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Abstract A set of novel methods are proposed to opti-

mize analog test point selection in this paper. We have

introduced chaos and elitist strategy into the binary bat

algorithm so as to increase its global search mobility and

effectiveness for robust global optimization. In the present

study, nine well known chaotic maps are introduced and

used to construct the chaotic binary bat algorithm (CBBA)

respectively. As a result, we have developed nine different

CBBAs and for the first time applied them to deal with the

analog test point selection problem. The attractiveness of

our proposed CBBA mainly lies in two aspects: the uti-

lization of chaotic maps to tune the BBA parameter and the

application of elitist strategy to store all the possible global

best solutions. These improvements obviously enhance the

performance of BBA and make our new algorithms

(CBBAs) get all the best solutions (usually more than one)

easily and effectively, which will give us more possible

choices in practice. Analog circuits’ examples and a group

of statistical experiments are given to demonstrate the

feasibility and effectiveness of the proposed algorithms.

The other reported algorithms are also used to do the

comparison. The results indicate that the proposed algo-

rithms have excellent performance in finding the optimum

test point sets. Therefore, they are good solutions and ap-

plicable to actual circuits and engineering practice.

Keywords Analog fault diagnosis � Test point selection �
Chaotic maps � Bat algorithm (BA) � Binary bat algorithm

(BBA) � Chaotic binary bat algorithm (CBBA)

1 Introduction

The test point selection is becoming more and more im-

portant in analog circuit fault diagnosis nowadays. The

analog circuit diagnosis methods are usually classified into

two main categories [1–3]: the simulation before test (SBT)

and the simulation after test (SAT) approach. Fault dic-

tionary and probabilistic techniques fall into SBT, whereas

optimization, fault verification, and parameter identifica-

tion techniques fall into SAT [2]. Since each circuit under

test (CUT) consists of more than two test points, especially

for the medium and large scale circuits, it’s impractical and

too expensive to test the responses of all the test points to

diagnose the faulty circuit. At the same time, not every test

point is measurable and some measurements are redundant.

Therefore, the optimum selection of test points is espe-

cially significant.

The fault dictionary technique has been proven to be a

very practical method in analog catastrophic fault diagnosis

[3]. A fault dictionary is a set of measurements of the CUT

simulated under potentially faulty conditions (including

fault-free case) and organized before the test. The mea-

surements could be at different test points, test frequencies,

and sampling times [4, 5]. There are three important phases

in the fault dictionary approach [5, 6]. First of all, a net-

work is simulated for each of the anticipated faults (in-

cluding fault-free case) excited by the chosen stimuli (dc or

ac), and the signatures of the responses are stored and or-

ganized in the dictionary for use. The second phase is the

selection of test points. An optimum selection of test points

is the main work of this stage. By doing this, we can

achieve the desired degree of fault diagnosis with less test

points and save the fault test and diagnosis time greatly.

The last phase is fault isolation. At the time of testing, the

CUT is excited by the same stimuli that are used in
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constructing the dictionary, and measurements are made at

the preselected test points. They are compared with the

responses stored in the fault dictionary to identify the fault

according to the preset criteria. This paper mainly focuses

on the second phase.

The aim of the analog test point selection is to find the

least number of test points that can isolate all the faults.

Until now, lots of researchers have been studied in this

area. Varghese et al. [7] proposed a heuristic method based

on given performance indexes to find the sets of test points.

Hochwald and Bastian [8] proposed the concept of ambi-

guity sets and developed logical rules to select the test

points. Lin and Elcherif [3] first proposed the integer-coded

dictionary to distinguish the ambiguity sets for analog test

point selection. Spaandonk and Kevenaar [9] proposed to

select the test-point set by combining the decomposition

method of the system’s sensitivity matrix and an iterative

algorithm. Prasad and Babu [6] proposed four algorithms

based on three strategies of inclusive approach and three

strategies of exclusive approach. Pinjala and Bruce [10]

proposed a method to find the test point set by computing

the information content of all the candidate test points. An

entropy-based approach, using entropy index (EI) as a

criterion to choose test points, was proposed by Starzyk

et al. [4]. Golonek and Rutkowsk [11] used a genetic al-

gorithm (GA) based method to determine the optimal set of

test points. Yang and Tian [5] used the graph node search

method to find the near minimum test-point set. Jiang et al.

[12] proposed a multidimensional fitness function discrete

particle swarm optimization (MDFDPSO) algorithm to

optimize analog test point selection. Luo and Wang [13]

used the extended fault dictionary and the overlapped area

values together to select the optimum test points.

In 2010, Yang [14] proposed the bat algorithm (BA),

which is a novel heuristic optimization algorithm based on

the echolocation behavior of bats. The capability of

echolocation of bats is so special and powerful that they

can find their prey and discriminate different types of in-

sects even in complete darkness. Preliminary studies sug-

gest that the BA can have superior performance over

particle swarm optimization (PSO) and genetic algorithms

(GA) [14, 15], and can solve the real engineering opti-

mization problems. In 2012, Nakamura et al. [16] intro-

duced the first version of discrete binary bat algorithm

(BBA) for feature selection. Ref. [17] proposed another

binary version of the bat algorithm (BBA) and used it to

deal with the optical buffer design problem.

