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Abstract This paper presents a high efficiency, high

switching frequency DC–DC buck converter in AlGaAs/

GaAs technology, targeting integrated power amplifier

modules for wireless communications. The switch mode,

inductor load DC–DC converter adopts an interleaved

structure with negatively coupled inductors. Analysis of the

effect of negative coupling on the steady state and transient

response of the converter is given. The coupling factor is

selected to achieve a maximum power efficiency under a

given duty cycle with a minimum penalty on the current

ripple performance. The DC–DC converter is implemented

in 0.5 lm GaAs p-HEMT process and occupies 2 9

2.1 mm2 without the output network. An 8.7 nH filter

inductor is implemented in 65 lm thick top copper metal

layer, and flip chip bonded to the DC–DC converter board.

The integrated inductor achieves a quality factor of 26 at

150 MHz. The proposed converter converts 4.5 V input

to 3.3 V output for 1 A load current under 150 MHz

switching frequency with a measured power efficiency of

84%, which is one of the highest efficiencies reported to

date for similar current/voltage ratings.

Keywords Gallium Arsenide Technology � p-HEMT �
Interleaved structure � Coupled inductors � DC–DC

converters � Supply modulators

1 Introduction

In wireless communication systems, the efficiency of the

radio frequency power amplifiers (RF PA) dominates the

power consumption of the radio transceiver. In addition, to

improve spectral efficiency of communication standards,

non-constant envelope modulations with high peak to

average signal variations are being adopted. This translates

to strict requirements on the power amplifier linearity to

avoid signal distortion. Such highly linear amplifiers are

inefficient, particularly at ‘‘backed-off’’ power conditions,

where the power amplifier typically operates for most of its

operating time. Polar modulation is an effective technique

to alleviate the linearity-efficiency tradeoff [1–3]. As

shown in Fig. 1a, the baseband signal is converted to

envelope signal A(t) and phase signal u(t). Since the phase

signal has a constant amplitude, high efficiency switching

power amplifier classes such as Class E and F can be uti-

lized. The envelope varying information is restored by

modulating the supply voltage of the PA through the output

of an envelope modulator. Possible supply modulators

include linear low-dropout (LDO) [4–6], switched-capaci-

tor converters [7–9], switched-mode dc–dc converters

[10–12], and hybrid- solutions [13, 14]. Among previ-

ously mentioned approaches, switch-mode DC–DC con-

verters can provide the highest efficiency with acceptable

bandwidth.

Traditional switch-mode DC–DC converters usually

require inductors up 100 lH, and capacitors in hundreds of

micro-Farads [15]. With the continuous trend in integrating

various components of the communication system on the

same die or the same package, increasing the switching

frequency to the hundreds of MHz range will reduce

inductors’ and capacitors’ sizes to the nano-Heneries and

pico-Farads, where they can be implemented on-chip. Such
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integration level will simplify packaging, reduce the power

loss from the interconnection of different dies and external

components. In addition, the quality factor Q of on-chip

inductors increases with frequency up to *1GHz, such

that the higher switching frequency, the higher Q, and

the less high frequency harmonic losses due to inductors’

ac resistances.

Other factors also contribute to the selection of the

appropriate switching frequency. For a given communica-

tion standard and its associated frequency band and chan-

nel separation, the switching frequency should be selected

to avoid any switching spurs falling into the adjacent

receiver band or switching noise lowering the PA adjacent

channel power rejection (ACPR) in the transmitter

(Fig. 1(b,c)). For example, in WCDMA standards, the

duplexer separations of the four WCDMA bands are

190 MHz for band 1, 80 MHz for band 2 and 45 MHz for

band 5 and 8 as shown in Fig. 1b. The up-converted supply

baseband noise should not fall onto any of these frequen-

cies. For other communication standards such as WiMAX

and LTE, given that the control loop crossover frequency is

around 1/10 * 1/5 of the switching frequency, to achieve

a control loop bandwidth up to 20 MHz for envelope

modulation of high peak-to-average waveforms, the

switching frequency of the DC–DC converter has to be

higher than 100 MHz. Thus higher switching speed DC–

DC converters can have major advantages in terms of both

smaller passive devices and wider control bandwidth.

