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Abstract In this paper, a digital processor is presented

for full calibration of pipeline ADCs. The main idea is to

find an inverse model of ADC errors by using small

number of the measured codes. This approach does not

change internal parts of the ADC and most known errors

are compensated simultaneously by digital post-processing

of the output bits. Some function approximation algorithms

are tested and their performances are evaluated. To verify

the algorithms, a 12-bit pipelined ADC based on 1.5-bit per

stage architecture is simulated with 1%-2% non-ideal fac-

tors in the SIMULINK with a 20 MHz sinusoidal input and

a 100 MS/s sampling frequency. The selected algorithm

has been implemented on a Virtex-4 LX25 FPGA from

Xilinx. The designed processor improves the SNDR from

45 to 69 dB and increases the SFDR from 45.5 to 90 dB.

The calibration processor also improves the integral non-

linearity of the ADC.

Keywords Pipelined ADC � Digital calibration

processor � Function approximation � Inverse model

1 Introduction

ADCs are essential parts in systems in which signal pro-

cessing is performed. Pipeline ADCs offer attractive

combination of speed, resolution and power consumption.

These properties make them the most powerful and effi-

cient data converters for applications such as wireless

communication, image recognition and medical instru-

mentation. Monolithic, high-resolution pipeline ADCs are

difficult to obtain due to imperfections in analog compo-

nents. Designing high performance analog circuits and

component matching become increasingly difficult as

CMOS technologies are scaled to smaller geometries.

Without using some form of calibration, these limitations

make it difficult to implement a conventional pipeline ADC

with an effective number of bits greater than 10 in the present

VLSI technologies [1]. Different calibration techniques have

been proposed to improve overall performance of an ADC.

Calibration techniques can be of digital nature [2–5], analog

nature [6], or mixed (analog and digital) nature [7]. These

techniques are categorized into one of the followings:

(I) Calibrations performed in factory: These methods,

such as capacitor trimming, are one-time events and

re-calibration is not possible.

(II) Foreground calibrations: These techniques [8] inter-

rupt the routine work of the ADC to perform

calibration. One of advantages of the foreground

calibration is possibility of re-calibration.

(III) Background calibrations: In some applications,

interruption of the ADC to perform calibration is

not desirable and hence on-line calibration has been

proposed [2, 3]. It can track environmental changes

such as temperature drifts, component aging and

supply voltage fluctuations.
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As technology moves to nano-scale, large leakage

currents, small intrinsic gain of transistors and limited

signal swings impose stringent challenges for analog

calibration. In contrast with analog domain, digital cir-

cuits become smaller, faster and consume less power in

submicron CMOS technologies. Therefore in recent years

many types of digital calibration schemes have been

proposed. Many of these calibration techniques com-

pensate only some specific errors [2–5] and the need for

calibration processor that addresses all errors still

remains.

This paper describes a novel technique based on post-

processing of the output bits of an ADC. The basic idea is

to force some small number of pre-defined inputs to the

ADC and obtain corresponding outputs. In fact, pre-defined

inputs are digitized by the ADC and influenced by com-

ponent errors consequently. This data set is used to find a

suitable correction function that acts as an inverse model of

ADC errors. Since each input sample can be applied to the

ADC at scheduled intervals, this approach does not need to

disturb the converter routine work. A function approxi-

mation algorithm can estimate the model during normal

conversion routine. The extracted model is updated in

background frequently to track parameter variations due to

environmental influences.

This paper organized as follows. The proposed proces-

sor architecture is introduced in Sect. 2. Section 3

describes the hardware implementation details. Simulation

and implementation results are presented in Sect. 4, and the

conclusions are discussed in Sect. 5.

2 The proposed processor architecture

2.1 Architecture overview

Block diagram of a pipeline ADC with proposed calibration

processor is illustrated in Fig. 1. In the ADC, twelve bits of

resolution is obtained through ten stages each having 1.5-bit/

stage and a 2-bit last stage. The processor is shown inside the

dashed box and consists of two RAMs, a function approxi-

mation unit and a digital DEMUX. The first five stages are

calibrated because system level simulation result shows that

the converter error is dominated by the first stages and no

calibration is necessary for the least significant stages.

