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Abstract Software-defined radio (SDR) is a new tech-

nology transitioning from research into commercial mar-

kets. SDR moves hardware-dominant baseband processing

of multiple wireless communication protocols into soft-

ware on a single chip. New cellular standards, such as

HSPA?, LTE, and LTE?, require speeds in excess of

40 Mbps. SNOW 3G is a new stream cipher approved for

use in these cellular protocols. Running SNOW 3G in

software on our SDR platform provides a throughput of

19.1 Mbps per thread for confidentiality and 18.3 Mbps per

thread for integrity. To have secure cellular communica-

tions in SDR platforms for these new protocols, the per-

formance of security algorithms must be improved. This

paper presents instruction set architecture (ISA) extensions

and hardware designs for cellular confidentiality and

integrity algorithms using SNOW 3G. Our ISA extensions

and hardware designs are evaluated for the Sandbridge

Sandblaster
TM

3011 (SB3011) SDR platform. With our new

SNOW 3G instructions, the performance of confidentiality

and integrity improve by 70 and 2%, respectively. For

confidentiality, power consumption increased by 2%, while

energy decreased by 40%. For integrity, power consump-

tion remained consistent, while energy decreased by 2%.

Keywords Cryptography � Software-defined radio �
Computer architecture � SNOW 3G � Cellular security

1 Introduction

Software-defined radios (SDRs) employ a combination of

hardware and software to support multiple wireless com-

munication standards dynamically. These devices have

been widely recognized as one of the most important new

technologies for wireless communication systems [1].

SDRs enable the efficient implementation of a diverse set

of wireless communication systems using software, instead

of hardware blocks, for each protocol. SDRs also provide

the ability to change communication protocols and dynam-

ically update communication systems through over-the-air

software downloads [2].

Current cellular systems provide security by means of

cryptographic operations such as confidentiality (i.e.,

encryption and decryption) and integrity (i.e., message

authentication). These operations prevent eavesdropping on

the transmission and ensure that each data packet has arrived

without modification. As data rates over the air interface

increase, cryptographic performance becomes a bottleneck.

The 3rd Generation Partnership Project (3GPP
TM

) has defined

several algorithms for use in upcoming UMTS/SAE air-

interfaces. One such cipher is SNOW 3G [3]. It is used to

provide confidentiality and integrity. Future architectures

will need to enable cryptographic processing at very high

data rates. To expand, next-generation radio access networks

seek to provide over-the-air throughputs of up to 100 Mbps
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for mobile environments and 1 Gpbs in low-mobility envi-

ronments. On our test SDR platform, our reference software

implementation with SNOW 3G achieves 19.1 Mbps per

thread for confidentiality and 18.3 Mbps per thread for

message integrity. While both protocols use SNOW 3G, only

confidentiality will need to achieve faster data rates. Integrity

is only used for signaling messages and does not need sub-

stantial bandwidth.

This paper presents ISA extensions and hardware

designs for accelerating SNOW 3G confidentiality and

integrity algorithms on a multi-threaded SDR platform, the

Sandbridge Sandblaster
TM

3011 (SB3011). Our proposed

instructions and hardware for acceleration have the fol-

lowing important features:

(1) The ability to operate efficiently in a multi-threaded

processor micro-architecture.

(2) No hidden state is added to the programming model.

(3) Efficient use of the single-instruction/multiple-data

(SIMD) unit.

Due to the placement of our hardware inside a SIMD

unit, we believe our approach should also be useful in other

SDR architectures, which commonly feature SIMD units.

The primary contribution of this paper presents a pro-

grammable approach to accelerating SNOW 3G that uti-

lizes existing hardware features present in many SDR

platforms. In addition, this paper presents software profil-

ing to demonstrate the execution time breakdown of

algorithms that use SNOW 3G with and without software

optimizations. Furthermore, we determine which portions

of the SNOW 3G algorithm to accelerate. Power and

energy of the different software versions are also analyzed,

and trade-offs from using new instructions and hardware

versus conventional software are presented.