However, due to frequency dependent loss components of

the DC–DC converter such as the gate driver loss and the

switching transistor loss, there is an optimum switching

frequency beyond which the efficiency of the converter

drops. This optimum switching frequency is a function

of the used integration technology and the input/output

voltage and current ratings.

Significant research efforts have been directed towards

silicon integrated switching DC–DC converters [15–21],

however either the switching frequency or the voltage/

current ratings have been below those required for inte-

grated power amplifier and transmitter modules. In this

paper we propose the use of GaAs technology as the

integration platform for high switching speed, high effi-

ciency switching supply modulators. Given that GaAs has

been and is expected to continue as the dominant process

technology for power amplifier implementations for cel-

lular standards, it is natural to integrate the supply modu-

lator with the PA in the same technology. The paper is

organized as follows; Section 2 presents the steady state

and transient response of interleaved DC–DC converter

topology and examines the effect of coupling of filter

Fig. 1 Motivation for high

switching speed DC–DC

converters for power amplifier

modules, a block diagram of

polar modulator, b an example

of duplexer separation for four

WCDMA bands, c effect of

switching frequency selection

on the transmitter’s and

receiver’s performance
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inductors in the special case of two-stage interleaved

architecture. Section 3 discusses the structure and proper-

ties of GaAs p-HEMT devices and their intrinsic advan-

tages for power switches employed in DC–DC converters.

Section 4 provides detailed circuit implementation,

including output switches and gate driver circuit design,

inductor design, closed loop control, and the power con-

sumption analysis for different power loss components.

Measurement results for the output stage and load network,

and simulation results for the closed loop control are

reported in Section 5. Finally, conclusions are drawn in

Section 6.

2 Interleaved topology with negative coupled inductors

Multi-phase interleaved DC–DC converters have become

widely adopted to reduce current ripple and improve effi-

ciency [15–20]. Compared to a single buck converter, the

multi-phase interleaved structure has more active compo-

nents as well as more inductors which can increase the

converter module size. Coupling the inductors has recently

been proposed to improve the steady state and transient

responses of the converter by reducing the current ripple

and the stabilization time [22]. While the analysis given in

[22] has proceeded by developing an equivalent inductance

under different coupling conditions for the steady and

transient conditions separately, we will extend this analysis

by quantifying the optimum coupling factor for ripple

cancellation under different duty ratios, and use space state

analysis to derive an expression for the converter’s open

loop transfer function to study the bandwidth enhancement

effect of coupled inductors.

2.1 Steady state analysis

Figure 2 shows the core of a two-stage interleaved struc-

ture with coupled inductors. Let us assume that the two

branches have equal inductances L, the mutual inductance

between the two phases is M, while k = M/L is the

coupling factor. The current and voltage waveforms at the

input and output of the DC–DC converter for each phase,

assuming ideal switching stages, are shown in Fig. 3. As

can be seen from the figure, the circuit has four different

states depending on the ON/OFF condition of switches

SW1 and SW2. To find the current ripple in each converter

phase, let us derive the relationship between the currents i1,

i2 and the voltages at the input and output of the DC–DC

converter during each state.

State I: 0 B t \ (D - 1/2)T

L1 �
di1

dt
þM � di2

dt
¼ Vin � Vout ¼ Vinð1� DÞ ð1Þ

L2 �
di2

dt
þM � di1

dt
¼ Vin � Vout ¼ Vinð1� DÞ ð2Þ

The two phases are symmetrical, such that current ripple

of each phase should be identical. We can get current ripple

in the first phase as Di1 by substituting (2) into (1):

Fig. 2 Ideal two-phase

interleaved topology with

negative coupling between filter

inductances

Fig. 3 Voltage and current waveforms at the terminals of the coupled

inductors for D C 0.5
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Di1 ¼
Vinð1� DÞð1� kÞ

Lð1� k2Þ � ðD� 1

2
ÞT ð3Þ

State II: (D - 1/2)T B t \ T/2

L1 �
di1
dt
þM � di2

dt
¼ Vinð1� DÞ

L2 �
di2
dt
þM � di1

dt
¼ �Vout ¼ �DVin

Di1 ¼
Vinð1� DÞð1þ kD

1�DÞ
Lð1� k2Þ � ð1� DÞT

ð4Þ

State III: T/2 B t \ DT

L1 �
di1
dt
þM � di2

dt
¼ Vinð1� DÞ

L2 �
di2
dt
þM � di1

dt
¼ Vinð1� DÞ

ð5Þ

As State III is identical to state I, we can write Di1
during State III as:

Di1 ¼
Vinð1� DÞð1� kÞ

Lð1� k2Þ � D� 1

2

� �
T ð6Þ

State IV: DT B t \ T

L1 �
di1
dt
þM � di2

dt
¼ �DVin

L2 �
di2
dt
þM � di1

dt
¼ Vinð1� DÞ

jDi1j ¼
Vinð1� DÞð D

1�Dþ kÞ
Lð1� k2Þ � ð1� DÞT

ð7Þ

By inspecting (3), (4), (6), and (7) and as can be seen in

Fig. 3, it is clear that the largest ripple occurs at state IV.

Thus, (7) can be used to represent the current ripple for

D C 0.5. The same analysis can be repeated for D \ 0.5

such that the current ripple can be derived as:

jDi1j ¼
VinDð1�D

D þ kÞ
Lð1� k2Þ � DT for D\0:5 ð8Þ

To show the effect of coupling on the current ripple in

each phase, let us define the ripple reduction factor n as the

ratio between the coupled to uncoupled current ripples,

such that:

n ¼

1þ kð 1

1� D
� 1Þ

1� k2 if D\0:5

1þ kð1
D
� 1Þ

1� k2 if D� 0:5

8>>>>><
>>>>>:

ð9Þ

Figure 4 shows the ripple reduction factor n versus the

duty cycle for different coupling factors. As can be seen

from the figure, within the duty cycle range of 0.3–0.7, the

current ripple is reduced in the coupled case compared to

uncoupled case. It is also clear that there is an optimum

coupling factor for maximum ripple cancellation at each

duty cycle, which can be derived as:

kopt ¼
1�D

D

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
D

1�D

�2
q

� 1
�

if D\0:5

D
1�D

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1�D

D

�2
q

� 1
�

if D� 0:5

8><
>: ð10Þ

Figure 5 shows the lowest achievable current ripple in

each phase for different duty cycles, where the maximum

reduction of 50% in current ripple occurs at D = 0.5 for

k = -1. This improvement drops to 13% within 20% var-

iation in duty cycle. The sensitivity of ripple reduction to the

coupling factor is shown in Fig. 6. For duty cycles other than

0.5, as the absolute value of the coupling factor increases

beyond 0.4, the current ripple increases dramatically.
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Fig. 4 Current Ripple reduction as a function of duty cycle for

different coupling factor
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2.2 System stability and transient response

To study the effect of coupling on the transient response of

the DC–DC converter, let us define d(s) as the small signal

function of the duty ratio D. The open loop transfer func-

tion vo(s)/d(s) can be derived following the space state

analysis described in [23]. The average space state equation

is given in (11) and (12), where iin1 and iin2 are the input

currents to the two phase converter and RL is the dc

resistance of the inductor, which is approximated as

8 9 L mX/nH. The transfer function of vo(s)/d(s) is

derived as in (13) and plotted in Fig. 7 for different cou-

pling factors. The figure compares the bandwidth and phase

margin between non-coupled (k = 0), positively coupled

(k = 0.4) and negatively coupled (k = -0.4) two phase

interleaved dc–dc converters. The input voltage is selected

as 4.5 V, L = 8 nH, Rload = 3.3 ohm, and the load capac-

itor C = 20 nF. As can be seen from the figure, for nega-

tive coupling factor of 0.4, the converter bandwidth

increases by 29.2% compared to the non-coupled two

phase converter, and 52.7% compared to positively

coupled converter with the same coupling factor. Figure 8

shows the improvement in bandwidth as function of the

coupling factor, where a strong indirect (negative) coupling

translates to wider bandwidth.
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Fig. 6 Sensitivity of current ripple reduction to the variation in

coupling factor for different duty ratios
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voutðsÞ
dðsÞ ¼