On the other hand, the application of chaos in opti-

mization algorithms has gained great success in many pa-

pers. In Ref. [18], chaotic sequences were used to tune

parameter in genetic algorithm (chaos-genetic algorithm)

to solve the scheduling problem. In Ref. [19], the authors

introduced chaos into the accelerated particle swarm opti-

mization (CAPSO) to further enhance the global search

ability of the algorithm. The success of these combinations

shows us that the right use of chaotic maps may improve

the performance of the optimization algorithms.

Therefore, we introduce chaos into the BBA, and as a

result, propose the chaotic binary bat algorithm (CBBA).

Meanwhile, the elitist strategy is applied to the new pro-

posed algorithm to store all the possible global best solu-

tions, which can help to show the advantages of using

chaos’ non-repetition and ergodicity in the new algorithm.

In this paper, the new proposed CBBA is used to deal with

the test point selection problem for the first time. Since

different chaotic maps may lead to different behavior of the

algorithm, we have constructed a set of CBBAs. In these

algorithms, we use different chaotic maps to replace the

corresponding parameter of BBA. In order to evaluate the

proposed algorithms, two analog circuits’ examples and a

group of statistical experiments are carried out, and the

other reported test point selection algorithms are also ap-

plied to do the comparison.

Since about 90 % of all the analog faults found in

practice are single catastrophic faults [5, 8], we deal with

these most commonly encountered single catastrophic

faults in analog circuits in this paper. Section 2 presents a

brief introduction to BA and BBA. The chaotic maps used

in our paper are illustrated in Sect. 3. Section 4 introduces

the proposed CBBA and its application in analog test point

selection problem. Two analog circuits’ examples and a

group of statistical experiments are given in Sect. 5. Fi-

nally, brief conclusions and future research plan are given

in Sect. 6.

The nomenclatures of this paper are as follows:

nj The test point j

fi The fault i

N Number of all the test points

Ns Number of selected test points

M Number of all the fault states (including fault-free case)

S Number of separated CUT states

fi Frequency of the i-th bat

fmin Minimum frequency

fmax Maximum frequency

A Loudness of emitted sound

r Pulse emission rate

Tmax Maximum number of iterations
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2 Bat algorithm (BA) and binary bat algorithm
(BBA)

2.1 Bat algorithm (BA)

The bat algorithmwas inspired by the echolocation behavior

of bats [14]. In the real world, bats use this type of sonar

(echolocation) to detect prey, avoid obstacles, and locate

their roosting crevices in the dark. They can emit a very loud

sound pulse and use their two ears to listen for the echo that

bounces back from the surrounding objects. Bats calculate

the time delay from emission and detection of the echo and

the loudness variations of the echoes to build up three di-

mensional scenario of the surrounding. When the target is

nearby, their pulse emitting rates increase and the frequency

is tuned up. The frequency tuning and the speedup of pulse

emission will shorten the wavelength of echolocations and

thus increase accuracy of the detection. The BA was de-

veloped by using these pivotal factors. The standard BA is

based on three idealized rules [14]:

(1) All bats use echolocation to sense distance, and they

also ‘know’ the difference between food/prey and

background barriers in some magical way;

(2) Bats fly randomly with velocity vi at position xi with

a fixed frequency fmin, varying wavelength k and

loudness A0 to search for prey. They can auto-

matically adjust the wavelength (or frequency) of

their emitted pulses and adjust the rate of pulse

emission r 2 ½0; 1�, depending on the proximity of

their target;

(3) Although the loudness can vary in many ways, we

assume that the loudness varies from a large

(positive) A0 to a minimum constant value Amin.

The basic pseudo code of the bat algorithm (BA) is

summarized in Fig. 1. The technique is initialized with a

swarm of bats collaborate together during the process to

find the best solutions. In the BA, each bat (say i) has a

defined position xi and velocity vi in a d-dimensional

search space, and they are updated subsequently during the

iterations. Initially, each bat is randomly assigned a fre-

quency which is drawn from interval ½fmin; fmax�. The new

solutions xti and velocities v
t
i at time step t can be calculated

by [14]:

fi ¼ fmin þ ðfmax � fminÞb ð1Þ

vti ¼ vt�1
i þ ðxt�1

i � xGbestÞfi ð2Þ

xti ¼ xt�1
i þ vti ð3Þ

where b 2 ½0; 1� is a random vector drawn from a uniform

distribution, xGbest is the current global best location (so-

lution) which is located after comparing all the solutions

among all the bats.

All these equations could guarantee the exploitability of

the BA. However, a local search part procedure is also used

to perform the exploitation. For this local search part, once

a solution is selected among the current best solutions, a

new solution for each bat is generated locally using random

walk [14]:

xnew ¼ xold þ eAt ð4Þ

where e 2 ½�1; 1� is a random number, At is the average

loudness of all the bats at this time step.