This paper extends our previous research [4] by

enhancing the methodology and analysis of performance,

power, and energy profiling and examining implementation

trade-offs in greater detail. This paper presents profiling

with and without software optimizations and discusses how

these optimizations affect power and energy consumption.

Similar profiling is performed after adding the proposed

ISA extensions. Furthermore, the paper proposes a substi-

tution box structure that differs from a standard lookup

table.

In the rest of this paper, Sect. 2 describes the SNOW 3G

algorithm and its use for confidentiality and message

integrity. Section 3 discusses related work. Section 4

details our platform architecture, simulation environment,

and testing methodology. Section 5 and 6 presents SNOW

3G software performance, power, and energy profiling

results. Section 7 presents our proposed functional units

and ISA extensions for accelerating SNOW 3G. Section 7

demonstrates the performance improvements, energy

benefits, and design characteristics of our solution. Sec-

tion 8 presents conclusions.

2 Background

2.1 Snow 3G Cipher

SNOW 3G is a stream cipher approved for use in cellular

networks to provide both confidentiality and integrity [5]. It

uses a 128-bit initialization vector (IV) and 128-bit seed key.

Two components make up the cipher: a finite state machine

(FSM) and a linear feedback shift register (LFSR), as shown

in Fig. 1. The FSM contains three 32-bit registers, R1, R2,

and R3, plus two substitution boxes (or S-boxes), S1 and S2.

Each S-box maps one 32-bit value to another 32-bit value.

The LFSR contains sixteen 32-bit registers, numbered S0

through S15, with taps at registers S0, S2, and S11. The tap

values are combined using bitwise XOR operations to pro-

duce a new value, v that is loaded into S15. Before the bitwise

XOR operations, S0 is processed by the function MULa and

S11 is processed by DIVa. These functions are denoted a and

a-1 in Figs. 1 and 2.

The cipher has two modes of operations: initialization

(Fig. 1) and keystream (Fig. 2). As the name implies, ini-

tialization mode occurs before keystream mode. During

initialization mode, the FSM registers are initialized to

zero. The registers of the LFSR are initialized based on the

IV and key, as described by the standard. Figure 1 illus-

trates how the cipher runs in initialization mode, during

which the LFSR and FSM are clocked 32 times. For each

clock, the output of the FSM is a 32-bit word, F, which is
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S2
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XOR
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XOR
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Fig. 1 SNOW 3G in initialization mode [3]
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an input to the LFSR. Next, the cipher enters keystream

mode, as shown in

In this mode, the FSM still produces F, but F is used to

generate a 32-bit keystream word, Z. The LFSR then shifts

and loads the value, v, into register S15. The process

repeats until enough data bits are generated for the confi-

dentiality or integrity algorithm.

2.2 Confidentiality and integrity algorithms

While SNOW 3G is the underlying cipher for both the

confidentiality and integrity algorithms, the actual algo-

rithms have data processing outside of the main cipher.

Signaling and user data undergo confidentiality while only

signaling data undergo integrity processing [6, 7]. For both

integrity and confidentiality, the IV and keys have a life-

time of usage. For 3G wireless protocols, the same IV and

key may be used to process up to 20,000 bits. After 20,000

bits, a new IV and key must be generated [8]. The confi-

dentiality algorithm, called UEA2 or EEA1,1 uses SNOW

3G to generate a keystream. For encryption, the keystream

is XORed with the plaintext (data to be encrypted) to

produce the ciphertext (encrypted data). For decryption, the

ciphertext is XORed with the keystream to produce the

original plaintext. This implies that both the sender and

receiver produce identical keystreams. The number of key

bits generated matches the length of the data.

