the 180 nm

technology nominal values and their standard deviation is

computed using Eq. (12).

r2ðDVtÞ ¼
A2
vt

W � L
r2ðDbÞ

b
¼

A2
b

W � L

ð12Þ

where the terms Avt and Ab are proportionality constants for

180 nm technology and are taken from [44], W and L refer

to the width and the length of the transistors, respectively.

Figure 4 provides an example that uses N ¼ 1000

Gaussian distributed samples of the current factor and the

threshold voltage mismatch (db and dvt for NMOS

(W
L
¼ 360

180
) and PMOS (W

L
¼ 720

180
) transistors) using the pro-

portionality constant values provided in Table 1.

In what follows, we describe and compare the statistical

circuit performance obtained from the N points MC sim-

ulations and the ones obtained through the application of

the proposed method. All simulations were performed in

the MATLAB environment [43], on aWindows 7 operating

system with an Intel core i7 CPU, 2.8 GHz with 24 GB of

RAM.
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Fig. 4 Threshold voltage and

current factor variation

distributions for NMOS and

PMOS transistors
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5.1 Current mirror

We consider the current mirror shown in Fig. 5 which

functions by replicating the current produced in one active

device into a second active device. The main feature of a

current mirror is the high output impedance which guar-

antees a stable output current regardless of the load con-

ditions. The output currents I2; . . .; IM are proportional to I1

as shown in Eq. (13). The current ratios depend on the

transistors sizes, their drain-source voltages and the early

voltage. When the transistors are not perfectly matched

there is always a systematic current gain error e [45].

Ij ¼
ðW=LÞj
ðW=LÞ1

I1ð1þ eÞ for j ¼ 2; . . .;M ð13Þ

In this application, we apply our method to analyze the

effect of threshold voltage mismatch on the copying capa-

bility of the current I1 where the transistorsM1 andM2 have

the same width and length while the rest of the transistors

have different sizes. The size of the original problem is

n� N ¼ 4� 1000; 4 state variables and 1000 sample points

Gaussian threshold voltage distribution. The state variables

are divided into 4 systems of 1000 equations based on their

order of magnitude which is different since the mirroring

capability of the transistors is different. The reduction pro-

cedure is performed using 4 reduction basis of size 5� 1000

which makes the total reduction size q ¼ 20.

Figure 6 illustrates the current mirror statistical distri-

bution of the currents I1, and I2 for the 4 state original

model, in the left column, obtained through 1000 points

MC simulation and the 20 state reduced model, in the right

column, obtained through the proposed method. The cur-

rents I1 and I2, in the left column, have similar distribution

since the transistors M1 and M2 have equal sizes. The slight

variation of their mean and standard deviation is due to the

effect of their mismatch. The comparison of the currents, in

the left and the right columns, shows that the distributions

are the same which illustrates that the 20 state reduced

model provides the same statistics of the 1000 points MC

simulation.
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Fig. 6 Current mirror currents

distributions

Fig. 5 Current mirror circuit

Table 1 180 nm matching proportionality constants for size

dependence

NMOS PMOS

Avt ðmV lmÞ 5 5.09

Ab ð% lmÞ 1.04 0.99

vt ðmVÞ 475.23 �449:21

b ¼ lCox
W
L
ðlA=V2Þ 180 �120
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Table 2 provides the numerical values of the mean and

the standard deviation of currents I1 and I2 for MC sim-

ulations (column 2) and the 20 state reduced model

obtained using a different number of clusters, i.e., lin-

earization points (columns 3, 4, and 5). The last row of

Table 2 shows that the simulation speedup when using the

reduced model ranges from 211 to 456 compared with the

MC simulation while their statistical behaviors are almost

the same.

5.2 Operational transconductance amplifier

In this application, we consider an Operational Transcon-

ductance Amplifier (OTA) shown in Fig. 7. It is one of the

most basic and versatile circuits in analog IC design for

which performance is affected in the presence of PV. If the

symmetrical devices of the OTA circuit are not identical,

the differential gain, common mode rejection ratio, and

offset voltage are affected [1].