It is worth pointing out that, to a degree, the BA can be

considered as a balanced combination of the standard PSO

and the intensive local search controlled by the loudness

(A) and pulse rate (r). These two parameters are updated as

follows [14]:

Atþ1
i ¼ aAt

i; rtþ1
i ¼ r0i ½1� expð�ctÞ� ð5Þ

where a and c are constants. In the simplicity case, we can

use a ¼ c [14], and we have in fact used a ¼ c ¼ 0:9 in our

algorithms. It can be easily found that both the loudness

and pulse rate are updated when the new solutions are

improved to guarantee that the bats are moving toward the

best solutions.

2.2 Binary bat algorithm (BBA)

As each bat moves in the search space towards continuous-

valued positions in the bat algorithm, a binary version of

the bat algorithm is needed in the test point selection

problem. Therefore, the bats’ position should be repre-

sented by binary vectors. In Ref. [16], the authors first

proposed a binary version of the bat algorithm and used it

to deal with the feature selection problem successfully. In

their algorithm, they chose the sigmoid function to restrict

the bat’s position to binary values. However, the authors in

Bat algorithm
Objective function f(x), x=(x1, , xd)T

Initialize the bat population xi (i=1,2, ,n) and vi
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai
While (t<Maximum number of iterations)
Generate new solutions by adjusting frequency
Update velocities and locations/solutions [equations (1) to (3)] 

if (rand > ri)
     Select a solution among the best solutions
     Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly

if (rand < Ai & f(xi) < f(xGbest))
     Accept the new solutions
     Increase ri and reduce Ai

end if
Rank the bats and find the current best xGbest
end while
Postprocess results and visualization

Fig. 1 Pseudo code of the bat algorithm (BA) [14]
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Ref. [17] illustrated that their proposed v-shaped transfer

function was better than the sigmoid function in the binary

version of the bat algorithm, and used it to deal with the

optical buffer design problem successfully. We chose to

use their better strategy in our algorithm. The v-shaped

transfer function and the position updating rule are listed as

follows [17]:

Vðvtþ1
ik Þ ¼ 2

p
arctanð2

p
vtikÞ

�
�
�
�

�
�
�
�

ð6Þ

xtþ1
ik ¼ ðxtikÞ

�1
If rand\Vðvtþ1

ik Þ
xtik rand�Vðvtþ1

ik Þ

�

ð7Þ

where vtik and xtik indicate the velocity and position of the i-

th bat at iteration t in the k-th dimension, and ðxtikÞ
�1

is the

complement of xtik.

The general pseudo code of the BBA is presented in

Fig. 2. The changes from the standard BA are underlined.

3 Chaotic maps

Chaotic optimization method is a kind of random-based

optimization method, which uses chaotic variables instead

of random variables. Due to the non-repetition and er-

godicity of chaos, it can carry out overall searches at higher

speeds than stochastic searches that depend on probabilities

[20]. Chaos is a deterministic and random-like process,

which is very sensitive to its initial conditions and pa-

rameters. The nature of chaos is apparently random and

unpredictable, but it also possesses an element of regularity

[21].

In almost all the metaheuristic algorithms with

stochastic components, randomness is achieved by using

some probability distributions (such as uniform). In prin-

ciple, replacing such randomness by chaotic maps could

obtain better algorithms since chaos can have very similar

properties of randomness with better statistical and dy-

namical properties. This can help to reach nearly all the

different modes and ensure the diversity of the solutions

generated by the algorithm. The chaotic search can escape

from local optima more easily compared with other

stochastic search optimization algorithms. Therefore, many

researchers [18–21] have combined chaos with optimiza-

tion algorithms to enhance the search efficiency and pre-

vent from premature convergence to local minima.

To enhance the diversity of solution and improve the

effectiveness and robustness of the BBA, one-dimensional,

non-invertible maps are used to generate chaotic sequences

in our proposed CBBA. Here we outline some well known

chaotic maps which will be used for later simulations.

(1) Chebyshev map

The family of Chebyshev map [22, 23] is defined as

follows:

xiþ1 ¼ cosði � cos�1ðxiÞÞ ð8Þ

(2) Tent map

Tent map [22, 24] is defined by the following

iteration equation:

xiþ1 ¼
xi=0:7 xi\0:7
10ð1� xiÞ=3 xi � 0:7

�

ð9Þ

(3) Circle map

Circle map [22, 25] is represented by the following

equation:

xiþ1 ¼ xi þ b� ð a
2p

Þsinð2pxiÞmodð1Þ ð10Þ

where a ¼ 0:5 and b ¼ 0:2

(4) Iterative map

The iterative chaotic map with infinite collapses [22,

26] can be defined as:

xiþ1 ¼ sin
� ap
xi

�

ð11Þ

where a 2 ð0; 1Þ is a suitable parameter. We set a ¼
0:7 in our later experiments.

(5) Logistic map

Logistic map [22, 26] can be written as:

xiþ1 ¼ axið1� xiÞ ð12Þ

where

x0 2 ð0; 1Þ,x0 62 f0:00; 0:25; 0:50; 0:75; 1:00g. We

set a ¼ 4:0 in our later experiments.