The integrity algorithm, called UIA2 or EIA1,2 uses the

SNOW 3G cipher in a different manner. It runs the cipher

to produce five 32-bit words (z1, z2, z3, z4, z5). It pairs the

first four words into two 64-bit data values, called P (z1,

z2) and Q (z3, z4), as shown in Fig. 2. The algorithm breaks

the message into 64-bit data blocks and zero pads the last

64-bit block if the entire message is not a multiple of 64

bits. An additional 64-bit block, which contains the length,

D, of the message, is appended to the end of the message.

To perform the integrity algorithm, D-1 blocks of the

message are multiplied by the binary polynomial P inside

the function EVAL_M. The multiplication is performed

over a Galois field of 64 bits, GF (264). D is XORed with

the running data value and the result is multiplied by

Q inside the function MUL, which is a single 64-bit Galois

field multiply. The upper (left-most) 32 bits of the result

are XORed with OTP (z5, the last 32-bit word). The upper

(left-most) 32 bits of the resulting value are used as the

message authentication code (MAC) for the message. The

lower (right-most) 32 bits are discarded.

3 Related work

Related work on SNOW 3G has been performed in two

major areas: commercial designs and ASIC-based research.

Elliptic Technologies
TM

Inc. [9], provides an ASIC core that

implements the SNOW 3G cipher and many other popular

cryptographic algorithms. Another organization, IP Cores,

Inc. [10], provides ASIC implementations as well as HDL

source code versions for SNOW 3G and the algorithms that

use it.
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Fig. 2 SNOW 3G in keystream mode [3] and flow of the integrity algorithm

1 UEA2 = Universal Mobile Telecommunications System (UMTS)

Encryption Algorithm 2. EEA1 = Evolved Packet System Encryption

Algorithm 1.

2 UIA2 = UMTS Integrity Algorithm 2. EIA1 = Evolved Packet

System Integrity Algorithm 1.
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Work has been performed by the research community

for SNOW 3G. Orhanou et al. [11] performed a complexity

study of the SNOW 3G cipher. They analyzed time com-

plexity and space complexity of SNOW 3G and the

underlying functions. Kitsos et al. [12] analyzed and

implemented the SNOW 3G cipher using a standard cell

design flow. They focused on optimizing tables and adders

in the critical path of the design, and provided a compar-

ison with other implementations and other ciphers. Hessel

et al. [13] analyzed various aspects of SNOW 3G and AES;

both are used in LTE. They determined how the system

changes with respect to data rate. They proposed and

investigated different methods of encoding the S-boxes.

Further work reduced the memory footprint of S-boxes and

improved threading support for the core cipher [14]. Other

work has looked into using smaller Galois field multipliers

[4].

4 Methodology

4.1 Sandbridge SB3011

Our in-house simulation environment simulates the

SB3011 SDR Platform. The platform contains four Sand-

blaster
TM

DSP cores, an ARM
TM

processor, and input and

output peripherals found on many wireless handheld

devices. Each Sandblaster
TM

core has eight hardware

threads and uses a form of interleaved multi-threading

(IMT) known as token-triggered threading (T3) [2].

Each core is partitioned into three main units: an

instruction fetch and branch unit, an integer and load/store

unit, and a SIMD vector-processing unit (VPU), as shown

in Fig. 3. The VPU consists of four vector processing

elements (VPEs), a shuffle unit, a reduction unit, and an

accumulator register file, as shown in Fig. 4. It executes

logic and arithmetic operations on 16-, 32-, and 40-bit

fixed-point data types concurrently in each VPE. The VPU

loads either 128 or 64 bits depending on the data type. The

VPU requires two load instructions to load 32-bit data into

each VPE, while 16-bit data requires one load instruction.

The instruction format allows for up to three source oper-

ands and one destination operand per VPU instruction.

4.2 Simulation environment and algorithm

implementation

Our toolchain infrastructure provides a full-system, cycle-

accurate simulator and allows us to analyze the current ISA

and add custom-defined ISA-supported instructions that are

implemented as intrinsics [15]. These instructions are

mapped to user-defined functions inside the simulator.

Each user-defined instruction takes one thread cycle, which

is the same amount of time as each native instruction.

