
Hardware-friendly HEVC motion estimation: new algorithms
and efficient VLSI designs targeting high definition videos

Gustavo Sanchez • Bruno Zatt • Marcelo Porto •

Luciano Agostini

Received: 31 October 2013 / Accepted: 21 May 2014 / Published online: 14 June 2014

� Springer Science+Business Media New York 2014

Abstract In this article the spread and iterative search

(S&IS) and the low density and iterative search (LD&IS)

motion estimation algorithms are presented. The proposed

algorithms are hardware-friendly because they have a reg-

ular number of cycles to encode a block, they have a regular

memory access and the parallelism can be better explored

when compared to other published solutions. The proposed

algorithms were evaluated under the high efficiency video

coding reference software and compared with the state-of-

art enhanced predictive zonal search (EPZS) algorithm and

with the well know diamond search (DS) algorithm. The

designed algorithms presented better BD-rate results than

DS but they presented some losses when compared to

EPZS. Since EPZS is not focused in a hardware design, it

presents a lot of data dependencies, a irregular memory

access, a non-deterministic number of operations to encode

a block and it must store motion vectors of previously

encoded frames. All these features are undesirable for many

applications, including those ones focused on battery

powered devices. To show the efficiency of the proposed

algorithms, two architectures were designed targeting these

algorithms and they were synthesized for Altera Stratix 4

and for ASIC using TSMC 90 nm standard-cells technol-

ogy. Synthesis results show that the architectures are

capable to process HD 1080p videos, at real time, by

obtaining good results in terms of hardware resources use,

power consumption and processing rate when compared to

related works. The ASIC implementations are able to

guarantee real-time performance for high definition videos

consuming 12.5 and 13.5 mW, respectively. These results

are possible because S&IS and LD&IS were developed

focusing on hardware design.

Keywords Hardware-friendly motion estimation �
Hardware design � High efficiency video coding � Fast

motion estimation

1 Introduction

The complexity to encode a digital video has been

increasing during the last few years. The main reason for

this increase in complexity is explained by the set of novel

features brought by the latest video coding standards

H.264/AVC [1] and high efficiency video coding (HEVC)

[2]. The new features were designed targeting on the

increase of coding efficiency without considering the real-

time feasibility and hardware design a major design con-

straint. In current technology, software solutions able to

encode high definition (HD) videos in real time employ

simplified versions of encoders incurring in coding effi-

ciency losses. Moreover, these solutions spend increased

computational resources by demanding powerful proces-

sors, which results in high power consumption. Thus,

software solutions are not feasible for embedded systems

such as a smart-phone or a digital camera. In practice, to

encode a HD video in real time, hardware solutions are

desired to maximize the results in terms of hardware cost,

coding efficiency and power consumption.

G. Sanchez (&) � B. Zatt � M. Porto � L. Agostini

Group of Architectures and Integrated Circuits, Federal

University of Pelotas, Pelotas, Brazil

e-mail: gfsanchez@inf.ufpel.edu.br

B. Zatt

e-mail: zatt@inf.ufpel.edu.br

M. Porto

e-mail: porto@inf.ufpel.edu.br

L. Agostini

e-mail: agostini@inf.ufpel.edu.br

123

Analog Integr Circ Sig Process (2015) 82:135–146

DOI 10.1007/s10470-014-0342-9



On the current video coding standards, the motion

estimation (ME) is the major responsible for the com-

pression gains among all encoder tools. However, it is also

the encoding tool that spends the most computational

effort. In fact, ME represents 80 % of the current encoder

complexity [3].

The ME process is based on a search algorithm and a

comparison metric (similarity criterion). The ME search

algorithm defines how the search for the best matching

block will be done (what blocks will be evaluated), con-

sidering the candidate blocks inside the search area. For

each compared block, the similarity criterion is calculated

and the most similar block is selected. The sum of absolute

differences (SAD) is the most common criteria used to

measure the block similarity [4, 5] [6] and, for this reason,

we will refer to a block matching operation in terms of

SAD computations. An efficient ME algorithm must be

capable to find the best possible matching while comparing

the smallest number of candidate blocks.

Current video encoders do not restrict how the ME

algorithm is performed. This freedom allows the designers

to develop algorithms that better suit to the target appli-

cation or underlying systems. When real-time systems for

high-definition video encoding are considered, hardware

acceleration is needed. Therefore, besides providing high

efficiency and complexity reduction, the ME algorithms are

desired to present hardware-friendly characteristics such as

a constant number of operations per coded block and a

small internal memory.

The exhaustive ME algorithm is known as full search (FS)

[5]. The FS is the most intuitive algorithm; nevertheless it is

the most computationally costly in terms of number of SADs

computations [7]. The FS compares all candidate blocks of a

given search area, always finding the optimal result. This

high complexity is undesired due to the difficulty to deliver

performance to reach real-time processing for HD videos. As

a consequence, FS drastically increases the power con-

sumption. Considering this scenario, the use of fast ME

algorithms is mandatory to reduce the complexity even in

spite of the possible coding efficiency losses.

Fast algorithms usually explore different search patterns

and/or heuristics based on video characteristics to achieve a

good trade-off between complexity and objective video

quality. A large set of research works discuss and proposed

different alternatives of fast ME algorithms by varying the

geometric shapes resulting in algorithms such as diamond

search (DS) [4, 8], hexagon search [9], three step search

(TSS) [10], spiral search [11], among others. However,

most of these algorithms present weaknesses when dealing

with local minima, especially when encoding HD videos

[12]. Local minima are good matching candidate blocks

that trap fast algorithms preventing them to find the global

minimum.

To improve the geometric shape-based algorithms, some

level of intelligence was inserted in the state-of-the-art

algorithms, such as the enhanced predictive zonal search

(EPZS) [13], by including start point prediction and early

termination (see Sect. 2). Still, the predictors employed can

be inefficient limiting the algorithm results, especially for

high motion and HD videos, due local minima selection.

Note, the higher the resolution and the motion intensity, the

harder to find the optimal matching block. Therefore, it is

desired that an ME algorithm contains characteristic to help

the search to avoid local minima by, for instance, inserting

some level of random behavior.