2Vin

CðLþMÞ ðsþ
RL

L�MÞ
s3 þ K1 � s2 þ K2 � sþ K3

K1 ¼ 1

RloadC
þ 2LRL

L2 �M2

K2 ¼ 2LRL

RloadCðL2 �M2Þ þ
R2

L

L2 �M2
þ 2

CðLþMÞ

K3 ¼ R2
L

RloadCðL2 �M2Þ þ
2RL

CðL2 �M2Þ

ð13Þ

The DC–DC converter’s transient behavior can also be

explained using the equivalent inductor as follows. The

transient response is measured by the time it takes the

converter to stabilize when the input voltage or the duty

cycle changes. The stabilization time is a function of the

output filter network formed of the inductance and capac-

itance as well as their parasitic resistances. For faster

transient response, the value of inductor should be small

enough to allow a fast slew rate and prevent excessive

voltage changes on the capacitor. The equivalent inductor

for transient response is given by Leq trans ¼ Lð1� kÞ [22],

which implies that higher coupling coefficients result in

reduced rise and fall times. Hence, from the discussion

above, negative coupling can be beneficial for both the

steady state and transient responses, by reducing the cur-

rent ripple and increasing the bandwidth of the DC–DC

converter system. However, the improvement in the current

ripple is very sensitive to duty cycle and at each duty cycle,

there is an optimum coupling factor. Since bandwidth

improvement is less for smaller k, the selection of coupling

factor should mostly be based on the duty cycle of the

system. In this design, the coupling factor is selected at

-0.3 for optimum performance at the desired duty ratio of

0.7. For practical limitations, the coupling factor has to be

fixed, however, the selected coupling factor of -0.3, can

still achieve current ripple reduction over duty ratios from

0.25 to 0.75 as shown in Fig. 4.

3 Technology considerations

This section addresses the technology aspect of high

switching speed power converters. A few of the desirable

characteristics of the power transistor technology for high

frequency switching regulators are the following. A low ON

resistance (RON) is necessary to minimize conduction losses

as the transistor conducts. A low gate charge (QG) is neces-

sary to minimize power losses in the driver circuits, as well as

to reduce the switching time, thereby reducing VDS 9 ID loss

during the switching transition. In addition, the transistor has

to have a high breakdown voltage since parasitic drain

inductances can cause voltage spikes higher than the rail

voltage, that would appear at the drain terminal during sharp

current transitions. P-HEMTs have a higher channel electron

mobility and a lower gate capacitance and therefore a lower

RON 9 QG product compared to silicon NMOSFETs in the

same voltage range making them suitable candidates for high

frequency power switching applications [24].

The transistor chosen for the switching device is an

enhancement mode pseudomorphic HEMT device fabri-

cated on GaAs substrate. The structure and the epilayers of

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
1

1.5

2

2.5

3

3.5

4

4.5

5

k

Fig. 8 Bandwidth improvement versus coupling factor

10
−1

10
0

10
1

10
2

1

1.2

1.4

1.6

1.8

2

Gate width (mm)

S
pe

ci
fic

 o
n 

re
si

st
an

ce
 (

oh
m

.m
m

)

(a) (b)Fig. 9 GaAs p-HEMT device:

a structure and epilayers, b ON

resistance characterization [24]

336 Analog Integr Circ Sig Process (2011) 66:331–348

123



the device technology are shown in Fig. 9a. The transistor

has a floating substrate and therefore the source terminal of

the N-type transistor can be raised above the ground potential

without causing body depletion in a high side switch. The

threshold voltage of the device is 0.36 V. The breakdown

voltage of the transistor is 11 V at 300 K and the drain to

source leakage current is of the order of *1 lA/mm. The

ON resistance of E-p-HEMT is shown in Fig. 9b. For a

10-mm E-p-HEMT device, the on resistance is 1.75 ohm.

4 Circuit implementation

To show the capabilities of GaAs power devices in a high

frequency power switching environment and demonstrate

the effect of negatively coupled inductors in interleaving

architectures, a prototype using 0.5 lm GaAs p-HEMT

process is designed and fabricated. The two stage interleaved

DC–DC converter is designed for 4.5–3.3 V, 1 A load cur-

rent conversion with 150 MHz switching frequency. The

coupled inductors are implemented on a separate GaAs die

with 65 lm thick top copper layer. Given the lack of com-

plementary devices in the used GaAs p-HEMT process, the

closed loop power control circuitry that includes a hysteresis

comparator, delay-locked loop and adaptive dead-time

controller, is designed in 0.25 lm BiCMOS technology

using 3.3 V thick oxide transistors. The block diagram of the

two-chip solution, closed loop interleaved DC–DC converter

system is shown in Fig. 10, while the schematics of the

output and driver stages are shown in Fig. 11.