The calibration procedure starts by feeding some pre-

defined inputs to the ADC. These inputs are stored in the

first RAM in form of digital codes. As shown in Fig. 1, the

desired data (digital codes) are converted to analog domain

by an external DAC and then passed through the ADC

stages. The DAC is only used when pre-defined inputs are

feeding to the ADC. These inputs are affected by compo-

nent errors. The resulting digital outputs (actual data) are

stored in the second RAM in the same order. Using this

method, a set of inputs and a set of corresponding outputs

are obtained. These two sets are then fed to the function

approximation unit. It is worth to mention that in an ideal

condition in which the ADC has no errors, we expect that

an actual data set is equal to a desired data set. In this case,

the function is an identity function. But in real situation,

the actual data set are not similar to the desired data set

since component errors disturb the ADC ideal function. In
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such cases, the extraction of an error model is essential.

The main idea of the proposed technique is that the error

model extraction is realized by using small number of the

measured codes. It is remarkable that the extracted model

is not constant and updated frequently to track parameter

variations. In fact, the data stored in the first RAM are fed

to the ADC at scheduled intervals and the data of the

second RAM will change due to variations in the ADC

parameters.

2.2 Function approximation algorithm

As mentioned before, two sets of codes in form of (x, F(x))

are stored in the two different RAMs for function

approximation. Several techniques can be applied to

approximate a function. Since the ADC has a nonlinear

error model, a function approximation algorithm should be

able to model relatively complex nonlinear function as an

inverse model. In this work, a neural network and an

interpolation scheme are tested for function approximation.

The best approach in terms of performance has been used

for hardware implementation.

2.2.1 Neural network

Neural networks have been used for ADC calibration in

[9, 10]. In [9], a self-calibrating ADC employing a T-Model

neural network is described. Errors of the converter are

corrected by a simple error back propagation algorithm. The

technique described in [10] can be considered as an

improvement of the phase plane compensation technique. In

fact, the error compensation tables represent ADC error

partial discrete models, one for each signal dynamic.

In our work, the neural network has been used as a

function approximation unit. The network inputs are the

converter outputs and the network outputs are the cali-

brated output. The RBF (Radial Basis Function) [11] and

the FFNN (Feed Forward Neural Network) [12] architec-

tures have been used for network set up. After set up net-

works, the data stored in RAMs are used for training.

The simulation result shows that for calibration of a

pipeline ADC, a FF network gives better result than a RBF

network. The common algorithm for training of a FF net-

work, gradient descent, is often too slow. Newton’s method

is one of the algorithms that can converge fast [13]. The

basic step of Newton’s method is:

xkþ1 ¼ xk � A�1
k gk ð1Þ

where Ak
-1 is the Hessian matrix (the second derivatives) of

the performance index at the current values of the weights

and biases. Unfortunately, it is complex and expensive to

compute a Hessian matrix. Quasi-Newton (or secant)

methods are a class of algorithms based on Newton’s

method which does not require calculation of the second

derivatives [14]. The Levenberg–Marquardt algorithm is

one of these methods to approach the second-order training

speed without necessity to compute the Hessian matrix

[12, 15]. This algorithm uses the below approximation to a

Hessian matrix in the following Newton-like update:

xkþ1 ¼ xk � JT J þ l:I
� ��1

JT e ð2Þ

where J is a Jacobian matrix that contains the first deriv-

atives of the network errors with respect to the weights and

biases, l is the step parameter, and e is a vector of network

errors. The simulation result shows that using this algo-

rithm, the network converges within 10–20 iterations.

As explained in [1], the effects of decision boundaries

imperfection cause several gaps in the converter transfer

function. In this case, in the vicinity of certain input levels,

major change occurs in the converter output. If the pro-

posed method can eliminate these errors, the performance

of overall calibration system will improve. Simulation

results show that by use of a neural network with one

hidden layer, the effect of these errors remains and cannot

be removed completely. Although the performance of

calibration system using two hidden layers neural network

is improved, the computational complexity is also

increased. In addition to above problem, another difficulty

in using a neural network for ADC calibration is the lack of

fast versatility with new data. As previously mentioned, the

approximated function in the proposed system should be

updated continuously to adapt to the new conditions. In a

neural network, any change in the conditions, the training

algorithm should run again on the entire training data. This

feature increases power consumption and calibration time.