(6) Piecewise map

Piecewise map [22, 27] can be described as:

Binary bat algorithm
Initialize the bat population xi (i=1,2, ,n)=rand(0 or 1) and vi=0
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai
While (t<Maximum number of iterations)
Adjusting frequency and updating velocities
Calculate transfer function value using equation (6)
Update  locations/solutions using equations (7) 

if (rand > ri)
     Select a solution (xGbest) among the best solutions

Change some of the dimensions of position vector with some of
 the dimensions of xGbest
end if
Generate a new solution by flying randomly
if (rand < Ai & f(xi) < f(xGbest))

     Accept the new solutions
     Increase ri and reduce Ai

end if
Rank the bats and find the current best xGbest
end while

Fig. 2 Pseudo code of the binary bat algorithm (BBA) [17]
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xiþ1 ¼

xi

p
0� xi\p

xi � p

0:5� p
p� xi\0:5

1� p� xi

0:5� p
0:5� xi\1� p

1� xi

p
1� p� xi\1

8

>>>>>>>>><

>>>>>>>>>:

ð13Þ

where p 2 ð0; 0:5Þ, and we set p ¼ 0:4 in our later

experiments.

(7) Sine map

Sine map [22, 28] can be described as:

xiþ1 ¼
a

4
sinðpxiÞ ð14Þ

where 0\a� 4, and we set a ¼ 4 in our later

experiments.

(8) Singer map

One dimensional singer map [22, 29] is formulated

as:

xiþ1 ¼ lð7:86xi � 23:31x2i þ 28:75x3i � 13:3x4i Þ
ð15Þ

where l 2 ð0:9; 1:08Þ, and we set l ¼ 1:07 in our

later experiments.

(9) Sinusoidal map

Sinusoidal map [19, 22] is generated as the following

equation:

xiþ1 ¼ ax2i sinðpxiÞ ð16Þ

where a ¼ 2:3.

Figure 3 shows the chaotic value distributions of 100

iterations for all the above listed maps with random

initial values. It should be noted that the chaotic

maps which do not generate values between 0 and 1

are normalized to have the same scale.

4 New proposed CBBA and its application
in analog test point selection

In order to enhance the diversity of solution and mean-

while improve the effectiveness and robustness of the

BBA, the chaotic maps are used to tune the BBA pa-

rameter and the elitist strategy is also introduced to store

all the possible global best solutions, which will lead to a

set of CBBAs. The construction of the CBBA and its

application in analog test point selection will be discussed

in this section.
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Fig. 3 Visualization of chaotic maps
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4.1 Construction of the CBBA

4.1.1 Using of chaotic maps

In our proposed CBBA, parameter b of Eq. (1) is modified

by chaotic maps during iterations, and the new frequency

equation is written as:

fi ¼ fmin þ ðfmax � fminÞci ð17Þ

where ci is the chaotic map value in the i-th iteration. It

should be noted that all the chaotic maps here are nor-

malized between 0 and 1. Since the chaotic maps are

sensitive to the initial conditions and parameters, we

should decide the proper parameter values by ex-

periments. In order to simplify the procedure, mean-

while, do the comparison conveniently, we chose the

same initial parameter values of chaotic maps as Ref.

[22] in our experiments.

Since nine different chaotic maps are listed in Sect. 3,

we could obtain nine different CBBAs totally.

4.1.2 Elitist strategy

It is possible that the global best solution may be more

than one in reality [12]. Therefore, all the best solutions

should be stored during the non-repetition and ergodicity

searching of the algorithm. An elitist set XGbest is de-

fined in the proposed CBBA to get more possible solu-

tions. If more than one global best solutions (have got

the same best fitness value) is obtained during the it-

eration, they can synchronously be stored in the elitist

set. In the next iteration, if there are more new global

best solutions that have the same fitness value as these in

the elitist set, these new solutions are add into the elitist

set. If these new global best solutions have better fitness

values, all the old solutions in the elitist set are replaced

by these new best solutions. Finally, we will get all the

optimal solutions with the same best fitness value in the

elitist set.

The general pseudo code of the CBBA is presented in

Fig. 4. The changes from the BBA are underlined.

4.2 Application of CBBA in analog test point

selection

As discussed in Sect. 1, the integer-coded dictionary has

been proven to be an effective tool for optimal selection of

test points; the utilization of CBBA in analog test point

selection is also based on the integer-coded dictionary of

the analog circuit. Besides the construction of integer-

coded fault dictionary, inosculating CBBA with the test

point selection problem rightly is also very important. We

will discuss the details about them below.

4.2.1 Integer-coded fault dictionary of analog circuits

Hochwald and Bastian [8] first proposed the concept of

ambiguity sets and defined a diode drop (0.7 V) as the

ambiguity gap. The ambiguity group is defined as that any

two faulty cases fall into the same ambiguity set if the gap

between the voltage values of their responses is less than

0.7 V. Lin and Elcherif [3] first proposed the integer-coded

fault dictionary technique in 1985. The fault dictionary

provides information about the ambiguity sets for each test

point and the mutual information among them [10]. The

purpose of test point selection is to separate all the faults

(including fault-free case) with a minimum number of test

points, and reduce the dimension of the fault dictionary.