4.1 GaAs two phase interleaved DC–DC converter

with coupled inductors

The output stage of the switch mode DC–DC converter, is

implemented as conventional buck converter with reversed

diodes M3 and M4 as low side switches and SW1 and SW2

as high side switches. Two loss mechanisms are encoun-

tered in the switching stage; (1) the switching losses during

the transition between on and off states, which increase

Fig. 10 Two phase hysteretic

controlled buck converter block

diagram

Fig. 11 Schematic of DC–DC

converter, a power stage, and

b gate driver stage
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with increasing the transistors’ sizes, and (2) conduction

losses due to the finite on-resistance of the switching

devices which decreases with increasing the transistors’

sizes. Figure 12 shows the variation in both losses as a

function of the switching transistor width for 4.5–3.3 V

conversion ratio. The optimum device widths are obtained

by equating the conduction and switching losses of the

switches to minimize their total power loss.

It is important to consider the gate driver losses when

sizing the switching transistors. This is mainly due to the

fact that the switching losses increase as the gate driver

stage fails to provide enough driving power. For a 1 A

output current and 4.5/3.3 V voltage conversion ratio, the

widths of SW1 and SW2 are chosen as 10 mm from

Fig. 12. They are implemented as 20 unit transistors in

parallel, each with 500 lm width. This is mainly to satisfy

a given aspect ratio for the converter die. The reverse

connected diodes are realized by connecting the gate and

source of the HEMT devices together. Transistors M3

and M4 have to provide a path for the current when SW1

and SW2 are off. In this design, they are sized at the same

width of SW1 and SW2.

Due to the lack of complementary transistors in the used

GaAs p-HEMT process, the supply voltage for the gate

driver has to be higher than the supply voltage of the output

stage of the converter in order to drive the high side

switches. The minimum value for the gate driver supply

is Vdd ? Vp, where Vp is the pinch off voltage of the

enhancement mode p-HEMT. A single stage Dickson

charge pump is adopted to generate Vdd ? Vp as the supply

voltage of gate driver circuit as shown in Fig. 11a.

The gate driver stage, shown in Fig. 11b, is a two-stage

active inverter with the second stage referenced to the

source of the high side switches. This inverter stage is

designed as pseudo-complementary switches with high side

depletion mode HEMT and low side enhancement mode

HEMT. The gate driver generates complementary control

signals for M3a and M3b. Since the depletion mode HEMT

has a negative pinch off voltage, the supply voltage for the

first driver stage can be lowered to Vdd to reduce the power

consumption. The second and third stages have a supply of

Vdd ? Vp, so that the output of second driver stage can

swing between 0 and Vdd ? Vp, and turn on switch SW1.

The sizing of the gate driver stages is a tradeoff between

the gate driver loss and its capability to drive the high side

switches, which affects the switching loss of SW1 and

SW2. The larger sizes of M3a and M3b provide better

driving capability while decreasing the rise and fall times,

which will accordingly reduce the switching loss of the

main transistors. However, larger sizes of M3a and M3b will

also increase the power consumption in the gate driver. The

width of enhancement mode p-HEMT M3b is chosen as

1/10 of the high side switch SW1. M3a is sized as 1/3 of

M3b. The first two stages are equally sized. Transistors M1c

and M2c are selected as 1/4 of M3b as well as M1b and M2b,

since they are pull down transistors. Considering the same

turn on and turn off time, pull up transistors M1a and M2a

are sized as 1/10 of M1c and M2c.

4.2 Coupled inductors design

While operating at high switching frequency facilitates the

monolithic integration of inductors, satisfying the require-

ments for low dc resistance and high current handling

capability makes the inductor design quite challenging.

