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Abstract An important problem that arises in fault

diagnosis of analog circuit for fault dictionary technique is

the test point selection, which is known to be NP-hard. This

paper develops a mathematical optimization model for

analog test point selection (ATPS) problem and proposes a

novel method to solve it based on quantum-inspired evo-

lutionary algorithm (QEA). The proposed method uses the

solution produced by the inclusive algorithm to initialize

Q-bit individuals and presents a new fitness function to

search the global minimum test point set. In addition, an

approach for dynamically determining the magnitude of

rotation angle is introduced to accelerate the convergent

speed. The efficiency of the proposed algorithm is proven

by one practical analog circuit example and a group of

statistical experiments. Results show that the proposed

algorithm, compared with other methods, finds the global

minimum set of test points more efficiently and more

accurately.

Keywords Analog fault diagnosis � Fault dictionary

technique � Test point selection � Quantum-inspired

evolutionary algorithm (QEA)

1 Introduction

With the broad application and increasing complexity of

analog circuit, methods for fault diagnosis of analog cir-

cuits have gained much attention. It is usually classified

into two categories with simulation-before-test (SBT) and

simulation-after-test (SAT). Probabilistic and fault dictio-

nary techniques fall into SBT, whereas optimization, fault

verification, and parameter identification techniques fall

into SAT [1]. Fault dictionary technique is the most pop-

ular and practical method applied to diagnose catastrophic

faults in analog circuits [2]. It mainly includes three

important phases: fault dictionary construction, test point

selection, and fault diagnosis. This paper deals with the

second phase.

The problem of analog test point selection (ATPS) aims to

find the least number of test points that can isolate all given

faults. This problem has been proven to be NP-hard and the

global minimum set of test points can only be guaranteed by

exhaustive search which is only applicable to small-size

analog circuits [3, 4]. Up to now, a lot of researches have been

studied in this area. Varghese et al. [5] proposed a heuristic

method to find an optimum set of test points based on the

concept of confidence level. Hochwald and Bastian [6]

introduced the concept of ambiguity sets and developed log-

ical rules to select test points. Lin and Elcherif [2] proposed

two heuristic methods for test point selection based on the

integer-coded dictionary. Prasad and Babu [3] proposed two

new inclusive strategies and one efficient polynomial-time

algorithm to generate the minimum set using integer code

sorting. An entropy-based approach, using entropy index (EI)

as a criterion to choose test points, was proposed by Starzyk

and Lin [4]. Its complexity was proven to be less than that of

polynomial-time algorithms. More recent studies by Yang

et al. [7, 8] transformed the test point selection problem into a

directed acyclic graph search problem, and made use of

information theoretic entropy to guide graph search.

All above mentioned methods belong to greedy algo-

rithm, which is less time consuming, but rarely find

the global optimum solution. Recently, two intelligent
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optimization algorithms have been applied to solve this

problem and demonstrated with promising performance,

such as genetic algorithm (GA) [9] and discrete particle

swarm optimization (DPSO) [10]. GA has excellent global

search ability, whereas it has disadvantage of slow con-

vergence. On the contrary, DPSO converges quickly, but it

easy gets trapped into local optima. Therefore, an algo-

rithm with less time consumption and high global search-

ing ability is needed.

In 2002, Han et al. [11] proposed quantum-inspired evo-

lutionary algorithm (QEA), which is a novel evolutionary

algorithm based on principles and concepts of quantum

computing, such as superposition, interference and entan-

glement. Compared with traditional evolutionary algorithm,

QEA can more easily achieve the right balance between

exploration and exploitation. In QEA, probabilistic repre-

sentation is employed to define an individual, called Q-bit

individual, which has a better characteristic of maintaining

population diversity than other counterparts such as binary,

numeric and symbolic. Therefore, QEA can explore whole

search space with a relative small population size. In the last

decade, QEA attracted a lot of attention and has successfully

been applied to knapsack problem [11], unit commitment

problem [12, 13] and multiple-fault diagnosis [14].

This paper is devoted to applying QEA to solve ATPS

problem and proposes an efficient QEA-based ATPS method

(QEA-ATPS). Section 2 first summarizes the integer-coded

dictionary approach and then formulates the ATPS problem.

The principle of QEA is described in Sect. 3. In Sect. 4, the

proposed QEA-APTS method is elaborated on. Section 5

demonstrates the efficiency of QEA-APTS method through

one practical circuit and statistical experiments. The com-

parison results with other methods are also listed in this

section. Finally, the conclusions follow in Sect. 6.