In this work we present two ME algorithms, the spread

and iterative search (S&IS) [14] and the low density and

iterative search (LD&IS) [15], employing a spread-evalu-

ation approach and hardware friendly characteristics.

Based on these algorithms, two hardware architectures

targeting HD (1,920 9 1,080) videos real-time encoding

are presented.

• S&IS & LD&IS The S&IS and LD&IS are composed of

two main steps: (i) a spread evaluation where many

blocks are evaluated far from the co-located block,

which is responsible to avoid local minima when

encoding high motion/definition videos; and (ii) a

central iterative evaluation where a DS is applied in the

co-located block, which is important to achieve good

results when encoding low motion/definition videos. As

the spread evaluation is data-dependencies free and

allows the exploration of parallelism; thus, adequate for

hardware implementation.

• ME algorithms evaluation In this work a complete new

strategy is employed to allow the evaluation of the two

proposed algorithm under the HEVC encoder environ-

ment. All results were obtained through the HEVC

reference software—HEVC Model (HM) 5.0 [16]—

respecting the recommended common test conditions

(CTC) and comparing against state-of-the-art search

algorithms.

• Hardware architectures Exploiting the parallelism

inherent to the S&IS and LD&IS algorithms, two

hardware architectures are presented. The architectures

are composed of a pseudo-random number generator, a

local memory, a memory read/write controller and a set

of processing units. Also, the designs have been

described in VHDL, and synthesized for an Altera

Stratix 4 FPGA and also for TSMC standard cell 90 nm

technology focusing on real-time processing HD 1080p

and a low power consumption.

This article is divided as follows: Sect. 2 describes the

related works. In Sect. 3 the S&IS and the LD&IS algorithms

are presented. Details about the experimental setup, our

software evaluations and comparisons with DS and EPZS are

136 Analog Integr Circ Sig Process (2015) 82:135–146

123



presented in Sect. 4. Section 5 presents the VLSI design for

the architectural template used in S&IS and LD&IS archi-

tectures design. Details about each architecture implemen-

tation are also presented in Sect. 5. In Sect. 6 it is presented

the synthesis results for both LD&IS and S&IS architectures

followed by comparisons with other works in the literature.

Finally, Sect. 7 renders the conclusions.

2 Related works

State-of-the-art fast ME algorithms [17] employ heuristics

during the prediction process to speed-up the searching for

the best matching region in the search area within the

reference frame. By doing so, the fast ME algorithms

meaningfully reduce the computational complexity when

compared to the exhaustive ME algorithm, i.e. the FS

algorithm. Another approach, used to accelerate the ME, is

the early termination technique [17], that stops the search

process when the residue obtained by the ME prediction is

lower than a predefined threshold. Although early termi-

nation algorithms provide good reduction in the number of

compared blocks while sustaining coding efficiency, the

number of operations to encode a block is not predictable.

A variable non-deterministic number of operations to

encode a block is not desirable when designing a hardware

solution designed to guarantee real-time processing.

Predictive motion estimation algorithms (PMEA) [17] have

been widely used in H.264/AVC and HEVC reference soft-

ware due to their low complexity and high efficiency. PMEA

algorithms store motion vectors (MVs) that were used in past

frames and use them to define the initial search points for ME

algorithms, resulting in a good video quality at a reduced

processing effort. The main idea of PMEA is inspired in

Newton’s first law which defines that an object either at rest or

constant movement should keep the same state unless acted

upon by an external force. Bringing this idea to video coding,

the MV of two neighbor frames tends to be similar. Another

mechanical concept that inspired the PMEA development is

that an object that is accelerating should accelerate its motion

in the next time instant with a similar acceleration factor. These

principles are exploited, respectively, by using as a predictor

the same MV of the past frame or based on the acceleration of

the past two frames. PMEA-based solutions, however, are not

hardware-friendly due irregular number of operations per

encoded block, and the need to store MVs of previously

encoded frames (resulting in additional memory) to perform

the initial evaluation of the future ones. For instance, the

memory resources necessary to store the MVs of the past two

frames of a HD 1080p video is around 226,800 bits. More

details about this memory estimation are presented in Sect. 4.

The EPZS [13], which is a PMEA, decides to best search

start point among the following options: the co-located

block vector; the median of the co-located block MV and

its neighboring MVs; or a vector representing the motion

acceleration calculated using the past two co-located

blocks. PMEA algorithms, such as EPZS, provide good

coding efficiency with reduced complexity. However, these

techniques lead to unpredictable number of operations and

irregular memory access patterns. Additionally, EPZS may

implement early termination further increasing the varia-

tion in the number of comparisons required.

There are other works in literature such as [12] and [18–

23] that presents a hardware design for ME algorithms and

some are capable to encode HD videos in real-time.

However, most of them do not presents the ME quality for

HEVC and just present the quality evaluation for low

definition videos. For these reasons, there is a need for

novel ME algorithms that consider hardware–related

challenges targeting real-time encoding systems.

3 S&IS and LD&IS algorithms

In this section the S&IS and LD&IS algorithms are pre-

sented. The main goal of both algorithms is to facilitate the

hardware design, providing a good trade-off between per-

formance, hardware resources utilization and objective

quality when encoding HD videos. The quality gain is

reached by the use of techniques to reduce the choice of

local minima in comparison with other fast algorithms.

These techniques are hardware friendly, since present no

data dependencies, regular number of operations and reg-

ular memory access. Note that by regular memory access

we refer to the fact that all accesses are performed within

the search window.

Both algorithms can be divided in two steps: a spread

evaluation and a diamond-shaped central iterative evalua-

tion. As high motion activity videos tend to have MVs far

from the central position of the search area, the spread

evaluation is responsible to evaluate blocks far from the co-

located block in the search area. Low motion activity

videos tend to have MVs near to the central position of the

search area and the central evaluation is responsible to

evaluate these near blocks.

In the central evaluation, a DS algorithm is applied in

the co-located block of the search area. In face to our

hardware-friendly objective, the DS main weakness is its

non-determinist number of cycles to encode a block.