Since the total current delivered to the load passes through

the filter inductors, the size of the inductors must be

properly selected to achieve an optimal balance between

the required inductance value for a given current ripple and

their respective series resistance that affects the converter

efficiency. Thus, the inductance value can be determined

based on either the required current ripple or to minimize

the losses in the inductance. To find the minimum

acceptable inductor value for a give current ripple, the

maximum current ripple is defined at the boundary of

Continuous Conduction Mode (CCM) and Discontinuous

Conduction Mode (DCM) [25], such that

jDi1j ¼ Io ð14Þ

where Io is the current in the load resistance. Using (7) and

(14), the inductor required for minimum current ripple can

be defined as:

Lmin ¼
Vinð1� DÞð D

1�Dþ kÞð1� DÞ
ð1� k2ÞfswIo

ð15Þ

Thus, for Vin = 4.5 V, Io = 1 A, fsw = 150 MHz, and

D = 0.65, the optimum coupling factor is -0.3 according

to (10), which corresponds to a minimum inductor value of

6.28 nH.
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Alternatively, the inductor value can be found from the

inductor power loss, which can be written as (16) by adding

the average current to the current ripple, and using Rind as

the resistance of the inductor, where Rind ¼ RL þ 2pfswL
Q :

From the axiom that a2 ? b2 C 2ab, the inductor value for

a minimum inductor loss Pindloss can be given by

Pindloss ¼
�

I2
o

2
þ 2

3

�VinðDþ ð1� DÞkÞ
2Lð1� k2Þ ð1� DÞT

�2
�

Rind

�
VinIoð1� DÞ2ð D

1�Dþ kÞffiffiffi
3
p
ð1� k2ÞfswL

� Rind

ð16Þ

Lmin ¼
Vinð1� DÞ2ð D

1�Dþ kÞffiffiffi
3
p
ð1� k2ÞfswIo

ð17Þ

For the given circuit specification, Lmin = 3.63 nH

according to (17). However, to make sure the converter

operating at CCM, the inductance value of 6.28 nH is

selected.

The coupled inductors are designed in 65 lm copper

layer with interleaved square topology. The spacing

between windings are determined based on the selected

coupling factor of -0.3. ASITIC [26] is used to estimate

the number of turns and metal width for the desired

inductance and resistance values. Electromagnetic EM

simulations using MOMENTUM are performed to verify

the inductance value and characterize the variation of

Q versus frequency. Figure 13 shows the EM simulation

results of inductance and quality factor. For L = 6.3 nH, a

quality factor of 25 at 150 MHz and a dc resistance = 55

mX are simulated, while assuming flip chip packaging. The

EM simulated coupling factor between two inductors is

-0.34, which is close to the desired value from circuit and

system level simulations. The power loss of the designed

inductor is only 2.4% of the total power loss in the con-

verter. In [15], a 2 nH spiral inductor in 130 nm CMOS

technology contributed 11.5% of the total power loss at a

switching speed of 170 MHz. Similarly, in [18], an 11 nH

inductor in 0.18 lm RF BiCMOS process with an extra

10 lm thick copper layer provided 75% power loss

contribution in single phase buck converter.

4.3 Closed loop based on hysteretic controller

Given the high switching speed of the converter, a hys-

teresis controller with delay-locked loop circuit for two

phase converter operation is adopted for this prototype due

to its simplicity and fast transient response. Hysteretic

controller is a self oscillation circuit that regulates the

output voltage by keeping it within a hysteresis window

set by a reference voltage regulator and comparator. The

switching frequency of hysteresis controller is given by

[27]:

fs ¼
Dð1� DÞ

sRCðVH=VsÞ þ sD
ð18Þ

where D is the duty ratio, sRC equals to RFCF, and sD is the

propagation delay. RF and CF are selected to ensure that the

hysteresis controller operates at 150 MHz under peak

power. It also implies that the maximum switching

frequency occurs at D = 0.5.

The schematic of the voltage differential comparator is

shown in Fig. 14. Current mirrors are used to bias the

differential input stage and the output stage. Two-stage

inverters are used at the output to provide enough driving

capability for the following stage. The bandwidth of

designed comparator is 250 MHz to respond to the signal

at the desired switching frequency. The delay from input to

output is about 0.2 ns. The power loss for the hysteresis

comparator is 2.34 mW, only 0.035% of the output power

of DC–DC converter.