The integer-coded fault dictionary is a two dimensional

integer matrix. Its rows represent all the faults (including

fault-free case), and its columns show all candidate test

points. For each fault, an integer code is generated from the

numbers of ambiguity sets of each test point, and the same

integer number represents all the faults that belong to the

same ambiguity group in a given candidate test point. Since

each candidate test point represents an independent mea-

surement, the ambiguity groups of different test points can

be numbered using the same integer without confusion

[5, 8]. More details about fault dictionary and ambiguity set

can be found in Ref. [3, 5].

4.2.2 Initialize parameters of CBBA

The best solutions are the bats with the best position that

CBBA can explore. In this paper, the position of each bat is

Chaotic binary bat algorithm
Initialize the bat position xi={xik (i=1,2, ,n;k=1,2, ,d)=rand(0 or 1)} and vi=0
Initialize the elitist set XGbest as a null
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai
While (t<Maximum number of iterations Tmax)

Use one of the chaotic map generate equations [equations (8) to (16)] to
 obtain the chaotic sequence value ci
Calculate the new frequency value using equation (17)

    Calculate transfer function value using equation (6)
    Update  locations/solutions using equations (7) 

if (rand > ri)
           Select a solution (xGbest) among the best solutions
           Change some of the dimensions of position vector with some of
           the dimensions of xGbest

end if
Generate a new solution by flying randomly

 if (rand < Ai & f(xi) < f(xGbest))
           Accept the new solutions
           Increase ri and reduce Ai

end if
    Rank the bats and find the current best xGbest 

Update the elitist set XGbest  
If (the new best solutions have the same best fitness value as the last iteration 
and the new best solutions are not in the elitist set XGbest)

Add the new solutions to the elitist set XGbest
end if
If (the new best solutions have better  fitness value)

Replace the solutions in the elitist set XGbest with the new solutions
end if

end while

Fig. 4 Pseudo code of the chaotic binary bat algorithm (CBBA)
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initialized as the binary vector. The number of elements in

this binary vector is the same as the number of test points

N. The position of the i-th bat is defined by

xi ¼ xi1; xi2; . . .; xij; . . .; xiN
� �

ð18Þ

where xij ¼ 1 or 0, which indicates whether the corre-

sponding test point is selected or not. That is to say, if the j-

th test point is selected by CBBA, xij ¼ 1; otherwise,

xij ¼ 0.

The bats’ velocity will decide the position of the bats in

the next iteration. For simplicity and comparison, the ve-

locity of the bat is initialized as a zero vector (the same as

Ref. [17] ), which has the same dimension as the position

vector.

4.2.3 Fitness function

For the analog test point selection problem, we hope to

separate all the faults with minimum test points. To eval-

uate the quality of the i-th solution properly, the fitness

function is defined as:

Fitnessi ¼
Si þ ðN � NsiÞ

M þ N
ð19Þ

where Si is the number of separated CUT states, Nsi is the

number of selected test points, M is the number of all the

fault states (including fault-free case), N is the number of

all the test points.

It can be seen from the fitness function that the fitness

value is in the region [0, 1] and the better solution always

has larger fitness value. Therefore, the best solutions will

get the largest fitness value during the iterations.

4.2.4 Work principle of CBBA for test point selection

As discussed above, the bats’ positions in CBBA denote

the results of the test point selection. After initialization, all

the bats will have a random position. And then, the algo-

rithm goes into the iteration phase. The fitness function

[Eq. (19)] is used to calculate the fitness values of all the

bats. The algorithm will find out all the bats with largest

fitness values during the iteration, and judge whether their

locations should be added into the elitist set XGbest (or

even replace all the solutions in the elitist set sometimes).

The loudness (Ai), pulse rate (ri), chaotic map value (ci),

frequency (fi), velocity (vi) and position (xi) of each bat

will be updated during the iterations. The algorithm is

going to be finished at the end of the maximal iteration

Tmax, which should be set as a proper number according to

the complexity of the problem. We will finally get all the

optimum solutions in the elitist set XGbest.

4.2.5 Time complexity of CBBA for test point selection

For analog test point selection withM fault states and N test

points, there exist Tmax iterations for the CBBA. Based on

the fitness function [Eq. (19)], when evaluating each so-

lution (bat’s position), we need to check the number of

isolated fault states. This can be transformed into a sorting

problem and the computational time complexity is

OðM logMÞ. If the population size of bats is P, we need to

evaluate P solutions for each iteration of the algorithm and

the time complexity is OðPM logMÞ. Therefore, the total

time complexity of CBBA is OðTmaxPM logMÞ.