However the DS performs, on average, only 4 iterations

and it is possible to limit the iterations without losing much

coding efficiency [7]. In the proposed algorithms the DS

has been limited to five iterations. The DS is the iterative

part of the proposed algorithms and this guarantee that the

S&IS and LD&IS will have, at least, the same quality

results when compared to the DS.

Analog Integr Circ Sig Process (2015) 82:135–146 137

123



Combining both spread evaluation and central evalua-

tion in one algorithm makes the proposed algorithms

capable to encode videos with different characteristics with

a high encoding quality.

3.1 Spread and iterative search (S&IS)

Figure 1 presents the S&IS flowchart. The S&IS works as

following: (1) the search area is divided in four sectors. Each

sector represents one quadrant around the origin position

centered at the co-located block; (2) N/4 spread positions are

pseudo-randomly generated for each sector, totalizing

N spread position; (3) the SAD is computed for each one of

these positions and the best one is selected; (4) an iterative

process using DS algorithm is started at the center of the

search area; finally, (5) the results obtained by step (3) and

step (4) are compared and the final MV is generated.

A pseudo-random numbers generator is used to generate

N spread positions inside the search area and then the SAD

is computed for these N positions. These SADs are com-

pared and the lowest one is selected. This is the spread

block evaluation part of S&IS.

The insertion of the random spread blocks evaluation

does not increase much the ME complexity if compared

with DS. Combining the random evaluation and DS into

the S&IS algorithm, it is possible to achieve quality gains

without high losses in terms of complexity. The S&IS

complexity is dependent on the N parameter. According to

previous analysis [14], when targeting HD videos, the best

N that maximizes the tradeoff among complexity and video

quality is 96.

It is possible to observe in Fig. 1 that there are no data

dependencies between the spread block evaluation and the

central iterative evaluation. This characteristic is important

when designing a hardware solution to achieve the maximum

possible efficiency because the central evaluation and the

spread evaluation can be calculated in a parallel or in a

sequential fashion according to the designer interest. In our

hardware solution (presented in Sect. 5) the parallelism was

explored in the hardware design to increase the processing

rate. The DS is an iterative algorithm with data dependencies

among the iterations. When the parallelism is explored in the

hardware design of S&IS algorithm, the iterative DS step is

the limiting factor of the overall throughput, since all the

SAD calculations of the spread evaluation can be done in

parallel. Then the hardware design of spread evaluation can

be constructed to reach the same processing rate than that

obtained by a single DS solution.

3.2 Low density and iterative search (LD&IS)

The LD&IS follows the same idea of S&IS to perform a

spread evaluation and an iterative evaluation around the co-

located block in the search area. The difference between

these algorithms is in the step responsible to generate the

positions that will be evaluated. In S&IS these positions are

generated by a pseudo-random generator. In LD&IS these

positions are pre-fixed before the start of the encoding

process. In LD&IS it was used 100 fixed positions covering

the whole search area. The search positions used by the

multi-point step are 5, 10, 20, 30 and 40 samples away

from the center to each side, in both x and y axis. The

proposed search area for this algorithm is 96 9 96 pixels,

which represents a density of 0.011 computed blocks per

pixel in the search area for a 16 9 16 block size. More-

over, this density has been used in our evaluation because it

presented the best trade-off between complexity and effi-

ciency [15]. However the proposed algorithm can be easily

adapted to a higher density number of compared blocks.

One of the main advantage on using LD&IS compared to

S&IS is the perfectly regular memory access. LD&IS memory

accesses are pre-defined in the beginning of the encoding

process, while in S&IS those positionsare randomly generated.

4 Experimental setup and evaluations

4.1 Experimental setup

The S&IS and LD&IS algorithms were evaluated on the

following test video sequences defined at CTC: Traffic,

Start

Select a New
Sector

Randomly Select
N/4 Positions

Find the Lowest
SAD

Last
Sector?

Find the Lowest
SAD

Select the center
of search area

Apply LDSP

Lowest
SAD at
Center?

Apply SDSP

Generate the
Motion
Vector

Yes

Yes
No

No

Central Evaluation

Spread Evaluation

Fig. 1 S&IS algorithm

138 Analog Integr Circ Sig Process (2015) 82:135–146

123



BQTerrace, ChinaSpeed, RaceHorses, and BQSquare. The

video resolution of each video sequence is presented in

Table 1. These videos have been chosen for these experi-

ments because it covers many different resolutions and

video characteristics, such as motion activity, light and

texture (high, medium and low) which are important to

demonstrate the robustness of the algorithms. Four differ-

ent quantization parameters (QP) have been evaluated: 22,

27, 32 and 37. The default parameters of HEVC reference

software were used for Random Access mode according to

CTCs.

The DS, S&IS and LD&IS have been implemented in

HM 5.0. The S&IS and LD&IS central evaluation are

limited to five iterations and the N used is 96 points (24 per

sector) and 100 points (25 per sector), respectively.

In the implementation of DS, S&IS and LD&IS were

not optimized focusing on performance. Those optimiza-

tions were not performed because it was not the focus of

this work to show how fast our software solution can

compute compared to EPZS but our intention is to show

that the quality obtained with S&IS and LD&IS algorithms

and the possible time results related to our architecture

design. The complexity of S&IS and LD&IS are explained

in our hardware development in Sects. 5 and 6.

4.2 Simulation results

The well-accepted BD-rate measurement [24] is used to

evaluate the coding performance. Table 1 presents the BD-

rate and time results for DS, S&IS and LD&IS in com-

parison to EPZS. Analyzing the time results, the DS was

capable to obtain a complexity reduction of 5.74 % in

comparison to EPZS. Considering the LD&IS and the

S&IS, the proposed algorithms increased the complexity by

7.69 and 14.48 % when compared to EPZS, respectively.

However, the proposed algorithms implementations were

not focusing on performance optimization.

Figure 2 presents a PSNR–bitrate curve plotting the

results obtained in traffic sequence for the four evaluated

ME algorithms. The behavior of this curve is similar for the

others video sequences. As previously expected, the EPZS

obtained the best results among the evaluated algorithms.

In comparison to DS, LD&IS and S&IS in average the

EPZS obtained a bitrate reduction of 7.82, 6.16 and 5.40 %

considering the same quality (considering the luminance

component). The best case results occurred in BQSquare

and the worst case results occurred in RaceHorses.