We use our method to analyze the effect of threshold

voltage and current factor mismatches on the differential

gain Ad ¼ vop�von
vip�vin

and the output offset voltage Vos (the

differential output (vop� von) when the inputs are tied

together (vip� vin ¼ 0V)). The input common mode

voltage of the OTA is set to 0.5 V. The size of the original

problem is n� N ¼ 5� 1000; 5 state variables and 1000

sample points for threshold voltage vt and current factor b
assumed to have Gaussian distributions. The state variables

are divided into 2 systems: the first system has 1000

equations and corresponds to the state x1. The second

system has 4000 equations and corresponds to the states

x2; x3; x4; x5, as shown in Fig. 7. The reduction procedure is

performed using 2 projection basis of size 5� 1000 and

20� 4000 which makes the total reduction size q ¼ 25.

Figure 8 shows that the DC behavior under PV obtained

with the reduced OTA model and MC simulation overlap.

The continuous line DC behavior corresponds to one

parameter sample s from 1000 points MC simulation. The

circle marked line DC behavior was generated by solving

only 25 state DC equations, backward projection of the

resulting solution vector to the original state space using

the projection matrix transpose Vt, and the selection of the

DC solution that corresponds to the same parameter sample

s.Figure 9 compares the OTA transient behavior under PV

obtained with the reduced OTA model and the MC simu-

lations. The continuous line transient behavior corresponds

to one parameter sample s from 1000 points MC simula-

tion. The circle marked line transient behavior was
Fig. 7 Fully differential operational transconductance amplifier

circuit
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Fig. 8 OTA DC characteristic

sample

Table 2 Comparison of the simulated current mirror performance

using the MC method ðn� N ¼ 4� 1000Þ and the reduced model

ðq ¼ 20Þ

Clusters MC Reduced model

– 30 20 10

lðI1Þ ðlAÞ 14.67 14.66 14.66 14.68

rðI1Þ ðlAÞ 0.09 0.09 0.09 0.09

lðI2Þ ðlAÞ 14.65 14.65 14.68 14.67

rðI2Þ ðlAÞ 0.29 0.29 0.30 0.31

Speedup – 211 358 456
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generated by solving only 25 state differential equations

and reconstructing the original state space transient

behavior that corresponds to the same parameter sample s.

Figure 10 shows the OTA differential gain Ad and offset

voltage Vos statistical distributions for 1000 points MC

simulation of the 5 state original OTA model in the left

column and the simulation of the 25 state reduced OTA

model in the right column, obtained through the proposed

method, are very close.

Table 3 compares the numerical values of the mean and

the standard deviation of the offset voltage Vos and the

differential gain Ad using a different number of clusters

(columns 3, 4, and 5) and shows that they almost have the

same characteristics. The relative errors of the state space

vectors
kx�x̂k
kxk and the output vectors

ky�ŷk
kyk are also shown in

rows 7 and 8 of Table 3, respectively. The state space

vector x corresponds to the MC simulation traces and the

state vector x̂ is obtained by backward projection of the 25

state reduced OTA model simulation traces. The last row

of Table 3 shows that the simulation speedup when using

the reduced model ranges from 89 to 220 compared with

the MC simulation . The reduced OTA model runs 220

times faster when using 10 clusters than MC simulations

while providing very close statistical behavior to the MC

simulation.
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5.3 Three inverter chain

In this application, we consider a three inverter chain

composed of three CMOS inverters, as shown in Fig. 11

which is a basic cell of many integrated circuits such as

oscillators, and transmission lines, etc. We apply our

method to analyze the effect of threshold voltage mismatch

and current factor mismatches due to PV on the three

inverter chain gain (G) and rise time (tr). The gain is

computed as the steepest slope of input output DC transfer

curve when the input is swept from 0 to 1.8 V. The rise

time is computed as the time required for the output x3 to

increase its value from 10 to 90% of its maximal value

when the input u is a sharp step input

uðtÞ ¼ 1:8 � Hðt � 2:5� 10�9Þ. The capacitance at each

output node is C = 100 fF. The size of the original problem

is n� N ¼ 3� 1000. It corresponds to three state variables

x1; x2; x3 and 1000 sample points Gaussian threshold volt-

age vt and current factor b distributions. The state variables

are divided into two systems: the first system has 2000

equations and corresponds to the states x1 and x3 as they

have the same derivative sign. The second system has 1000

equations and corresponds to the state x2. The two systems

of equations are reduced using two projection bases of size

10� 2000 and 5� 1000, respectively, which makes the

total reduction size q ¼ 15.