2.2.2 Interpolation

Interpolation is a method of constructing new data points

within the range of a discrete set of known ones. There are

different interpolation methods. In the proposed processor,

we need a nonlinear complicated function. In such cases, a

more flexible way is to divide the entire interval into a

number of subintervals and to look for a piecewise

approximation by polynomials of low degree. In this work,

the Spline [16] and the Cubic Hermite [17] interpolations

have been tested to find an appropriate algorithm. Both

methods use an interpolating polynomial in each subin-

terval for piecewise interpolation of the overall function.

Spline constructs the polynomial in almost the same way

Hermite constructs it. However, Spline chooses the slopes

at the partition points differently, namely to make even

second derivative continuous. This has the following

effects:
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1. Spline produces a smoother result.

2. Spline produces a more accurate result if the data

consists of values of a smooth function.

3. Hermite has no overshoots and less oscillation if the

data are not smooth.

4. Hermite is less expensive to set up.

Since the effects of decision boundaries imperfection

cause several gaps in the converter transfer function, a

noncontinuous function should be approximated. By

considering of the mentioned characteristics of each

method, it seems that better results can be obtained by

using of Hermite interpolation. The simulation results

verify this conclusion. Also by use of Hermite algorithm,

better results are obtained in comparison to the approxi-

mation using neural networks. Moreover, this algorithm

does not have the mentioned problems of neural

networks.

The procedure to perform hermite interpolation algo-

rithm can be described as follows [17]:

At first, the entire interval, I = [a,b], are divided into a

number of subintervals such as p = [xi,xi?1]. Each subin-

terval is a partition of ‘‘I’’ so that I:a = x1 \ x2 \ …
\ xi \ xi?1\… \ xn-1 \ xn = b. Let (fi;i = 1,2,…n) be a

given data set at the partition points. Our purpose is to

construct on p a piecewise cubic function P(x) such that

P(x) = fi;i = 1,2,…n. In each subinterval P(x) is a cubic

polynomial which can be represented as follows:

PðxÞ ¼ a3ðiÞ x� xið Þ3þa2ðiÞ x� xið Þ2þa1ðiÞ x� xið Þ þ fi

ð3Þ

Let:

di ¼ P0 xið Þ ð4Þ

deli ¼
fiþ1 � fi
xiþ1 � xi

ð5Þ

hi ¼ xiþ1 � xi ð6Þ

Coefficients a3, a2, a1 can be calculated as follows:

a1ðiÞ ¼ di ð7Þ

a2ðiÞ ¼
3 deli � 2 di þ diþ1

x� xið Þ ð8Þ

a3ðiÞ ¼
diþ1 þ di � 2 deli

x� xið Þ2
ð9Þ

Therefore an algorithm for constructing a piecewise cubic

interpolant to {(xi,fi);i = 1,2,…n} is essentially a

procedure to calculate the derivative values d1, d2,…, dn.

In [17], a shape preserving method is discussed to calculate

derivative values. More details on this method are

described below.

diþ1 ¼
dminðiÞ

w1ðiÞ deli

dmaxðiÞ þ w2ðiÞ deliþ1

dmaxðiÞ
ð10Þ

d ið Þ
max ¼ max deli; deliþ1ð Þ ð11Þ

d
ið Þ

min ¼ min deli; deliþ1ð Þ ð12Þ

w1 ¼
2hi þ hiþ1

3 hi þ hiþ1ð Þ ð13Þ

w2 ¼
hi þ 2hiþ1

3 hi þ hiþ1ð Þ ð14Þ

The initial and the final derivative values are calculated as:

d1 ¼
2h1 þ h2ð Þ del1 � h1 del2

h1 þ h2

ð15Þ

d2 ¼
2hn�1 þ hn�2ð Þ deln�1 � hn�1 deln�2

hn�1 þ hn�2

ð16Þ

Figure 2 shows the data flow of the coefficient calculation

algorithm.

The proposed method for calculation of derivative val-

ues is characterized by its efficiency, in terms of time

required to determine the interpolant, storage required to

represent it, and/or time required to evaluate it [17].

Unlike the global algorithms in which the approximation

is defined by the same analytical expression on the whole

interval, the main advantage of this algorithm is to locally

interpolate the data points. In such a method, a single

change in the data will affect the interpolant only in

neighborhood. This property of this algorithm can be used

to update each subinterval separately. Figure 3 gives the

timing diagram for the coefficient calculation algorithm.

A state machine controls the sequence of the events.