2 Problem formulations

2.1 Integer-coded dictionary

We start first by describing the integer-coded dictionary,

which was first proposed by Lin and Elcherif [2] and

subsequently researched by Prasad and Babu [3]. During

the before-test stage, the circuit under test (CUT) is sim-

ulated for all assumed fault states (including fault-free case

f0) and the corresponding responses (voltage values in

general) at each test point are stored. Table 1 presents the

fault dictionary for a hypothetical CUT with five potential

fault states f1 � f5 and four test points n1 � n4.

Integer-coded dictionary is a two dimensional integer

matrix. Its rows represent all anticipated faults (including

fault-free condition), while its columns represent all avail-

able test points. For each test point, all faults are divided into

several ambiguity sets base on their voltage values, and then

a specific integer code is assigned to each ambiguity set

which is defined as any two faulty conditions that fall into the

same ambiguity set if the gap between the voltage values

produced by them is less than 0.7 V [6]. Table 2 shows an

integer-coded dictionary derived from Table 1. The detailed

description of integer-coded dictionary technique can be

found in the literature [2].

2.2 Optimization model

Let F ¼ f0; f1; . . .; fmf g be the set of all potential faults,

N ¼ n1; n2; . . .; nnf g be the set of available test points, D ¼
dij

� �
mþ1ð Þ�n

be the relevant integer-coded dictionary of

CUT, where subscript m is the number of potential faults

and n is the number of test points.

Let Ns ¼ ns1
; ns2

; . . .; nsk
f g � N be a subset of N, Dis ¼

dis1
; dis2

; . . .; disk
ð Þ be the signature of fault fi formed from

Ns, where sj 2 1; 2; . . .; nf g j ¼ 1; 2; . . .; kð Þ.
If fault fi and any other one fault fj, we always have

Dis � Djs ¼ 1, then the fault fi is diagnosable by Ns. Where

notation � is ‘‘exclusive OR’’ calculation and employed to

compare the difference between Dis and Djs; if the corre-

sponding elements of Dis and Djs are all identical, then the

result is 0, otherwise 1.

Denote Fs by the set of faults diagnosed by Ns, that is

Fs ¼ fi fi 2 F;
X

8fj2F

Dis � Djs ¼ m

������

8
<

:

9
=

;
ð1Þ

Table 1 Fault dictionary

Faults n1 (V) n2 (V) n3 (V) n4 (V)

f0 3.1 5.9 2.4 3.9

f1 0.3 12 0.3 3.9

f2 3.2 3.4 3.4 3.9

f3 3.9 3.8 3.2 3.9

f4 4.9 6.0 2.4 0.4

f5 0.7 0 0 5.6

Table 2 Integer-coded dictionary

Faults n1 n2 n3 n4

f0 1 2 1 1

f1 0 3 0 1

f2 1 1 2 1

f3 2 1 2 1

f4 3 2 1 0

f5 0 0 0 2
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Based on the above description, ATPS problem is then

formulated as

Min Nsj j
s:t:jFsj ¼ jFj

�
ð2Þ

where, j � j is the cardinality of set. Thus, the problem of

using the minimum number of test points to isolate all

faults is equivalent to distinguish all rows of integer-coded

dictionary by minimum number of columns.

3 QEA

QEA is a population-based probabilistic evolutionary

algorithm, which integrates the concepts from quantum

computing to enhance conventional evolutionary algo-

rithms. QEA is characterized by using Q-bit representation

to initialize population, making binary solutions from Q-bit

individuals by observation and taking Q-gate as a variation

operator to update Q-bit individuals.

In QEA, the smallest information unit is called Q-bit,

which is defined as follow

q ¼
a

b

" #

where a and b are a pair of complex numbers, which satisfy

aj j2þ bj j2¼ 1. The modulus aj j2 and bj j2 give the proba-

bility that a Q-bit will collapse to state ‘‘0’’ and ‘‘1’’,

respectively. The states of a Q-bit may be in ‘‘0’’ state, in

‘‘1’’ state or in any superposition of the two.

A Q-bit individual with a string of k Q-bits is defined as

q ¼
a1

b1

"
a2

b2

�����
. . .

. . .

�����
ak

bk

�����

#

ð3Þ

where aij j2þ bij j2¼ 1; i ¼ 1; 2; . . .; k. The merit of Q-bit

representation is that a Q-bit individual with k Q-bits can

represent all 2k possible binary solutions in search space

probabilistically. Therefore, QEA requires only a small

population size to provide good population diversity.