Figure 12 compares the transient behavior of the three

inverter chain states using the 1000 points MC simulation

(bottom curves) and the backward projection of the

reduced model generated by our method (top curves). The

variation of the transient behavior due to process variation

is the same in both graphs.

Figure 13 compares the statistical distributions of the

gain G and the rise time tr for 1000 points MC simulation

of the 3 state original inverter chain model, shown in the

left column, and the simulation of the 15 state reduced

inverter chain model, shown in the right column, obtained

through the proposed method.

Table 4 compares the numerical values of the mean and

the standard deviation of the gain G and the rise time tr
using a different number of clusters (columns 3, 4, and 5)

and shows that they almost have the same characteristics.

The relative errors of the state space vectors
kx�x̂k
kxk and the

output vectors
ky�ŷk
kyk are also shown in rows 7 and 8 of

Table 4, respectively. The state space vector x corresponds

to the MC simulation traces and the state vector x̂ is

obtained by backward projection of the 15 state reduced

three inverter circuit model simulation traces. The largest

values of the relative error
kx�x̂k
kxk ¼ 3:27% and

ky�ŷk
kyk ¼ 3:98%, which are only observed when five lin-

earization points are used to build the reduced model, are

still in the acceptable range (� 5 %). The last row of

Table 4 shows that the simulation speedup when using the

reduced model ranges from 97 to 215 compared with the

MC simulation.

5.4 Discussion

We have proved the efficiency of our proposed fast sta-

tistical simulation method for three nonlinear circuits: a

current mirror, an operational transconductance amplifier

and a three inverter chain. The main challenge was to getFig. 11 Three inverter chain circuit
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Fig. 12 Inverter chain transient behavior

Table 3 Comparison of the simulated OTA Performance using the

MC method ðn� N ¼ 5� 1000Þ and the reduced model ðq ¼ 25Þ

Clusters MC Reduced model

– 30 20 10

lðVosÞ ðmvÞ -1.00 -1.00 -1.01 -0.98

rððVosÞ ðmvÞ 13.80 13.80 13.90 13.80

lðAdÞ½�1� 10.20 10.32 10.67 11.39

rðAdÞ½�1� 5.88 6.28 6.47 6.03

kx�x̂k
kxk % – 0.71 0.72 0.72

ky�ŷk
kyk % – 0.09 0.09 0.34

Speedup – 89 128 220

390 Analog Integr Circ Sig Process (2015) 85:379–394

123



the same statistical behavior as the one obtained by using

the MC method but in a smaller amount of time. As shown

by numerical experiments provided in this section, the

reduced models of the considered applications are capable

of reproducing the transistor mismatch effect that was also

simulated with the MC method. They yield speedup values

in the range 100–500, accurate statistical properties, and

small relative errors (less than 5% relative error) when

compared to 1000 samples MC simulations of the original

circuit model. We expect that the method can yield much

higher speedup values and accurate results if it is applied to

larger circuits such as a oscillators, analog filters, mixers,

and voltage references, etc. The distributions of the circuits

performances shown in Figs. 6, 10, and 13 have almost the

same mean and standard deviation values but they display

slight variations in the histogram bins compared with the

MC method results. These slight variations are related to

the accuracy of the reduced model and can be reduced by

increasing the number of clusters used by the reduced

model at the cost of smaller speedup values. For example,

by using a 30 clusters for all three applications, we can

achieve a speedup very close to 100 with the same behavior

as the MC method. These clusters are expanded using the

small perturbation method in order to cover the behavior of

the multiple circuit instances. Therefore, we have assumed

that the linearization points required for the accurate sim-

ulation of the perturbed parameter are either in the same

cluster or can be obtained from the remaining clusters.