This part uses a clock counter to control the timing of all

coefficient calculation steps. The coefficient calculation

algorithm is performed for each pre-defined input. As

shown in Fig. 3, 7 clock cycles are needed for coefficient

calculation procedure of each pre-defined input (except the

first and the last data). Also, 3 and 4 clock cycles are

necessary for the first and the last data respectively.

2.3 Pre-defined input distribution

As cited above, in the first step of calibration process some

pre-defined digital codes should be stored in the first RAM.

For precise approximation, these codes should be distrib-

uted over entire input range. One approach is to use a

uniform distribution in which data points are selected from

intervals with identical length. The simulation results show

that at least 5% of all possible codes are needed to obtain

satisfactory results. The possible codes are equal to 2N

where N is the number of code bits. For example, in a
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12-bit ADC, there are 4,096 possible codes and approxi-

mately 200 data are needed.

A nonuniform distribution is another approach which can

be applied to reduce the number of data points. This tech-

nique can be useful because of the effect of decision

boundaries of each stage on the ADC overall transfer curve

[1]. As described in [1], in the neighborhood of the certain

input levels, we observe a gap in the overall transfer curve of

the ADC. These code gaps result from each stage errors. In

fact, around certain input levels, the effect of errors is

increased. Figure 4 illustrated error variation versus input

codes.

In a non-uniform distribution, we can increase code

density in the vicinity of the mentioned input levels and

decrease code density in the other points. The non-uniform

distribution is shown in Fig. 5.

Simulation results show that non-uniform distribution is

a more efficient than the uniform distribution and the same

results can be obtained by less number of possible codes.
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3 Hardware implementation

As described in Sect. 2, the role of the digital processor is

to approximate a function that represents the inverse model

of ADC errors. A function approximation unit is the most

important part of this processor and its accuracy determines

the overall accuracy of the proposed system. As mentioned

in pervious section, because of its good properties, Hermite

interpolation has been employed for hardware implemen-

tation. In fact, the purpose of implementation is to realize

the Eq. 4. To realize this function, three tasks should be

performed.

1. Coefficients calculation.

2. A search algorithm to find the corresponding subin-

terval that each new input belong to it.

3. Calculation of the Eq. 4.

Implementation of the function approximation unit is

shown in Fig. 6. As illustrated, three blocks is designed to

perform the mentioned tasks.

The input data to this unit are divided into two parts. The

first part is the data stored in the RAMs and the second part

is the converter outputs. By using the data stored in RAMs,

the a3, a2, a1 are calculated by the algorithm described in

Sect. 2. This algorithm has been implemented as shown in

Fig. 7. This section requires high precision calculations

since its accuracy determines the accuracy of the whole

function approximation unit. To avoid floating point cal-

culations, initially the processor input values are multiplied

by a constant factor and after the completion of the cal-

culations, the final number is divided to this factor again.

This constant factor can be a power of 2 so that, the shift

operation can be performed in, instead of multiplying at the

first and dividing at the end.

As illustrated in Fig. 7, this unit has various components

which include adders, subtractors, multipliers, comparator,

divider, address pointer and a set of registers. A multi-

plexer is connected to the input of each block and the

incoming signal to the block is controlled by its MUX.
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Each multiplexer has a control input that determines which

input is to be transferred to the output. Also, each register

and address pointer block have an enable input. A control

unit is designed to generate the control bits from an input

clock signal. This part is a state machine that controls the

timing of all coefficient calculation steps. After calculation,

the a3, a2, a1 are stored in the coefficient RAM. Since the

operation of the coefficient calculation unit is performed in

the background, its working frequency can be less than the

converter sampling frequency. This feature reduces the

power consumption of this unit.

In the second part, after each entry of the ADC outputs

to the processor, their values are compared with the second

RAM (Actual Data) values. This task is carried out by a

search block. For this part, a binary search algorithm has

been implemented to identify the corresponding subinter-

val. Subsequently, the Eq. 4 is applied to calculate the

calibrated output which is the output of the interpolation

block. The search and the interpolation block are illustrated

in Fig. 8. Since these two blocks work along with con-

verter, its frequency should be the same as the ADC

sampling frequency. To achieve this feature, pipeline

architecture has been used in design of these units. In this

architecture, the calculations related to each section are

divided into several parts and each part of the calculation is

performed by separate blocks.