In BQSquare, which is a low resolution and low motion

activity video, the bitrate reduction obtained by EPZS is

inexpressive when compared to any algorithm. This happens

because for low motion activity videos a good MV tends to

be obtained around the center of the co-located block. The

DS exploration around the center obtains good results in the

kind of videos, which makes the central evaluation of the

proposed algorithms obtain good MV. Adding some evalu-

ations far from the co-located block in this case only

increases the encoding effort. The BD-rate of the proposed

algorithms are very close to EPZS in this case.

RaceHorses and ChinaSpeed are medium resolution and

high motion activities videos. In this case, the bitrate

reduction obtained by EPZS is meaningful. In this case,

good MVs can be found far from the co-located block and

the DS cannot transpose local minima around the central

position, which makes the DS efficiency much lower than

EPZS. The EPZS reduction in bitrate when compared to

S&IS and LD&IS is explained because the EPZS uses a

MV predictor, which guides immediately the EPZS search

to an area that contains good MVs. The RaceHorses video,

in which it was obtained the worst case results, is the video

with higher motion activities characteristics, which is the

video that the ME should face the highest problems during

the encode process.

In Traffic and BQTerrace, which are high resolution and

low motion activities videos, the EPZS efficiency is still

Table 1 Simulation results using BD-rate measurement compared to EPZS algorithm

Algorithm DS LD&IS S&IS

Videos Y

(%)

Cb

(%)

Cr

(%)

Enc. time

(%)

Y

(%)

Cb

(%)

Cr

(%)

Enc. time

(%)

Y

(%)

Cb

(%)

Cr

(%)

Enc. time

(%)

Traffic (2048 9 1152) 7.53 7.13 7.93 97.04 5.88 5.16 5.80 111.70 4.54 3.80 4.32 119.30

BQTerrace (1080p) 3.46 3.05 2.80 94.89 2.34 1.15 1.55 107.26 2.09 1.17 1.73 114.06

ChinaSpeed

(1024 9 768)

9.20 10.05 10.90 86.33 7.50 7.48 7.92 99.08 7.37 7.18 7.58 104.38

RaceHorses

(832 9 480)

18.67 23.94 25.75 85.37 14.75 16.81 17.80 95.87 12.60 14.13 15.90 99.96

BQSquare (416 9 240) 0.24 0.07 0.82 97.84 0.23 0.19 0.92 111.19 0.39 -0.11 0.45 116.68

Average 7.82 8.85 9.64 94.26 6.14 6.16 6.80 107.69 5.40 5.23 6.00 114.48

Analog Integr Circ Sig Process (2015) 82:135–146 139

123



considerable because of the high resolution of the videos.

In this case, good MV should be found around the co-

located block. However, the main problem is the high

resolution of these videos, which makes the DS very sus-

ceptible to local minima falls. In this case, the efficiency of

the proposed algorithms is evident, because of the gains

obtained evaluating spread positions in the search area

when compared to DS. The S&IS and LD&IS also suffer

with the increase of resolution due to the lower density of

spread points in the search area; however, the decrease in

coding efficiency happens smoother in relation to DS.

The EPZS gains were already expected and occur

because the EPZS MV predictor is very sophisticated

guiding the search process to areas with a good block

match. Still, given the hardware-oriented goals of our

development, it is not a good option. In our project deci-

sions, some hardware-friendly characteristics are desired:

low variation in the number of operations per encoded

block, regular memory access (so data reuse is possible)

and reduced internal memory. The EPZS vector predictor

has, as the main disadvantage, the need to store all MVs of

past two frames. Moreover, once the search window is

centered around the best predictor, it is not possible to

prefetch this data from external memory nor guarantee the

reuse of data between neighboring blocks.

In relation to the MVs memory required to implement

EPZS, considering that each MV is represented using seven

bits for each axis (which allows a search area range of [-64,

?64]), and the block size is 16 9 16 samples, it is possible to

determine the minimum size of internal memory necessary to

store these vectors. Table 2 presents the estimated memory

usage only for the EPZS vector predictor for three resolu-

tions: enhanced-definition television (EDTV) 480p, HD

720p and HD 1080p. For an HD 1080p video (for the

configuration described before) it would be necessary

226.8 kbits only for the EPZS MV predictor, for example.

Summing up the memory size for MV predictors, the irreg-

ular memory access, and the EPZS irregular number of

operations per encoded block, a hardware architecture for the

EPZS algorithm tends to perform inefficient in terms of the

hardware usage and performance.

5 Architectural design of S&IS and LD&IS

Both S&IS and LD&IS architectures use the same archi-

tectural template, presented in Fig. 3, that will be described

in the first subsection of this section. The next subsection

will describe the modifications in the architecture template

to design the S&IS architecture and the last subsection will

describe the modifications in the template to design the

LD&IS architecture.

5.1 Architectural template

Figure 3 presents the architectural template with the main fea-

tures of both S&IS and LD&IS architectures. This architecture

has been designed considering a fixed block size 16 9 16

samples, with a 4:1 sub-sampling rate. A maximum of five

iterations was defined for the DS algorithm implemented in the

central evaluation and a search area used is 96 9 96 samples.

34

35

36

37

38

39

40

41

42

1300 3300 5300 7300 9300 11300 13300

P
S

N
R

 (d
B

)

Bitrate (kbps)

EPZS

S&IS

LD&IS
DS

Fig. 2 PSNR-bitrate curve

comparing EPZS, DS, S&IS and

LD&IS

Table 2 Estimation of memory

usage for the EPZS algorithm
Video

(resolution)

Memory

(bits)

EDTV 480p 37,800

HDTV 720p 100,800

HDTV 1080p 226,800

140 Analog Integr Circ Sig Process (2015) 82:135–146

123



The use of 16 9 16 block size with 4:1 sub-sampling

rate is function of the focused resolution. In HD videos the

use of small block sizes does not significantly contribute

with the encoding efficiency [12], then 16 9 16 or bigger

blocks are a good option if only one block size is sup-

ported. The sub-sampling is a good option for hardware

design since it causes an expressive complexity reduction

with an acceptable quality loss [12].