However, this assumption might be unsafe for strongly

nonlinear circuits where the DC behavior can completely

change under PVT variation. In this case, it might be

interesting to use local polynomial models instead of lin-

earized models for better accuracy [18]. Also, the use of

numerical continuation methods for dynamical systems

[46] instead of the cluster perturbation model might be

helpful as well in terms of accuracy.

6 Conclusion

In this paper, we described a new method for increasing the

computational efficiency of sampling based statistical

methods, such as the MC method. The proposed method is

based on nonlinear model order reduction techniques. We

first transformed a dynamical system model of n state

variables that needs to be solved N times to a larger model

of n� N state variables. We then utilized state space

clustering, linearization and proper orthogonal decompo-

sitions techniques to reduce the order of the model. The

reduced model size q tends to be much smaller than n� N
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Fig. 13 Three inverter chain

gain and rise time distributions

Table 4 Comparison of the simulated three inverter chain perfor-

mance using the MC method ðn� N ¼ 3� 1000Þ and the reduced

model ðq ¼ 15Þ

Clusters MC Reduced model

– 20 10 5

lðGÞ½�1� 89.71 90.06 89.31 82.20

rðGÞ½1� 9.76 9.79 9.38 10.72

lðtrÞ ðnsÞ 1.49 1.47 1.43 1.45

rðtrÞ ðnsÞ 0.05 0.05 0.04 0.05

kx�x̂k
kxk % – 1.03 2.56 3.27

ky�ŷk
kyk % – 1.34 2.13 3.98

Speedup – 97 153 215
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and can be solved in a more reasonable simulation time.

The behavior of the N original models can be retrieved via

a simple state space projection. Finally, we did an in-depth

and detailed examination of the method and demonstrated

the validity of our approach using three case studies: a

current mirror (n� N ¼ 4000), an operational transcon-

ductance amplifier (n� N ¼ 5000), and a three-stage

inverter chain (n� N ¼ 3000) subject to threshold voltage

and current factor process variations. The experimental

results showed that the reduced models are accurate and

provide the same statistics as the MC simulation of the

original models while leading to high simulation speedup

values.

Even though, one of the main advantages of the pre-

sented method lies in the quick estimation of statistical

variations of dynamic system performances, it does have

some limitations inherited from the used MOR method.

The first limitation is that the obtained statistical simulation

results cannot be used directly for other MC parameter

samples. The process of generating and simulating reduced

models for new parameter samples has to be repeated

again. The second limitation is related to the large

dimensions of the matrices required while generating

reduced models. Therefore, an algorithm, which can

transform them into sparse matrices and can delete the no

longer needed ones on the fly, can be implemented to

reduce the memory usage. The third limitation results from

the clusters perturbation step, in the case where the circuit

behavior changes completely under the effect of process

variation. Therefore, a different method for the clusters

expansion such as the numerical continuation method for

dynamical systems [46] may be employed. Then, the pre-

sented method has to be applied in the presence of more

severe process variation to make sure that it always yields

accurate reduced models.

As a future work, we plan to further develop our

approach to include different MOR methods which

approximate the nonlinear behavior using polynomial

representations or employ symbolic transformation of

nonlinear representation and then compare them to the

current piecewise linear representation based MOR

method. For example, the general purpose nonlinear model

order reduction using piecewise polynomial representations

[19] or the projection based nonlinear model order reduc-

tion approach using quadratic-linear representation of

nonlinear systems [40] deserve further investigation in

order to be applied in this context. The presented method

can also serve as a basis for the analysis of circuit behavior

in the presence of noise and the analysis of biologic sys-

tems which can be similarly formulated as nonlinear circuit

analysis problems. Another potential application of MOR

methods and specifically projection based methods is the

reduction of the infinite circuit parameter space dimension

which represents a bottleneck for circuit verification,

optimization, sizing and synthesis approaches.
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