We use the C code provided in the SNOW 3G standard,

but change recursive code to loop-based code. This helps

saves stack space and provides the ability to use zero-

overhead loop counters and various compiler optimization

techniques to improve performance. We also modified

encryption code to XOR 32-bit words instead of bytes to

improve performance. Some functions of the standard C

library are not supported in the Sandblaster
TM

DSP simu-

lator. Slight modifications were done for integrity to

remove the dependency on the library for a particular

function. All other code was left intact and is what we call

the ‘‘baseline’’ in the rest of the paper.

4.3 Performance analysis and power/energy modeling

To determine where to accelerate the SNOW 3G cipher, we

profiled the SNOW 3G reference implementation [3, 16]

code using the Sandblaster
TM

toolchain and full-system,

cycle-accurate simulator [15]. For both the confidentiality

and integrity algorithms, we started with the baseline code

from the standard with the modifications described in Sect.

4.2. We used the test vectors from the standard to ensure

correctness when making any code modifications. Next, we

identified which parts of each algorithm consume a sig-

nificant percentage of the execution time. SNOW 3G has

some potential software optimizations to improve perfor-

mance. As with the baseline case, we looked at how each

optimization affected performance, power, and energy. We

analyzed the potential benefit from these optimizations

prior to looking at hardware acceleration.

To estimate power and energy of running the algorithm,

we executed the Sandblaster
TM

instructions without our new

SNOW 3G instructions on a fabricated SB3011 processor

chip. During execution, we measured the actual power

consumption using volt and amp meters. From these

measurements, we determined that instructions within a

particular instruction class (e.g., integer arithmetic, vector

arithmetic, wide vector arithmetic, control, load/store, etc.)

have roughly the same power dissipation, and individual

functional units consume a small amount of power com-

pared to other portions of the processor such as the clock

tree, multi-threaded register file, instruction cache, and data

memory. Our observations agreed with previous studies of

real power dissipation in embedded processors [17].

From the observations, we calculated the average power

dissipation for a program by multiplying the percentage of

instructions in each instruction class by the corresponding

average power for that instruction class. With this

approach, we were able to estimate the power consumption

with an average error of less than 8%. To find energy, we

multiplied the average power by the processing time. For

210 Analog Integr Circ Sig Process (2011) 69:207–218
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custom SNOW 3G instructions, we had to use a different

approach. Since our custom SNOW 3G instructions are not

present in a real processor, we assumed our SNOW 3G

instructions consume power equal to the wide vector

arithmetic instruction class, which corresponds to the class

with the highest power consumption.

5 UEA2 performance profile

5.1 Baseline

Within the SNOW 3G algorithm, ten 1-KB tables may be

utilized to accelerate different operations of the SNOW 3G

cipher. The MUL and DIV tables implement the MULa and

DIVa functionality in the LFSR. Four tables implement the

S1 S-box; another four tables implement the S2 S-box.

Figure 5 shows the speed-up gained from using tables

stored in level-1 (L1) data memory for the different func-

tions. Each bar represents adding a table only for the

specified function(s). Using all the tables provides a total

speed-up of 269 as compared to the version without any

tables. This comes with a cost of 10 KB of static data in L1

memory.

Other potential optimizations that are not mentioned in

the standard are feasible. We employ two methods, using

an array of 32-bit integers to implement the LFSR as

opposed to the code from the standard, which uses sixteen

independent 32-bit integers to implement the LFSR. Both

methods use all the aforementioned software tables. The

first method uses pointers to access the particular registers

during computation. Typical pointer bounds checking

occurs after an increment (listed as LFSR ? MOD in

Fig. 5). The second method involves using vector loads and
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8-Banks
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64B Lines
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stores to move the data (LFSR ? ARRAY in Fig. 5). Our