Although it seems that the power consumption of the

proposed architecture is of a major concern, but it is

remarkable that the most part of the processor are work

with a lower frequency three times smaller than the con-

verter sampling frequency. In fact, coefficients calculation

process performed in the background for the small number

of the measured codes. This process updates the coefficient

RAM with lower rate than the ADC sampling rate and only

the search and the interpolation unit work along with

converter. This property reduces the total power con-

sumption of the processor.

Table 1 gives the utilization of hardware resources for

processor.

4 Measured results

To verify the proposed calibration scheme, a 12-bit pipe-

lined ADC based on 1.5-bit per stage architecture is sim-

ulated in the SIMULINK. Gain, sub-DAC reference

voltages, systematic offset and nonlinearity are the con-

trollable variables of the simulated pipelined ADC. Each

stage has a gain error of 2%, a reference voltage error of

1%, a systematic offset error of 2% and a third order non-

linearity of 1%. The value of those errors can be different

in each stage. Figure 9 shows the output spectrum of the

ADC before and after calibration.

The input range for converter is set to 2 V (p–p) and the

reference voltage for the converter is set to 1 V. A sam-

pling frequency of 100 MHz and the sinusoidal input signal

of 20 MHz with the amplitude of 1 V are used. Figure 10

shows the uncorrected and the corrected INL profile for the

ADC.

Figure 11 shows the variation of SNR and SFDR with

varying input frequency before and after calibration.

Table 2 represents the system level simulation of the

different function approximation algorithms. In the simu-

lation, 2.5% of possible codes with uniform distribution areFig. 8 Implementation of search and interpolation units

Table 1 Utilization of

hardware resources
Device utilization summary (Xilinx Virtex-4 LX25 FPGA)

Logic utilization Used Available Utilization (%)

Number of occupied slices 646 10,752 6

Total number of 4 input LUTs 1,198 21,504 5

Number of FIFO16/RAMB16s 1 72 1

Number of DSP48s 5 48 10

Coefficient calculation Search and interpolation RAMs

Gate count for each part 8,891 970 66,464

Total equivalent gate count 76,325
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used as a pre-defined input. As given, by use of the

Hermite Interpolation algorithm, the better result can be

obtained. The improvements in the performance after

hardware implementation are summarized in Table 3 for

the 2.5% and the 5% of possible codes as a pre-defined

input set. Table 4 shows the comparison of the proposed

calibration technique to some other reported calibration

techniques. This table shows that by use of the proposed

architecture, extra improvements can be obtained in higher

sampling frequencies. Table 5 illustrates the comparison

of the gate count for design with some other FPGA based

calibration methods. Table 6 summarizes the simulated

performance.
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Table 2 Comparison of the different function approximation

algorithms

Without

calibration

With calibration

Interpolation Neural network

Hermite Spline FFNN RBF

SNR (dB) -44.90 -64.28 -61.60 -60.84 -57.74

SNDR (dB) -44.89 -64.14 -59.93 -60.20 -57.40

SFDR (dB) 45.44 83.82 72.53 74.68 75.11

ENOB 7.17 10.36 9.66 9.71 9.24
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5 Conclusion

A Digital processor for full calibration of pipelined ADCs

was presented. In this technique, the modifications of the

ADC components are not necessary. The proposed

processor employs a function approximation unit to find a

function that acts as an inverse model of ADC errors. This

error modeling is performed by using small number of the

measured codes. Linear and nonlinear gain errors, compo-

nent mismatch and sub-DAC nonlinearity in a pipeline

ADC can be compensated by use of this method. Some

function approximation algorithms were tested to find the

best results. In the proposed technique, the use of cubic

hermite interpolation was led to better results in perfor-

mance and hardware costs. Therefore, this algorithm was

selected for hardware implementation. The algorithm is

simple and the interpolant is affected locally by changes in

the data. This feature reduces the calibration time and

power consumption. Compared to the other calibration

methods, the technique presented in this paper is distin-

guished by its efficiency in terms of time required to

determine the interpolant and storage required to represent

it. By use of the proposed calibration architecture, extra

improvements in higher frequency can be obtained. For a

simulated ADC, the SNDR of the converter is improved by

25 dB and the SFDR is improved by 45 dB. The proposed

technique is applicable to higher resolution pipeline archi-

tecture and the required area to implement the necessary

digital logic scales down with the new process technologies.
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