Hardware solutions are usually designed focusing on

real-time applications. As the computation time of DS is

non-deterministic, because it depends on how many times

the DS will iterate, an iteration restriction has been inserted

in the central evaluation to guarantee, even in worst case, a

high processing rate. Through software evaluation it was

possible to determine that by using five iterations it is

possible to achieve a good trade-off between video quality

and computational complexity.

Figure 4 presents the cycle diagram of the proposed

architecture template where it is possible to notice, cycle-

by-cycle, the step in which the central iterative evaluation

or the spread evaluation are processing. The priority of the

proposed hardware solution is to finish the central iterative

evaluation before starting to process the spread evaluation.

To achieve a better processing rate, the reference memory

starts to be written in the central positions, necessary for

the first large DS Pattern (LDSP). During this period, the

DS local memories start to read data from the Reference

Memory and the local memories are filled with the data of

the nine positions of the LDSP (Mem 1 to Mem 9 in Fig. 3)

and data for the refinement (Mem A to Mem D in Fig. 3).

When the local memories are filled with the data to per-

form a DS iteration, all local memories start to be read line-

by-line and the data are sent to the processing units (PU1 to

PU9 in Fig. 3), where the SAD computation is performed

for each LDSP position. The comparator is responsible to

find the lowest SAD among the LDSP results and the

position with this lowest SAD is defined as the center for

the next LDSP iteration.

The SAD processing unity (PU) receives eight samples

per cycle, where each samples is represented with one byte.

These eight samples are one line of the subsampled

16 9 16 block. The PU processes this line of samples in

four pipeline stages. The comparator receives the SADs

calculated by the nine PUs and it is able to define the

lowest SAD in five cycles.

Each Core in Fig. 3 is composed by a local memory

(8 9 8 bytes) and a controller to select the position that

will be written in the local memory and a PU. A half of the

N fixed positions are evaluated in parallel, then, the hard-

ware design uses N/2 cores.

When the DS is in the processing step during a LDSP

iteration, i.e., when it is in PU or in comparison step, the

reference memory starts to be read by the spread evalua-

tion. In this case, the complete reference memory positions

need to be read. The controller of each core is responsible

to select if its local memory should or should not store the

information read from the reference memory according if

the current core has selected that position to evaluate.

When the DS finishes the first LDSP calculations, the

reference memory stops to be read by the spread evaluation

and the DS step starts to read the reference memory again

to get the necessary data for the next LDSP iteration step.

When the DS finishes this reference memory reading (i.e.

when it is again in PU or in comparison step), the spread

evaluation continues reading the remaining lines of the

Reference Memory, finishing the reading of both superior

quadrants. In the next DS LDSP iteration, the SADs of

these first half positions are computed in parallel with the

Reference Memory

Core 
1

Core 
N/2

Mem
1

Current Memory

Motion Vector
SAD

Spread Evaluation

Comparator

Comparator

Mem
9

PU 1 PU 9

Comparator

Mem
A

Mem
D

Central Iterative
Evaluation

Fig. 3 Spread architectures

template

Analog Integr Circ Sig Process (2015) 82:135–146 141

123



LDSP SAD calculation. Then, the spread evaluation SADs

are sent to the comparator of the spread evaluation and the

best SAD of these N/2 positions is stored. The spread

evaluation comparator receives N/2 SAD values and it is

able to find the best SAD in seven clock cycles.

This interlaced way to read the reference memory is

repeated for the fourth and fifth LDSP iterations when the

inferior sectors of the reference memory are read. When

the small diamond search pattern (SDSP) process is

evaluated, the last N/2 positions of the spread evaluation

are computed. The SADs calculated in this stage are

compared with the best SAD of the top reference memory

positions and with the best DS SAD and the MV is

generated.

To compute a whole 16 9 16 block it is necessary 174

clock cycles as shown in Fig. 4. It is important to notice

that the comparator design (in spread evaluation) used by

this work allows the usage of 33–64 cores in spread eval-

uation without changing the number of cycles necessary to

process a 16 9 16 block. This allows a freedom for the

designer to select the best number of cores that best fits in

the proposed application.

Next subsections present the details about the S&IS and

LD&IS hardware architectures. Both architectures use the

same architectural template, presented in Fig. 3, however,

each algorithm needs a specific design for the Spread, and

Central Iterative evaluations.

5.2 S&IS architecture

The S&IS architecture has been designed using 96 spread

positions, which means that it uses 48 cores. The S&IS

core is presented in Fig. 5 and contains a 32 bits linear

feedback shift register (LFSR) to generate a pseudo-ran-

dom number for each core.

In the beginning of the process, the LFRS is signalized

to generate a pseudo-random number. When the reference

memory is read, if the line that is been read is inside the

randomized position, the enable store control signalize the

local memory to store the line position of the line that was

randomized.

5.3 LD&IS architecture

The LD&IS architecture has been designed using 100

spread positions, since it was desired that both solutions

use similar hardware resources and the core architecture

used in LD&IS is simpler than S&IS architecture. The

LD&IS core architecture is presented in Fig. 6. The dif-

ference between S&IS and LD&IS Cores is that the LFSR

are removed in LD&IS architecture and the values are

substituted by VCC or GND pins. Comparing to S&IS

Core, it was removed a 32 bits register and some logic

elements to create the LFSR.

6 Synthesis results and comparisons with related works

The S&IS and LD&IS architectures have been described in

VHDL and synthesized for an Altera Stratix 4 EP4S40G

2F40I2 FPGA [25] and for the TSMC standard cell 90 nm

technology. Synthesis results are presented in Table 3. For

the S&IS architecture, the FPGA results indicate the use of

10 % of the total available ALUTs, 8 % of the total available

registers and \1 % of the available memory bits. For the

LD&IS architecture, the FPGA results indicate the use of

16 % of the total available ALUTs, 10 % of the total avail-

able registers and\1 % of the available memory bits. Both

architectures need 174 clock cycles to encode a 16 9 16

block. Since the architectures reached a maximum operation

frequency of 254.8 and 210.0 MHz, respectively, it is

Fig. 4 LD&IS and S&IS cycle diagram

S&IS Core

Local
Memory

Reference
Memory

Current
Memory

PU

LFSR

Memory
Read/Write
Controller

Generate
Random
Number

SAD & MV

Fig. 5 S&IS core architecture

142 Analog Integr Circ Sig Process (2015) 82:135–146

123



possible to process 180 and 149 HD 1080p frames per second

for the LD&IS and S&IS architectures, respectively.