simulation results show that pointer arithmetic actually

performs slower than the baseline implementation. How-

ever, the version that utilizes vector loads and stores is

faster than the baseline implementation. Vector loads read

64 bits of data versus an integer load of 32 bits. With

sixteen 32-bit registers, there are eight vector loads and

eight vector stores, instead of sixteen integer loads and

sixteen integer stores. Even with all the tables present, plus

the LFSR optimization (an approximate 349 total speed-up

over the original code), the architecture only achieves a

throughput of 16.9 Mbps per thread for confidentiality. The

last software optimization applied to the code is function

inlining. All other software optimizations are present as

well. The result is listed as ‘All Opts’ in Fig. 5 and reaches

19.1 Mbps.

Table 1 shows that with our software optimizations

applied, the FSM consumes more processing time than the

LFSR. Hence, as we design hardware for SNOW 3G, pri-

ority goes to hardware that accelerates the FSM. Further-

more, since the FSM consumes a little more than half the

processing time (56.89%), it is advantageous to include

hardware for the LFSR also. Table 2 shows the breakdown

of the FSM and LFSR functions.

5.2 Power/energy profile

We have a power profile for the Sandblaster
TM

instructions

on the SB3011. Using the same configuration for deter-

mining speed-up, we analyzed the power and energy con-

sumption. Since a majority of the processor power comes

from the clock tree, register files, control logic, and L1/L2

memories, the different software implementations do not

change power draw by a large amount. Since memory

instruction access the L1 memory sub-system, the power

draw increases with an increase in the number of tables

utilized. This can be seen in Table 3. Having all tables

present in L1 memory increases the power consumption by

5%. Performing all the software optimizations adds 7% to

the baseline power draw. While there is an increase in

power for the software optimizations, utilizing these opti-

mizations saves energy due to the much shorter execution

time (energy = power 9 time), as shown in Table 3. With

all tables present, the energy consumption drops by 96%

compared to the baseline configuration. With our optimi-

zations, a 97% reduction in energy is obtained. However,

the data rates achieved by the optimizations still fall below

by the performance needed for next-generation data rates.

6 UIA2 performance profile

The other algorithm that uses the SNOW 3G cipher is the

integrity algorithm. As with confidentiality, we profile the

baseline implementation. Table 4 shows the processing

time profile for the confidentiality algorithm. The second

column, going left to right, depicts the relative processing

time for the baseline implementation. The third column

depicts the relative processing time after adding the soft-

ware optimizations to the SNOW 3G cipher. The fourth

and fifth columns are described next.

Fig. 5 UEA2 speed-ups due to using tables and other software

optimizations

Table 1 Processing time profile with all software optimizations

Function Percent of total

processing time

Initialize 20.60

FSM 11.16

LFSR 8.41

Other processing 1.02

GenerateKeyStream 77.18

FSM 42.56

LFSR 30.84

Other processing 3.77

Table 2 FSM and LFSR keystream profiles

Function Percent of total

processing time

FSM 42.56

S1 15.57

S2 15.57

Other processing in FSM 17.89

LFSR 30.84

MULa 3.89

DIVa 3.89

Other processing in LFSR 24.67
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6.1 Integrity specific software optimizations

As shown in Table 4, the EVAL_M function, which per-

forms 64-bit Galois field multiplication over GF (264),

consumes a significant percentage of the overall processing

time. There are software optimizations to speed up the

calculation of the 64-bit Galois field multiply. Eight tables

of 2 KB each are used to perform a single 64-bit Galois

field multiply. These tables are listed in the standard, and

the relative processing time for each function using these

eight tables and the other SNOW 3G software optimiza-

tions is represented in the fourth column of Table 4. The

last column represents using all of these optimizations plus

function inlining for SNOW 3G. There is also some

function inlining specific to integrity. Figure 6 shows the

throughput achieved as we add the SNOW3G tables and

the Galois field multiplication tables. Implementing these

tables takes 26 KB of static data in the L1 memory. With

these optimizations, the integrity algorithm reaches a

throughput of 18.3 Mbps. Integrity is primarily used for

signaling and does not need large bandwidth. Therefore,

we do not consider integrity acceleration hardware. How-

ever, we still provide power and energy numbers for

completeness.