5 Experiments

In order to demonstrate the feasibility and effectiveness of

the CBBA for test point selection, meanwhile, compare

with other reported methods based on the integer-coded

dictionary, we have done different kinds of experiments

(two analog circuits’ examples and a group of statistical

experiments). Since nine well known chaotic maps have

been introduced in Sect. 3 and different chaotic maps used

in CBBA may lead to different results, all these chaotic

maps are adopted to construct the CBBA respectively in

our experiments. The names of these methods (CBBAs)

and the corresponding chaotic maps are listed in Table 1.

During all the experiments, the population size of bats is

set as 40, the dimensions of the position and velocity

vectors are set as N (the number of test points). For com-

parison and simplicity, we referred to the Ref. [17] and set

the initial loudness (A0) as 0.25, the initial pulse rate (r0) as

0.2. The maximum number of iterations Tmax is set as 100.

The initial parameters of chaotic maps are set as the dis-

cussions in Sects. 3 and 4.1.1. By the way, all the pa-

rameters can be modulated experimentally in practice to

suit different applications.

In order to highlight the improvements of our proposed

CBBA, the BBA in Ref. [17] is also used to do all the

Table 1 Methods and the corresponding chaotic maps

Methods Chaotic maps adopted in the method

CBBA1 Chebyshev map

CBBA2 Tent map

CBBA3 Circle map

CBBA4 Iterative map

CBBA5 Logistic map

CBBA6 Piecewise map

CBBA7 Sine map

CBBA8 Singer map

CBBA9 Sinusoidal map
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experiments. The relevant parameters of BBA are set the

same as the CBBA.

All the programs run on an Intel 3.2 GHz processor

computer with MATLAB R2013a circumstance during the

experiments.

5.1 Video amplifier example

The experiment is implemented on a video amplifier circuit

that is shown in Fig. 5. This circuit is also cited by Ref.

[12] to verify the efficiency of the MDFDPSO method. The

excitation signal is a 5-kHz 8-V sinusoidal wave. The

marked voltage sources ‘‘V1’’ and ‘‘V2’’ in Fig. 5 are

5-kHz -6-V and 5-kHz 6-V sinusoidal waves. Totally, there

are sixteen potential catastrophic faults f1 to f16 (including

the nominal case,M = 16) and thirteen test points n1 to n13
(N = 13). The responses of voltage values at all test points

for different faulty conditions are obtained by PSPICE

simulation. The integer-coded fault dictionary is con-

structed and shown in Table 2 (it’s the same as the fault

dictionary obtained in Ref. [12]).

After running, all the proposed nine different CBBAs

(CBBA1–CBBA9) have found the same best solutions in

their elitist set:

XGbest ¼
n2; n7; n8; n9; n12

n3; n7; n8; n9; n12

n7; n8; n9; n10; n12

8

><

>:

9

>=

>;

.

The final best solutions are the same as the results in

Ref. [12]. For comparison, the GA [11], MDFDPSO [12],

EI [4], HGS [5] and BBA [17] are applied in this example.

For each algorithm, 100 independent runs are implement-

ed. The results are shown in Table 3.

As indicated in Table 3, all the algorithms achieve

100 % of success. Although EI and HGS cost shorter

computation time, they can only find one best solution

while other methods (except GA and BBA) can find three

best solutions. Comparing with GA and MDFDPSO

method, our proposed algorithms (CBBA1–CBBA9) cost

less computation time and have better efficiency. The im-

provement of our methods (compare with BBA) is obvious

(nearly the same computation time but more best

solutions).

Finally, it comes to a conclusion that our new proposed

algorithms (CBBAs) are superior to other mentioned

methods.

5.2 Leapfrog filter amplifier example

The experiment is implemented on a leapfrog filter circuit

that is shown in Fig. 6. This circuit is also cited by Ref. [5]

to verify the efficiency of the HGS method. The excitation

signal is a 1-kHz 4-V sinusoidal wave. The low-input-

impedance failure of the amplifiers and some resistance

and capacitance failures are considered in this circuit.

Totally, there are twenty-three potential catastrophic faults

Fig. 5 Video amplifier with two transistors
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f1 to f23 (including the nominal case, M = 23) and twelve

test points n1 to n12 (N = 12). The responses of voltage

values at all test points for different faulty conditions are

obtained by PSPICE simulation. The integer-coded fault

dictionary is constructed and shown in Table 4 (it’s the

same as the fault dictionary obtained in Ref. [5]).

After running, all the proposed nine different CBBAs

(CBBA1 * CBBA9) have found the same best solutions

in their elitist set:

XGbest ¼
n1; n2; n3; n4; n7; n8; n11
n1; n2; n3; n4; n7; n9; n11
n1; n2; n3; n4; n7; n10; n11

8

<

:

9

=

;
.

One of the final best solutions is the same as the results

in Ref. [5]. For comparison, the GA [11], MDFDPSO [12],

EI [4], HGS [5] and BBA [17] are also applied in this

example. For each algorithm, 100 independent runs are

implemented. The results are shown in Table 5.

As indicated in Table 5, all the algorithms achieve

100 % of success except the MDFDPSO method (99 %).