The standard cell synthesis for TSMC 90 nm technology

was focused on obtaining real-time processing (at 30

frames per second) for HD 1080p videos. Both architec-

tures can reach this performance with a low operational

frequency of 42.3 MHz. The low required frequency has a

positive impact on the power consumption of both archi-

tectures. In fact, LD&IS and S&IS architectures are capa-

ble to process HD 1080p videos in real time with a power

consumption of 12.5 and 13.5 mW, respectively.

There are many published ME algorithms in the litera-

ture, however, only a few of them are focused on hardware

encoding of HD videos. Some of them do not consider the

coding efficiency degradation at HD due and only evaluate

the algorithms for CIF and QCIF video resolutions. Based

on this fact, Table 3 presents comparisons with some

related works such as [12] and [18–23] that allow a fair

comparison. Table 3 brings the following parameters: (1)

the synthesized technology, (2) the maximum operation

frequency reached, (3) area resources utilization, (4)

memory bits usage, (5) cycles to encode a block, (6)

performance in frames per second for HD 1080p video and

(7) power consumption.

The work [12] proposes a new algorithm and its

respective architecture called multi-point diamond search

(MPDS) algorithm. MPDS is also designed intending to

avoid local minima in HD videos. The block size used is

also 16 9 16 with a 4:1 sub-sampling rate. The work [12]

uses a smaller area but 46 % more memory bits than the

proposed architectures. If on the one hand, [12] can process

a block in fewer cycles resulting in lower frequency to

encode a HD 1080p video in real time. On the other hand,

comparing the quality results, the S&IS and LD&IS are

able to provide superior quality results.

A ME architecture for the fast top-winners (FTW)

algorithm is proposed in [18]. That work uses the level C

data reuse scheme [26], which allows a reduced use of

memory bits. Quality results for HD videos are not pre-

sented. This architecture is not able to process HD 1080p

videos in real time, since its performance for this video

resolution is only of eight frames per second. Our work

achieves almost the double of operation frequency and uses

7 times less cycles to encode a block than [18], which

results in a better processing rate for the proposed archi-

tectures. Our architecture consumes about a quarter of the

power demanded by [18], the difference of technological

node must be taken into consideration though.

The work [19] presents an algorithm for multi-resolution

ME (MMEA). That work considers two reference frames in

the ME process which is an interesting option to enhance

the coding efficiency. The designed architecture is able to

process HD 1080p videos in real time at 200 MHz. That

work also does not present quality results for HD videos.

The work [19] uses less memory bits than our solutions,

however the area used in [19] is higher than LD&IS and

S&IS architectures. Also, the number of cycles to encode a

Table 3 Synthesis results and comparisons

Architecture Technology Frequency

(MHz)

Area Memory

(kbits)

Cycles

per block

1080p

fps

Power

(mW)

Porto et al. [12] Stratix 4 199.2 34.5 KALUTs 53.4 170 174 n.a

Lai et al. [18] 180 nm 83.3 26 KGates 28.7 1282 8 60.8

Yin et al. [19] 180 nm 200 260 KGates 11.3 872 28 n.a

Cetin et al. [20] FPGA 90 nm 63 33 KLUTS 8 dual-port

block RAM

104

(average)

74.7 n.a

Kao et al. [21] 180 nm 154 321 KGates 9.7 631 30 374

Tasdizen et al. [22] Virtex 5 130 18,2 KLUTs 0.5 467 8.5 n.a

Vanne et al. [23] 130 nm 200 14 KGates 2.5 390/437/680 56 59

LD&IS Stratix 4 254.8 (max.) 18.5 KALUTs 46 174 180 n.a

LD&IS 90 nm 42.3 (target 1080p) 150.4 KGates 57.4 174 30 12.5

S&IS Stratix 4 210.0 (max.) 18.4 KALUTs 33.9 174 149 n.a

S&IS 90 nm 42.3 (target 1080p) 151.2 KGates 56.4 174 30 13.5

LD&IS Core

Local
Memory

Reference
Memory

Current
Memory

PU

Values fixed
on VCC or

GND

Memory
Read/Write
Controller SAD & MV

Fig. 6 LD&IS core architecture

Analog Integr Circ Sig Process (2015) 82:135–146 143

123



block of LD&IS and S&IS architectures are lower than

[19].

Adaptive true motion estimation (ATME) algorithm is

presented in [20]. It also evaluates the algorithm for HD

1080p videos. In that work only 104 cycles are necessary,

in average, to process a 16 9 16 block. The architecture

presented in [20] requires only 63 MHz and is able to

process HD 1080p videos in real time. Comparing the area

results, the LD&IS architecture uses less hardware

resources. The proposed architectures are capable to

achieve more than the double of [20] processing rate.

In [21] a ME capable to encode 30 HD 1080p frames per

second is presented and it was synthesized for 180 nm

technology. In comparison to our work, [21] uses a higher

number of cycles to encode a block and also larger hard-

ware resources. Comparing power results, [21] presents a

higher power consumption because the proposed architec-

tures need a much lower frequency to encode at the same

processing rate, this way it is possible to drastically reduce

the architectures power consumption.

An architecture for the fast algorithm dynamic variable

step search (DVSS) is presented in [22]. This architecture

also uses a 16 9 16 block size and presents synthesis

results for a distinct FPGA technology. The DVSS archi-

tecture is capable to process 34 HD 1080p frames per

second, which is much lower than the processing rate of

our FPGA solution. This is explained by the fact that our

solutions are capable to process a 16 9 16 block in a fewer

number of cycles. The main advantage in [22] is that the

architecture uses only 0.51 K memory bits, which is much

lower than the memory proposed in this work. This also

explain the need of much more cycles than LD&IS and

S&IS architectures because DVSS needs to asks for data in

an external memory in a higher rate.