To evaluate each Q-bit individual’s fitness and find the

desired solution, all Q-bit individuals need to be trans-

formed into binary solutions by observation. When a Q-bit

ai; bi½ �T is observed, its corresponding binary character ai is

determined by comparing bij j2 to a uniformly distributed

number Rnd in [0, 1] for i ¼ 1; 2; . . .; k, i.e.

ai ¼ 1; Rnd\ bij j2
0; otherwise

�

Thus, a binary solution A ¼ a1; a2; . . .; ak½ � can be

obtained after all Q-bits in q have been observed.

A Q-gate is a variation operator of QEA to drive Q-bit

individuals toward better solutions. Its function is similar to

crossover and mutation operations in GA. There are several

Q-gates, such as not gate, controlled not gate, rotation gate,

hadamard gate, etc. [11]. Among them, rotation gate is the

most poplar one and widely employed in QEA. The rota-

tion gate U Dhið Þ and the update operation are given as

follows

UðDhiÞ ¼
cosðDhiÞ � sinðDhiÞ
sinðDhiÞ cosðDhiÞ

� �
ð4Þ

a0i
b0i

" #

¼ U Dhið Þ
ai

bi

" #

ð5Þ

In which, Dhi is the rotation angle of the ith Q-bit in q

toward either 0 or 1 state, a0i; b
0
i

� 	T
is the ith Q-bit of the

updated Q-bit individual. In [11], rotation angle is

determined through a pre-defined lookup table as shown

in Table 3, and the value of h is set to be 0:01p for solving

knapsack problem.

In Table 3, ai and bi are the ith binary control variables

in solution A and the best solution B, respectively; f �ð Þ
represents the fitness function.

4 QEA application to ATPS problem

QEA has been demonstrated its better performance on

many practical optimization problem, but it hasn’t been

used in the domain of ATPS. In the following, we elaborate

on the proposed QEA-ATPS algorithm from three partic-

ular aspects.

4.1 Initialization of Q-bit individuals

Initialization is an important step of QEA. At the begin-

ning, a population of Q-bit individuals QðtÞ ¼ ½qt
1; q

t
2;

. . .; qt
G� is initialized. Where, G is the population size, and t

is the generation counter. In original QEA, a0
i and b0

i ,

i ¼ 1; 2; . . .; n, of all q0
j ¼ qt

j

���t ¼ 0; j ¼ 1; 2; . . .;G, are

Table 3 Example of lookup table for determining rotation angle

ai bi f Að Þ� f Bð Þ Dhi

aibi [ 0 aibi\0

0 0 � 0 0

0 1 False þh �h

0 1 True 0 0

1 0 False �h þh

1 0 True 0 0

1 1 � 0 0

‘‘�’’ means don’t care
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initialized with 1

 ffiffiffi

2
p

; for ATPS problem, it means that all

combinations of test points are initialized with the same

probability, i.e. 1=2n. In [15], the authors have verified that

the initialization of Q-bit individuals with appropriate

values can accelerate the convergence speed and advance

solution accuracy. In this section, a novel initialization

method is proposed by employing the solution produced by

the inclusive algorithm in [3].

Assuming that the solution generated by the inclusive

algorithm is X0 ¼ x1; x2; . . .; xi; . . .; xn½ �, where, if the ith

test point ni is selected, xi is equivalent to 1; otherwise, xi is

0. From computation experience, the inclusive algorithm,

though less time consuming, usually produces a local

optimum solution. Therefore, taking advantage of infor-

mation in X0, the values of Q-bits can be initialized prop-

erly to represent the promising search space with small

distance to the global optimum solution. For this reason,

two special expressions of Q-bits are proposed in (6) and

(7). If there are L(1	 L	G) Q-bit individuals need to be

initialized in this way, the lth (l ¼ 1; 2; . . .; L) Q-bit indi-

vidual ql can be initialized by replacing the states ‘‘1’’ and

‘‘0’’ in X0 with the following Ql 1ð Þ and Ql 0ð Þ, respectively.