EI and HGS cost shorter computation time, but they can

only find one best solution while other methods (except GA

and BBA) can find three best solutions. Comparing with

GA and MDFDPSO method, our proposed algorithms

(CBBA1 * CBBA9) cost less computation time and have

Table 2 Integer-coded fault

dictionary for video amplifier
Faults N1 N2 N3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

f1 (NOM) 1 1 1 4 2 1 5 2 4 3 1 3 2

f2 (L1/L2 open) 2 1 2 3 2 2 4 3 4 3 1 3 2

f3 (L4 open) 3 1 4 2 1 3 3 4 4 3 1 3 2

f4 (L3 open) 1 1 1 4 2 2 3 2 4 3 1 3 2

f5 (L7 open) 3 1 4 2 1 3 3 4 4 1 2 2 2

f6 (L5/L6 open) 1 1 1 4 2 1 5 2 4 2 1 2 2

f7 (Q1 B open) 1 4 3 4 2 1 5 2 4 5 1 3 2

f8 (Q2 B open) 1 1 1 4 2 1 5 2 5 4 1 3 2

f9 (C4 short) 1 1 1 4 2 1 5 4 4 3 1 3 2

f10 (C6 short) 1 2 5 4 2 1 5 2 4 4 1 3 2

f11 (C3 short) 1 1 1 4 2 1 5 3 1 3 1 3 3

f12 (C5 short) 1 1 1 4 2 1 1 2 4 3 1 3 2

f13 (C8 short) 1 1 1 4 2 1 5 2 2 4 1 3 1

f14 (C9 short) 1 1 1 4 2 1 5 2 4 3 1 1 2

f15 (Q1 BE short) 4 3 3 1 2 4 2 1 4 4 1 3 2

f16 (Q2 BE short) 1 1 1 4 2 1 6 2 3 4 1 3 2

Table 3 Comparison of CBBA

with other methods for video

amplifier

Methods Percentage of

success (%)

Average running

time (in seconds)

Number of

best solutions

GA 100 4.858 1

MDFDPSO 100 0.981 3

EI 100 0.023 1

HGS 100 0.019 1

BBA 100 0.550 1

CBBA1 100 0.567 3

CBBA2 100 0.573 3

CBBA3 100 0.574 3

CBBA4 100 0.567 3

CBBA5 100 0.571 3

CBBA6 100 0.572 3

CBBA7 100 0.583 3

CBBA8 100 0.566 3

CBBA9 100 0.568 3
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Fig. 6 Leapfrog filter

Table 4 Integer-coded fault

dictionary for leapfrog filter
Faults n1 n2 n3 n4 n5 N6 N7 N8 N9 N10 N11 n12

f1 (NOM) 4 2 2 3 1 5 3 3 2 3 3 3

f2 (C2 open) 8 7 6 7 4 9 7 9 4 6 4 7

f3 (C2 short) 4 3 2 3 1 3 3 2 2 2 3 2

f4 (C3 open) 1 0 0 0 0 1 1 1 1 1 1 1

f5 (R1 open) 9 8 6 7 4 10 7 9 4 6 4 7

f6 (R1 short) 5 5 4 6 4 8 7 8 4 6 4 7

f7 (R2 open) 6 7 6 6 4 9 7 8 4 6 4 7

f8 (R2 short) 4 1 2 1 1 3 3 2 2 2 3 2

f9 (R3 open) 2 0 0 0 0 0 0 0 0 0 0 0

f10 (R3 short) 0 0 0 0 0 1 1 0 0 0 0 0

f11 (R4 open) 4 3 2 1 1 3 3 2 2 2 3 2

f12 (R7 short) 1 0 0 0 0 1 1 0 0 0 0 0

f13 (R8 open) 8 7 5 6 4 9 6 6 4 6 4 6

f14 (R10 open) 4 4 2 2 1 4 3 3 2 3 3 5

f15 (R11 open) 7 6 3 5 3 7 4 7 4 6 4 7

f16 (R12 short) 1 0 0 0 0 1 0 0 0 0 0 0

f17 (R13 open) 4 4 2 4 1 6 3 4 2 4 3 4

f18 (U1 fail) 3 0 0 0 0 1 1 0 0 0 0 0

f19 (U2 fail) 1 0 1 0 0 1 1 1 1 1 1 1

f20 (U3 fail) 8 7 6 6 2 9 7 8 4 6 4 7

f21 (U4 fail) 1 0 0 0 0 1 2 1 1 1 1 1

f22 (U5 fail) 8 7 6 7 4 9 7 7 3 5 4 7

f23 (U6 fail) 1 0 0 0 0 1 1 1 1 1 2 1
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better efficiency and accuracy. The improvement of our

methods (compare with BBA) is obvious (nearly the same

computation time but more best solutions).

Therefore, we can draw the same conclusion with the

video amplifier circuit example that our new proposed al-

gorithms (CBBAs) are superior to other mentioned meth-

ods in dealing with the test point selection problem because

of their higher efficiency, better accuracy and robustness.