The work [23] proposes three different ME algorithms

in the same architecture: hexagon based search (HEXBS),

block based gradient descent search (BBGDS) and TSS.

This architecture needs 390, 437 and 680 cycles per coded

block for each algorithm, respectively. In Table 3 it is

presented only the processing rate results for BBGDS

because it is the average case of this architecture, however,

the three algorithms are capable to achieve real-time results

for HD 1080p videos. All algorithms proposed in [23] need

a higher number of cycles per encoded block than the

architectures proposed in this work. The architecture pro-

posed by [23] uses less hardware resources than our

architecture, however, the LD&IS and S&IS architectures

dissipate less power than [23], which is explained by the

high frequency that the architecture proposed in [23]

requires to achieve real-time performance.

In comparison to related works, our solutions presented

a high number of memory bits, however, if compared to

EPZS algorithm, the memory necessary just for the MV

predictor should be around four times the memory usage in

our solutions. Therefore, our solutions present a good

balance in terms of coding efficiency, hardware usage,

power consumption and overall performance.

7 Conclusions

This article presented the S&IS and the LD&IS ME algo-

rithms, which are fast and hardware-friendly ME algo-

rithms. The hardware designs were also presented in this

article for both algorithms. Those VLSI designs were

focused on obtaining a low number of cycles to encode a

block, which results mainly in a high performance with low

operational frequency, with a good impact on the power

consumption reduction, when compared to other works in

literature.

The algorithms were evaluated using the HEVC refer-

ence software and compared to EPZS and DS using the

BD-rate measurement. The proposed algorithms were

capable to reach better results than DS, which is a classical

algorithm. In turn, the EPZS obtained a higher quality

results than our solution, which has occurred mainly

because of EPZS MV predictor. However, implementing

the EPZS MV predictor uses around 226,800 memory bits

and goes in the opposite direction of our goals. Note that

our main objective was to define a hardware-friendly ME

algorithm able to be implemented in Hardware using

reduced memory/hardware usage, low energy consump-

tion, and high performance.

The S&IS and the LD&IS architectures were described

in VHDL and synthesized to an Altera Stratix 4 FPGA and

also for standard cells on TSMC 90 nm technology. FPGA

synthesis results show that the architecture is capable to

process 149 (S&IS) and 180 (LD&IS) HD 1080p frames

per second. Standard cell 90 nm technology synthesis

results show that our proposed solutions are capable to

process HD 1080p videos in real time, at 30 frames per

second, consuming only 12.5 and 13.5 mW for the LD&IS

and S&IS, respectively.

References

1. JVT, Wiegand, T., Sullivan, G., & Luthra, A. (Ed.). (2003). Draft

ITU-TRecommendation and final draft international standard of

joint video specification (ITU-T Rec.H.264|ISO/IEC 14496-10

AVC).

2. JCT. (2011). Working Draft 3 of high-efficiency video coding.

JCTVC-E603.

3. Cheng, Y., et al. (2009). An H.264 spatio-temporal hierarchical

fast motion estimation algorithm for high-definition video. IEEE

International Symposium on Circuits and Systems (ISCAS), 2009,

880–883.

144 Analog Integr Circ Sig Process (2015) 82:135–146

123



4. Kuhn, P. (1999). Algorithms, complexity analysis and VLSI

architectures for MPEG-4 motion estimation (Vol. 2). Amster-

dam: Kluwer Academic Publishers.

5. Bhaskaran, V., & Konstantinides, K. (1999). Image and video

compression standards: Algorithms and architectures (2nd ed.).

Boston: Kluwer Academic Publishers.

6. Walter, F., Diniz, C., & Bampi, S. (2012). Synthesis and com-

parison of low-power high-throughput architectures for SAD

calculation. Analog Integrated Circuits and Signal Processing,

73, 873–884.

7. Sanchez, G., Correa, M., Noble, D., Porto, M., Bampi, S., &

Agostini, L. (2012). Hardware design focusing in the tradeoff

cost versus quality for the H.264/AVC fractional motion esti-

mation targeting high definition videos. Analog Integrated Cir-

cuits and Signal Processing, 73, 931–944.

8. Zhu, S., & Ma, K. (2000). A new diamond search algorithm for

fast block-matching motion estimation. IEEE Transactions on

Image Processing, 9(2), 287–290.

9. Zhu, C., Lin, X., & Chau, L. (2002). Hexagon-based search

pattern for fast block motion estimation. IEEE Transactions on

Circuits and Systems for Video Technology, 12(5), 349–355.

10. Jing, X., & Chau, L. (2004). An efficient three-step search

algorithm for Block motion estimation. IEEE Transactions on

Multimedia, 6(3), 435–438.

11. Chok-Kwan, C., & Lai-Man, P. (2000). Normalized partial dis-

tortion search algorithm for block motion estimation. IEEE

Transactions on Circuits and Systems for Video Technology,

10(3), 417–422.

12. Porto, M., et al. (2011). An efficient ME architecture for high

definition videos using the new MPDS algorithm. In ACM Sym-

posium on Integrated Circuits and Systems Design (SBCCI) (pp.

119–124).

13. Tourapis, A. (2002). Enhanced predictive zonal search for single

and multiple frame motion estimation. In Proceedings of Visual

Communications and Image Processing (VCIP) (pp. 1069–1079).

14. Sanchez, G., et al. (2012). Spread and iterative search: A high

quality motion estimation algorithm for high definition videos

and its VLSI design. In IEEE International Conference on Mul-

timedia and Expo (ICME) (pp. 1079–1084).

15. Sanchez, G., et al. (2013). A fast hardware-friendly motion

estimation algorithm and its VLSI design for real time ultra high

definition applications. In IEEE Latin American Conference on

Circuits and Systems (LASCAS).

16. Joint Collaborative Team on Video Coding (JCT-VC)

(2011). High Efficiency Video Coding (HEVC) Test Model 5

(HM 5) Reference Software [Online]. https://hevc.hhi.fraunhofer.

de/svn/svn_HEVCSoftware/branches/HM-5.0-dev/. Accessed

May 2013.

17. Lu, J., et al. (2007). An epipolar geometry-based fast disparity

estimation algorithm for multiview image and video coding.