6.2 Power/energy profile

Similar to confidentiality, we use the ISA power profile of

the Sandblaster
TM

DSP to determine power and energy

usage for each of the optimizations. We see from Table 5

that power increases by 3% with a corresponding energy

saving of 99%, when using software tables for optimiza-

tions as compared to the baseline (no tables).

7 Proposed instructions and results

7.1 New instructions

As mentioned previously, our simulation infrastructure

allows for custom instructions supported at the ISA level

using intrinsics functions in the C code. We add new code

to simulate the SNOW 3G functional units inside the VPU

and use the new instructions to access this code. These

instructions take up to three source operands and a single

destination operand. From the previous analysis, we

Table 3 UEA2 power and energy relative to baseline due to using tables and other software optimizations

None S1 and S2 MUL DIV MUL and DIV All Tables LFSR ? MOD LFSR ? ARRAY All Opts

Power 1.00 1.00 1.01 1.00 1.03 1.05 1.04 1.06 1.07

Energy 1.00 0.98 0.25 0.82 0.07 0.04 0.05 0.03 0.03

Table 4 UIA2 relative

processing time with various

optimizations

Function Percent of total processing time

Baseline With all SNOW

3G SW

optimizations

With SNOW

3G and MUL

tables

With

function

inlining

EVAL_M 97.97 99.86 41.53 29.36

MULP – – 16.62 20.56

Pre_mul_p – – 31.87 39.43

Initialize 1.65 0.06 4.88 4.61

GenerateKeystream 0.31 0.01 0.91 0.86

Other processing 0.06 0.06 2.95 3.61

Fig. 6 UIA2 single-thread throughput due to using tables and other

software optimizations
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accelerate both the LFSR and FSM of the SNOW 3G

cipher. For the FSM to move forward, new values of R1,

R2, and R3 need to be produced. For the LSFR to move

forward, a new v value must be produced and the entire

array of integers should be shifted to the right.

We propose the following instructions to accelerate the

SNOW 3G cipher:

• snow3g_fsm (VRD, VRS1, VRS2, VRS3). This instruc-

tion reads two 32-bit values from the first pair of VPE

registers, specified by VRS1, and two 32-bit values

from the second pair of VPE registers, specified by

VRS2 and VRS3. It passes the values from VRS1 to the

corresponding S1 and S2 transforms, shown in Figs. 1

and 2. It stores the resulting value in the appropriate

registers specified by VRD in the first pair of VPEs.

The second set of VPEs uses the values in VR2 and

VR3 to implement the part of the FSM that generates a

new F value and r value as F = (S15 ? R1) � R2 and

r = (R3 � S5) ? R2. The resulting F and r values are

stored in the appropriate registers specified by VRD in

the second pair of VPEs.

• snow3g_shuffle (VRD, VRS). This instruction rear-

ranges the 32-bit values in VRS and stores the result

in VRD. The effective result is rotating a 128-bit

register to the right by 32-bits.

• snow3g_v (VRD, VRS1, VRS2, VRS33). This instruction

produces the value v = a-1(S11) � S2 � a(S0) during

initialization mode and v = a-1(S11) � S2 � a(S0 �)

F during keystream mode, as shown in Figs. 1 and 2. It

takes the source registers specified by VRS1 and VRS2

and extracts the appropriate values to compute v. When

the instruction uses three operands, the last register of

VRS3 in the second pair of VPEs is also used. The

instruction utilizes the MULa and DIVa tables. The

results from the table lookups and S2 are combined to

produce v, which is written to the first register of the

first set of VPEs specified by VRD.

7.2 Performance

To determine the performance improvement, we analyzed

the added benefit of the new instructions using the fully

optimized SNOW3G with function inlining as the baseline.