5.3 Statistical experiments

Although the above experiments have shown the great

advantage and ability of the proposed algorithms in finding

the optimum test point sets, there still no theoretical proof

can be offered to demonstrate a specific non-exhaustive

algorithm’s optimality so far. The new proposed algorithms

(CBBAs) must be statistically tested on larger number of

fault dictionaries to demonstrate their efficiency and qua-

lities of generating optimum test point sets.

Such statistical experiments are carried out on the ran-

domly computer-generated fault dictionaries and the final

solutions are found by using the GA [11], MDFDPSO [12],

EI [4], HGS [5], BBA [17] and the proposed methods

(CBBA1–CBBA9) respectively. Here, a total of 100 inte-

ger-coded dictionaries are randomly created. Each dic-

tionary is generated for a hypothetic CUT with 100

simulated faults, 25 test points and randomly five ambi-

guity sets per test point. Meanwhile, all the randomly

created dictionaries are first analyzed by the exhaustive

search algorithm to make sure that all the 100 dictionaries

have five test points in their best solutions (optimum sets).

The final results are shown in Tables 6 and 7.

As can be seen from Tables 6 and 7, the proposed

methods (CBBA1–CBBA9), together with GA and BBA

method, can always find the optimum solutions (success

rate is 100 %), meanwhile, the MDFDPSO method

achieves 96 % of success (with 4 % chances to get trapped

into local optima), but our proposed methods (CBBA1–

CBBA9) can find more final best solutions. Although the

time consumptions of the EI and HGS method are radically

lower than the other methods, their final solution accuracy

rates are lower. Therefore, through statistic experiments,

the proposed methods (CBBAs) also reveal their high ac-

curacy and effectiveness and are demonstrated to be su-

perior to other methods.

Actually, whether the data in the integer-coded fault

dictionary are randomly computer generated or derived

from a realistic circuit, it does not spoil the validity of the

proposed methods (CBBAs).

5.4 Practical application analysis

Although the components of the analog circuit with pa-

rameter tolerance may be encountered in practice, it

doesn’t affect the efficiency of our proposed algorithms

either. If only the integer-coded fault dictionary can be

constructed properly, our proposed algorithms (CBBAs)

can be used to find the optimum test point sets.

From the experiments carried out above, we may come

to the conclusion that our new proposed CBBAs can find

nearly all the best solutions efficiently. However, which

best solution should be used during our practice becomes a

problem. Since each test point in the actual circuit has a test

cost, which can be defined as the manpower requirements,

equipment requirements, measure time and technique re-

quirements, test complexity or even other economic factors

and so on. Therefore, the test cost of each candidate test

point is a constant value for an actual analog circuit in

practice and can be estimated. Since minimizing the total

expected test cost is an important target in practice, the best

Table 5 Comparison of CBBA

with other methods for leapfrog

filter

Methods Percentage of

success (%)

Average running

time (in seconds)

Number of best

solutions

GA 100 5.521 1

MDFDPSO 99 1.130 3

EI 100 0.025 1

HGS 100 0.022 1

BBA 100 0.620 1

CBBA1 100 0.638 3

CBBA2 100 0.642 3

CBBA3 100 0.643 3

CBBA4 100 0.639 3

CBBA5 100 0.640 3

CBBA6 100 0.643 3

CBBA7 100 0.651 3

CBBA8 100 0.635 3

CBBA9 100 0.637 3
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solution with the lowest test cost of all the best solutions

would be the real best solution in practice. Therefore, our

CBBAs have significant practical application value.

6 Conclusion and future research

The analog test point selection problem remains an im-

portant research field in fault diagnosis of analog circuit.

How to find a minimum set of test points efficiently to

isolate all the faults to a desired degree, therefore, becomes

the key point. In the present work, we have introduced

chaos and elitist strategy to the BBA and developed a set of

CBBAs, meanwhile, for the first time applied them to deal

with the analog test point selection problem. The attrac-

tiveness of our proposed CBBA mainly lies in two aspects:

the utilization of different chaotic maps to tune the BBA

parameter and the application of elitist strategy to store all

the possible global best solutions. These improvements

obviously enhance the performance of BBA and make our

new algorithms (CBBAs) obtain all the best solutions

(usually more than one) easily and effectively, which will

give us more possible choices in the real engineering

practice. Carried out on the same trademark analog circuits,

the proposed algorithms show great advantage in finding

the best solutions than the other mentioned methods. Since

no theoretical proof can be given to the optimality of the

proposed algorithms, statistical experiments are utilized for

their evaluation. The results demonstrate that our proposed

methods (CBBAs) have higher efficiency, better accuracy

and quality in finding the optimum test point sets. They are

effective and feasible methods in minimizing the size of

the test point set of the analog circuit, and can help to find

the best solution with lowest test cost of all in practice.

Therefore, they are particularly applicable to actual circuits

and engineering practice.

CBBA offers new techniques for improving the prop-

erties of BBA and whether it is fit for solving other opti-

mization problems is being investigated. In addition, we

used default values referred to other researchers’ work for

the variable parameters of some chaotic maps in this paper,

and how these parameters affect the solutions so as to

further improve the performance of CBBA will be our

future research direction.
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