Ql 1ð Þ ¼
al 1ð Þ
bl 1ð Þ

" #

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5� 2dð Þ

L� 1
l� 1ð Þ þ d

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:5� 2dð Þ
L� 1

l� 1ð Þ � d

r

2

6664

3

7775

ð6Þ

Ql 0ð Þ ¼
al 0ð Þ
bl 0ð Þ

" #

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:5� 2dð Þ
L� 1

l� 1ð Þ � d

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5� 2dð Þ

L� 1
l� 1ð Þ þ d

r

2

6664

3

7775

ð7Þ

where d, 0\d
 1, is the minimum probability of state

1(or 0). Based on the definition of (6) and (7), Ql 1ð Þ is a

Q-bit whose probability for it to be ‘‘1’’ is larger than the

probability for it to be ‘‘0’’. The contrary is also true for

Q-bit Ql 0ð Þ. Therefore, when ql is observed, X0 has a

higher probability to appear. Besides, in order to make the

initial population of Q-bit individuals sufficiently diversi-

fied to enlarge the search area, the other Q-bit individuals

(G� L) are initialized in original way. Parameters d and L

have a direct impact on maintaining diversity of the initial

population. However, the ideal values of the two are dif-

ficult to determine; a rough but simple way is to set: d ¼
0:01 and L ¼ G=2.

4.2 Fitness function

A candidate solution group P tð Þ ¼ Xt
1;X

t
2; . . .;Xt

G

� 	
is

formed after all Q-bit individuals in Q tð Þ are observed. To

evaluate the quality of each solution Xt
j ¼ xt

j1; x
t
j2; . . .;

h

xt
jn�(j ¼ 1; 2; . . .;G), a new fitness function f ðXt

jÞ is proposed

in (8) according to (2). It is defined as the sum of two parts.

The first one, i.e., n� NTð Þ= mþ nþ 1ð Þ evaluates the rate

of test point reduction, and the second part, i.e. c �
max 0; 1� S= mþ 1ð Þð Þ is a penalty term.

f Xt
j

� 

¼ n� NT

mþ nþ 1
� c �max 0; 1� S

mþ 1

� �
ð8Þ

where, NT is the number of test points contained in Xt
j, S is

the number of isolated fault states, and c is the penalty factor.

If Xt
j is a feasible solution, i.e. S= mþ 1ð Þ ¼ 1, then the value

of f Xt
j

� 

is only determined by the first part. Otherwise, if Xt

j

is not a feasible solution, i.e. S= mþ 1ð Þ\1, then f Xt
j

� 

is

mainly determined by the second parts if c is large enough. In

this paper, c is assigned as mþ 1.

4.3 Update operation

The conventional rotation gate requires a pre-specified

lookup table to determine the rotation angle Dht
ji at gen-

eration t for updating the ith Q-bit of qt
j, where

i ¼ 1; 2; . . .; n, j ¼ 1; 2; . . .;G. One equivalent method for

determining rotation angle is given in (9).

Dht
ji ¼ ht � v� bi � xt

ji

� 
n o
ð9Þ

where ht is the magnitude of Dht
ji and the term in brace

determines the sign of Dht
ji. v is obtained by comparing the

fitness value of current solution Xt
j with the best solution B

as follows

v ¼
0 f ðXt

jÞ� f ðBÞ
signðat

jib
t
jiÞ otherwise

�
ð10Þ

where sign �ð Þ is the sign function. In general, ht is designed

in compliance with the application problem, and has an

effect on both the speed of convergence and the quality of

solution. If it is too big, the solutions may diverge or

converge prematurely to local optima. On the contrary, if it

is too small, the algorithm may converge slowly. Therefore,

the proper selection of ht is of great importance. Here, we

make ht decrease monotonously from hmax to hmin along

with iterations, but not a fixed value. It is presented as

follows:

ht ¼ hmin þ hmax � hminð Þ � T � t

T
ð11Þ

where T is the maximum iteration number. This approach

can more easily balance the global and local search ability,

i.e. with a larger value at the beginning for better
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exploration and a small value at the end for better

exploitation. The values of hmax and hmin are determined

experimentally. After determining the rotation angle, the

update operation is performed as below:

atþ1
ji

btþ1
ji

" #

¼
cos Dht

ji

� 

� sin Dht

ji

� 


sin Dht
ji

� 

cos Dht

ji

� 


2

4

3

5 at
ji

bt
ji

� �
ð12Þ

4.4 Procedure of QEA-ATPS algorithm

The procedure of QEA-ATPS algorithm is summarized as

shown in Fig. 1.

The time complexity of QEA-ATPS method is domi-

nated by the step of evaluating P tð Þ due to the fact that

m [ n is usually true. Based on the fitness function (8),

when evaluating each solution Xt
j (j ¼ 1; 2; . . .;G), we need

to check the number of fault states that can be isolated, i.e.