This is different from the baseline software implementation

described in the previous sections. As with software, we

perform a comparison between the different acceleration

methods. Our test set corresponds to the highest data set

specified in the standard [16]. This equates to 3,861 bits for

confidentiality and 16,448 bits for integrity. We compare

the ISA extensions in the SNOW 3G cipher as well as the

Galois field multiplier extensions. Figure 7 shows the

performance gains from adding the ISA extensions.

The FSM extensions provide a greater benefit to the core

cipher than the LFSR extensions. The SNOW 3G ISA

extensions provide around a 70% improvement in the

UEA2 algorithm. Since a majority of the processing time in

the UIA2 algorithm is spent performing Galois field mul-

tiplication, the SNOW 3G extensions do not show much

improvement. With the 64-bit Galois field multiplier, we

see a large improvement of 455% in the performance of the

UIA2 algorithm.

The code size for core SNOW 3G functions are listed in

Table 6. We see that with the FSM, the extensions reduce

the code size by more than 66%. However, the LFSR

extensions do not provide the same benefit. The LFSR

function consists of address-offset calculations, memory

loads, generating v, and shifting the LFSR. Even though the

LFSR extension greatly speed up generation of v, a good

percentage of the original memory loads are needed to load

the data needed to generate v. Likewise, the shifting of the

LFSR remains the same with and without ISA extensions.

Hence, the movement of data becomes the bottleneck.

Table 5 UIA2 power and

energy relative to baseline due

to using tables and other

software optimizations

No tables SNOW 3G tables MUL64 tables SNOW 3G Opts ? MUL 64

UIA2 power 1.00 1.00 1.03 1.03

UIA2 energy 1.00 0.98 0.01 0.01

Fig. 7 Throughput with SNOW3G ISA extensions3 VRS3 is optional.
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7.3 Power and energy

One key aspect of adding ISA extensions stems from the

energy saving of performing a task much more quickly at

the cost of potentially increasing power. Table 7 illustrates

how power and energy change when adding the ISA

extensions for the UEA2 and UIA2 algorithms. Similar to

the performance table, the LFSR extensions do not provide

substantial energy saving. Fortunately, there is not major

change in power either. The majority of the energy saving

comes from the FSM extension, with a 2% increase in

power. The UIA2 algorithm benefits the most by adding the

64-bit Galois field multiplier. The net result increases

power by 3%, but pays off by reducing energy consump-

tion by 83%.

7.4 Implementation

Our proposed implementation is designed to re-use existing

hardware. While ASIC solutions exist [9, 10, 12], a pro-

grammable solution potentially has less additional area

because bus interface logic, FIFOs, and extra registers,

which are present with an ASIC, are not needed with ISA

extensions. In the Sandblaster
TM

DSP, there are two loca-

tions considered for implementing the new functional

units: the integer unit and the SIMD VPU. While both are

viable alternatives, we believe the VPU is a better choice.

First, the VPU has greater load/store bandwidth than the

integer unit—64 bits versus 32 bits. Second, the VPU can

access more data for a given instruction—480 bits versus

64 bits. Third, the VPU can hold more state than the integer

unit—1,280 bits per thread versus 256 bits per thread.

An important aspect of our approach is our use of the

SIMD VPU to implement our proposed SNOW3G and

GFM64 instructions. Many SDR architectures employ

multiple SIMD processing engines and/or pipelines with

16-bit or 32-bit data types [18–24]. We believe our

design has the potential to be used in those architectures.

While other computing platforms (e.g., IBM Cell
TM

, x86,

SPARC
TM

, MIPS
TM

, and ARM
TM

) are not geared specifically

for SDR, they use SIMD units and have the potential to use

our design. We also utilize the SIMD storage and memory

bandwidth with our approach. However, the functional

processing we employ has the SIMD unit perform non-

uniform data processing. Since cryptography does not

make good use of traditional SIMD processing, we add

units that can operate in parallel, but do not follow a pure

SIMD processing paradigm. For the SB3011 processor, we

add the proposed functional units illustrated in Fig. 8.