IEEE Transactions on Circuits and Systems for Video Technology

(TCSVT), 17(6), 737–750.

18. Lai, Y., et al. (2010). Hybrid parallel motion estimation archi-

tecture based on fast top-winners search algorithm. IEEE

Transactions on Consumer Electronics (TCE), 56(3), 1837–1842.

19. Yin, H., et al. (2010). A hardware-efficient multi-resolution

block matching algorithm and its VLSI architecture for high

definition MPEG-like video encoders. IEEE Transactions on

Circuits and Systems for Video Technology (TCSVT), 20(9),

1242–1254.

20. Cetin, M., et al. (2011). An adaptive true motion estimation

algorithm for frame rate conversion of high definition video and

its hardware implementations. IEEE Transactions on Consumer

Electronics (TCE), 57(2), 923–931.

21. Kao, C., Wu, C., & Lin, Y. (2010). A high-performance three-

engine architecture for H.264/AVC fractional motion estimation.

IEEE Transactions on Very Large Scale Integration Systems,

18(4), 662–666.

22. Tasdizen, O., et al. (2009). Dynamically variable step search

motion estimation algorithm and a dynamically reconfigurable
hardware for its implementation. IEEE Transactions on Con-

sumer Electronics, 55(3), 1645–1653.

23. Vanne, J., et al. (2009). A configurable motion estimation

architecture for block-matching algorithms. IEEE Transactions

on Circuits and Systems for Video Technology, 19(4), 446–476.

24. Bjontegaard, G., (2001, April). Calculation of average PSNR

differences between RD curves. In VCEG-M33, ITU-T SG16/Q6

VCEG, 13th VCEG Meeting, Austin, USA.

25. Altera Corporation. Altera: The Programmable Solutions Com-

pany. Available at www.altera.com. Accessed May 2013.

26. Chen, C.-H., et al. (2006). Level C? data reuse scheme for

motion estimation with corresponding coding orders. IEEE

TCSVT, 16(4), 553–558.

Gustavo Sanchez received the

Electrical Engineer degree from

Sul-Rio-Grandense Federal

Institute of Education, Science

and Technology (2013) and B.S.

degree in Computer Science

from Federal University of Pe-

lotas (2012). Sanchez is cur-

rently pursuing his M.S. degree

in Computer Science at Federal

University of Pelotas and is

planning to end this course by

March, 2014. His research

interests include video coding,

memory solutions for digital

systems, motion estimation algorithms, FPGA based design, low

power design for motion estimation architectures and 3D video

coding.

Bruno Zatt received his B.E.

and M.Sc. in Computer Engi-

neering from the Federal Uni-

versity of Rio Grande do Sul

(UFRGS), Porto Alegre, RS,

Brazil in 2006 and 2008,

respectively. Mr. Zatt received

his Ph.D. degree on Microelec-

tronics from the PGMICRO

(Graduate Program on Micro-

electronics) at the same univer-

sity in 2012 with ‘‘summa cum

laude’’ distinction. Currently

Bruno Zatt is a Professor at the

Federal University of Pelotas

(UFPel), Pelotas, RS, Brazil, and a member of the Group of Archi-

tectures and Integrated Circuits (GACI). He has 9? years research

experience on algorithms and hardware architectures for video pro-

cessing including 3 years researching on low power embedded real-

ization for the Multiview Video Coding as intern researcher at the

Analog Integr Circ Sig Process (2015) 82:135–146 145

123

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-5.0-dev/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-5.0-dev/
http://www.altera.com


Chair for Embedded Systems (CES), Karlsruhe Institute of Tech-

nology (KIT), Karlsruhe, Germany. His main research interests are

fast algorithms and low-power hardware architectures for video

processing and 2D/3D video coding for mobile applications.

Marcelo Porto received the B.S.

degree in Computer Science from

Federal University of Pelotas,

Pelotas, RS, Brazil, in 2006 and

the M.S. and Ph.D. degrees, also

in Computer Science, from Fed-

eral University of Rio Grande do

Sul, Porto Alegre, RS, Brazil, in

2008 and 2012, respectively. He

is Professor since 2009 at the

Center of Technological Devel-

opment (CDTEC) of Federal

University of Pelotas, Pelotas,

Brazil, and member of the Group

of Architectures and Integrated

Circuits (GACI). His research interests include video coding, motion

estimation algorithms, FPGA based design and VLSI design for video

coding. He is a member of IEEE and also member of the IEEE Circuits

and System Society.

Luciano Agostini received the

B.S. degree in Computer Science

from the Federal University of

Pelotas, Pelotas, RS, Brazil, in

1998 and the M.S. and Ph.D.

degrees from the Federal Univer-

sity of Rio Grande do Sul, Porto

Alegre, RS, Brazil, in 2002 and

2007 respectively. He is a Pro-

fessor since 2002 at the Center

of Technological Development

(CDTEC) of Federal University of

Pelotas, Pelotas, Brazil, where he

leads the Group of Architectures

and Integrated Circuits (GACI).

Since 2014 he is the Executive Vice President for Research and Gradu-

ation Studies of UFPel. He has more than 100 published papers in

journals and conference proceedings. His research interests include video

coding, arithmetic circuits, FPGA based design and microelectronics.

Dr. Agostini is a Senior Member of IEEE and he is a member of the IEEE

Circuits and System Society, of the IEEE Signal Processing Society, of

the Brazilian Computer Society (SBC) and of the Brazilian Microelec-

tronics Society (SBMicro). He participated on several organizing and

program committees of international events in his research area.

146 Analog Integr Circ Sig Process (2015) 82:135–146

123


	Hardware-friendly HEVC motion estimation: new algorithms and efficient VLSI designs targeting high definition videos
	Abstract
	Introduction
	Related works
	S&IS and LD&IS algorithms
	Spread and iterative search (S&IS)
	Low density and iterative search (LD&IS)

	Experimental setup and evaluations
	Experimental setup
	Simulation results

	Architectural design of S&IS and LD&IS
	Architectural template
	S&IS architecture
	LD&IS architecture

	Synthesis results and comparisons with related works
	Conclusions
	References