S. This can be transformed into a sorting problem and the

time complexity is O m log mð Þ by using some efficient

sorting algorithms such as quick sort and heap sort [3]. So

the total time complexity of QEA-ATPS method is

O TGm log mð Þ.

5 Experiments

5.1 Example on practical analog circuit

The experiment is implemented on an active filter circuit as

shown in Fig. 2. This is cited by many literatures [3, 4, 8–10]

as a benchmark circuit. A sinusoidal wave with amplitude of

4 V and frequency of 1 kHz is used as test stimulus. 19 CUT

fault states (f0 for nominal case and f1; f2. . .; f18 for potential

catastrophic faults), and 11 test points marked in Fig. 2 are

considered. The voltage values at all nodes for different

faulty conditions are obtained by Pspice. The integer-coded

dictionary is constructed by the method described in Sect. 2.1

and the result is presented in Table 4.

In the initialization step, the inclusive algorithm (the

algorithm 3 combined with inclusive strategy 3 in [3]) is

carried out and the resultant solution is X0 ¼ ½1; 0; 0;
1; 1; 0; 1; 1; 1; 0; 1�. Based on X0, the initial population is

initialized. After that, the QEA-ATPS algorithm is exe-

cuted with the following parameters: hmax ¼ 0:05p,

hmin ¼ 0:01p, G ¼ 20 and T ¼ 30. As a result, the solution

with the highest value of fitness has been found in the 3rd

generation, and the best solution is

Xopt ¼ 1; 0; 0; 0; 1; 0; 0; 0; 1; 0; 1½ �

So the optimum set of test points found by QEA-ATPS

is n1; n5; n9; n11f g, which is identical with the sets that were

obtained from the methods described in [3, 4, 8–10].

The performance of the proposed QEA-ATPS algorithm

is influenced by the parameters hmax and hmin. In general,

the value from 0:001p to 0:05p for the magnitude of

rotation angle is recommended, although it is designed

according to the specific application [11]. In order to find

the optimum combination of rotation angles (i.e., hmax and

hmin), we take hmax from 0:05p; 0:04p; 0:03pf g, hmin from

0:001p; 0:006p; 0:01pf g. Therefore, there are nine differ-

ent combinations of parameters needed to be considered.

For each one, 100 runs are conducted with following two

cases: case 1) G ¼ 20 and T ¼ 30; case 2) G ¼ 10 and

T ¼ 20, respectively.

For case 1, the QEA-ATPS algorithm achieves 100 % of

success and the average convergent iterations are listed

in the second row of Table 5. While for case 2, the

QEA-ATPS 

Assign the value of T and set the generation counter 0t = . 

Initialize a population of Q-bit individuals ( ) 1 2, ,...,t t t
Gt ⎡ ⎤= ⎣ ⎦Q q q q according to the proposed 

method in Sect. 4.1. 

While t T≤  

Make a candidate solution group ( ) 1 2, ,...,t t t
Gt ⎤= ⎦P X X X by observing each Q-bit individual 

in ( )tQ . 

Evaluate ( )tP using fitness function (8) and record the best solution B so far. 

Update ( )tQ by the update operation presented in Sect. 4.3. 

1t t← +  

End 

Fig. 1 Procedure of QEA-

ATPS algorithm
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percentages of success are given in the third row of

Table 5. Based on the Table 5, hmax and hmin are selected

as 0:05p and 0:01p, respectively.

To validate the efficiency of QEA-ATPS algorithm,

other three algorithms are compared including: QEA, GA

[9] and MDFDSPO [10]. Besides the above two cases, a

new case, named case 3) G ¼ 30 and T ¼ 50, is also

considered. The magnitude of rotation angle for QEA is set

as: h ¼ 0:01p. Other parameters of GA and MDFDPSO are

the same as that used in [9] and [10]. Similarly, under the

condition of each case, 100 independent runs are imple-

mented for each algorithm. The results of percentage of

success are listed in Table 6.

As indicated in Table 6, for case 3, all three algorithms

achieve 100 % of success, while for other two cases, as the

values of G and T decrease, the percentage of success is

accordingly reduced. Especially for case 2, all algorithms

can not make sure to find optimum solution, but compared

with other three algorithms, QEA-ATPS is more robust and

has a higher probability to find optimum solution. In order

to compare the convergent properties of the methods, we

taking case 3 as an example and give the comparison

results as shown in Table 7.

From Table 7, QEA-ATPS has a fast convergence

speed, with the average running time equal to 0.32 s, which

is less than MDFDPSO and only about half and fifth of

QEA and GA, respectively. The conclusion from Tables 6

and 7 is that QEA-ATPS outperforms GA, MDFDPSO and

QEA both in terms of solution accuracy and speed of

convergence.