7.5 Description of functional units

As seen in Fig. 8, the different functional units are spread

throughout the VPU. The MULa and DIVa tables imple-

ment the MULa and DIVa functionality. They use an 8-bit

index and produce a 32-bit output. The XOR-adder gates

correspond to the XOR-add operation specified in the

standard. The XOR and adder are both 32 bits in length.

Consideration was given to the implementation of the S1

and S2 S-boxes. A previous publication implemented the

S1 and S2 S-boxes as eight separate 1-KB tables [12].

Table 6 Code size of core

SNOW 3G functions
Function Baseline (bytes) ISA Extensions(bytes) Reduction (%)

ClockLFSRInitializationMode 280 272 2.9

ClockLFSRKeyStreamMode 264 232 12.1

ClockFSM 448 152 66.1

Table 7 ISA extensions’ power

and energy relative to baseline
Baseline FSM ISA Exts LFSR ISA Exts Both Exts

UEA2 power 1.00 1.02 1.00 1.02

UEA2 energy 1.00 0.64 0.96 0.60

UIA2 power 1.00 1.00 1.00 1.00

UIA2 energy 1.00 0.98 1.00 0.98

Fig. 8 Functional unit placement in the SandBlaster
TM

VPU
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While this method works, we chose another method to

implement the S-boxes using base tables. For S1, the base

table corresponds to the AES S-box. For S2, the base table

corresponds to SQ, which is an S-box defined by the SNOW

3G standard. Logic around each base table expands the

8-bit output of the base table to a 32-bit output. Using this

new method reduces the table lookup size from 8 to 2 KB.

A comparison between our method for implementing S1

Table 8 Comparison between

S-box implementations (65-nm

TSMC CMOS library, 600 MHz

target frequency)

Type Area (lm2) Area ratio Latency (ns) Latency ratio

S1 [12] 7,860 1 0.96 1

S1 (this paper) 4,161 0.53 0.94 0.98

S2 [12] 8,024 1 1.00 1

S2 (this paper) 4,068 0.51 1.00 1

Table 9 Design characteristics

(65-nm TSMC CMOS library,

600 MHz target frequency)

VMAC vector multiply

accumulate unit which is

present in the Sandblaster
TM

DSP

Unit Delay (ns) Area (lm2) Power (lW)

S1 0.93 4,161 372.5

S2 1.00 4,068 373.9

Addition-XOR 1.58 453 75.2

MULa 0.40 126 18.5

DIVa 0.33 123 17.0

SNOW 3G total 1.58 9,384 932.3

SB3011 VMAC 1.65 6,864 1,543.1
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and S2 and the method presented in [12] is shown in

Table 8. The latency does not change much using our

approach, but the area is reduced about 50% for both the S1

and S2 S-boxes (Table 9).

Figure 9(a) and (b) illustrate the design of the two

S-boxes. A byte-level multiplier (BLM) shifts the input left

by one bit and reduces the shifted value to the underlying

finite field (using 0x1B for S1 and 0x69 for S2). The output

of the S-box transformation and BLM are fed into XOR

gates. The results of the transformations are arranged in a

pre-defined order according to the standard, as illustrated in

Fig. 9(c) and (d). Four of these units implement the S1

S-box and four implement the S2 S-box.

8 Conclusion

This paper presented an in-depth look at profiling the

SNOW 3G algorithm and its use for confidentiality and

integrity algorithms in cellular networks. We profiled the

core algorithm with and without software optimizations to

determine bottlenecks. We proposed ISA extensions to

address performance gaps and examined the resulting

impact on both power and energy. Furthermore, we intro-

duced a new design to reduce the area of standard imple-

mentations of S-boxes. The SNOW 3G ISA extensions

improve performance by a factor of 1.7 and 1.0 for the

UEA2 and UIA2 algorithms, respectively. Power increases

by 2% and 0% with corresponding energy savings of 2%

and 40% for the UEA2 and UIA2 algorithms, respectively.

Further performance improvements can be obtained by

implementing an LFSR shift operation.
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