5.2 Statistical experiments

In the former example, the proposed QEA-ATPS algorithm

has been demonstrated its better performance. However,

there is no theoretical proof can be given to demonstrate the

optimality (except for exhaustive search method) of our

method, so it must be tested statistically on a large number of

integer-coded dictionaries in order to check its efficiency

and accuracy. Here, statistical experiments are carried out on

100 integer-coded dictionaries randomly generated. Each

dictionary is created for a hypothetic CUT with 100 simu-

lated faults, 30 test points and 5 ambiguity sets for each test

point. Every randomly created dictionary has been browsed

exhaustively for all possible combinations of three (mini-

mum theoretical quantity necessary to achieve 100 % fault

isolation for the considered dictionaries), four, and five test

points. Only dictionaries that have global optimum at five

points have been added to the benchmark set.

For comparison, other four alternative approaches,

including GA [9], MDFDPSO [10], EI-based algorithm [4],

heuristic graph search [8], have also been examined on the
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6.56k
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10k
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10k

n10

0

n7

R12

1k

n11

R1

15k n4

Fig. 2 Example analog filter

Table 4 Integer-coded dictionary for the analog filter

Faults Test points

fi n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

f0(NOM) 3 2 2 3 3 3 4 4 1 1 1

f1(R1 open) 0 0 0 0 0 0 0 0 1 1 7

f2(R1 short) 3 2 2 3 4 3 4 4 1 1 0

f3(R2 open) 1 0 0 0 0 0 0 0 1 1 7

f4(R2 short) 2 3 3 4 6 5 6 6 1 1 2

f5(R3 open) 1 1 1 1 1 1 1 1 1 1 5

f6(R4 open) 0 0 0 2 3 2 3 3 1 1 8

f7(R5 open) 3 2 2 3 5 4 5 5 1 1 4

f8(R5 short) 3 2 2 3 0 0 0 0 1 1 7

f9(R6 open) 3 2 2 3 6 6 7 7 1 1 6

f10(R6 short) 3 2 2 3 2 0 0 0 1 1 7

f11(R7 open) 3 2 2 3 3 3 4 2 1 1 4

f12(R7 short) 3 2 2 3 3 2 0 8 5 1 8

f13(R8 open) 3 2 2 3 3 2 2 8 4 1 8

f14(R9 short) 3 2 2 3 3 3 4 4 1 1 0

f15(R9 open) 3 2 2 3 3 3 4 4 2 1 8

f16(R10 short) 3 2 2 3 3 3 4 4 3 1 8

f17(R11 open) 3 2 2 3 3 3 4 4 2 2 3

f18(R12 short) 3 2 2 3 3 3 4 4 0 0 1
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same benchmark set, respectively. In this experiment, the

parameters G and T for QEA-ATPS is set as: G ¼ 30 and

T ¼ 50. The obtained statistical results for the examined

approaches are presented in Tables 8 and 9.

As can be seen from Table 8 and 9, the proposed QEA-

ATPS algorithm, together with GA and MDFDPSO, can

always find the optimum solutions (effectiveness 100 %),

but the QEA-ATPS algorithm take the shortest average

running time (1.43 s) among them. For the last two greedy

algorithms, i.e., EI and Heuristic graph search, reach only

54 % and 30 % of global minimum sets, respectively,

although the time consumptions are radically lower than

that used for the first three methods. Therefore, through

statistic experiment, the proposed method also reveals its

very high effectiveness and accuracy and is demonstrated

to be superior to other methods.

6 Conclusions

The ATPS problem remains an important problem in fault

diagnosis of analog circuit, to the best of our knowledge,

but it hasn’t been formulated. The current paper just fills

this blank. In addition, an effective QEA-ATPS algorithm

for solving ATPS problem has been developed. The

attractiveness of this algorithm lies in two aspects: the

utilization of the solution produced by inclusive algorithm

to initialize population and dynamically adjustment the

magnitude of rotation angle. These two measures make the

algorithm more easily find the global minimum set in a

very short time. Experiments show that the solution gen-

erated by QEA-ATPS algorithm is more accurate than that

of EI and Heuristic graph search methods and that its

efficiency is higher than that of GA and MDFDPSO

methods. Therefore, it is a good solution to optimize analog

test point selection. Further enhancement of the method

will be concentrated on using a more accurate greedy

method to initialize population, for example EI [4].
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