For two phase DC–DC converter system, the control

signals for the two phases should be exactly 180� out of

phase. A self-biased delay-locked loop [28, 29] is adopted

to produce exactly the required phase delay which consists

of phase detector, charge pump, low pass filter, bias gen-

erator and voltage controlled delay cell as shown in

Fig. 15. The phase detector, which consists of two set and

reset D flip-flops and a NAND gate, is shown in Fig. 16

determines the phase lead or lag between the feedback

signal and the reference clock. The output of phase detector

is fed into a charge pump to generate the control voltage

Vcp. Since any small offset in charge pump circuit will

affect the output control voltage for VCDL, a differential

zero-offset charge pump with symmetric-load is used as

shown in Fig. 17.

For a robust design with low jitter, self biasing is

adopted. The bias generator, shown in Fig. 18, generates

the control voltage for voltage controlled delay line based
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upon Vcp. The advantage of using bias generator is to avoid

any disturbances and noises affecting Vcp. The voltage

controlled delay line is composed of a series of delay cells

which produce the required phase delays as shown in

Fig. 19. The whole system will be locked once the feed-

back clock Vctrl360 is aligned with the reference Vctrl. The

180� delay signal Vctrl180 is used to drive the other phase. A

specific delay is obtained by adjusting the ON-resistance of

Mn1 and the load current.

To increase the converter efficiency at light load, syn-

chronous buck converter topology with adaptive deadtime

control is used rather than the asynchronous structure

shown in Fig. 11. The adaptive deadtime controller senses

the source of the high side switch Vs, and compares it with

the pulse width modulated PWM control signal Vctrl, as

shown in Fig. 11. The details of the deadtime controller is

given in Fig. 20. As Vctrl changes from HI to LO, Vghs will

turn LO immediately. When Vs reaches zero, Vgls goes

from LO to HI, turning on the low side switch. Similarly,

for Vctrl = HI, the low side switch is turned off as

Vgls = LO, which will automatically turn on the high side

switch.

The efficiency comparisons among conventional buck

converter, synchronous buck converter with fixed dead-

time and synchronous buck converter with adaptive dead-

time controller is given in Fig. 21. The efficiency variation

using conventional gate driver is about 45% from peak

output power of 3.3 W to low output power of 0.5 W and

15% for synchronous rectifier topology. The adaptive dead-

time controller achieves almost the same efficiency as fixed

dead-time controller at high output power, and is about 2%

higher at low output power.

A level shifter circuit is inserted between the GaAs

and CMOS dies as shown in Fig. 10. The output of the

CMOS circuits in the used technology swings from 0 to

3.3 V, while the GaAs gate driver input requires gate-

source voltage lower than 0.85 V [24]. If the voltage

supplied to the gate of the GaAs P-HEMT goes beyond

Fig. 14 Schematic of hysteresis

comparator

Fig. 15 Block diagram of

Delay-locked-loop

Fig. 16 Phase detector block diagram
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0.85V, the gate Schottky diode will be heavily forward

biased and will draw large current from the supply,

increasing the overall power consumption. The design of

the level shifter to shift down the signal level at the

interface between the two dies follows the design pro-

cedure proposed in [30].

4.4 Power loss analysis

The major power loss components in a DC–DC converter

can be divided as; (1) series resistance losses from the

Fig. 17 Schematic of zero-

offset charge pump [29]

Fig. 18 Bias generator circuit

in DLL [29]

Fig. 19 Schematic of voltage controlled delay cell

Fig. 20 Block diagram of adaptive deadtime controller

Analog Integr Circ Sig Process (2011) 66:331–348 341

123



inductors Pindloss, (2) the conduction loss of the high side

switches Ponloss, (3) the switching losses of SW1 and SW2

Pswloss, which depend on the turn-on and off time periods

and the switching frequency, (4) the conduction loss of the

diode connected transistors M3 and M4 during (1 - D)T

period Pdiodeloss, and (5) the gate driver loss Pgateloss which

depends on the parasitic gate capacitances as well as the

switching frequency.

Operating at high switching frequency reduces the

inductor size, and its equivalent DC resistance. However,

this comes at the expense of increasing the switching

losses and gate driver losses. Figure 22 shows the drop

of inductance loss over switching frequency, the trends of

switching loss and gate driver loss. Conduction losses of

both high side switches and diode do not change with

frequency.

The distribution of power losses for the DC–DC con-

verter, shown in Fig. 23, is based on simulations results.

The conduction loss is almost the same as the switching

loss which contribute about 20% of the overall power

losses. Since the duty cycle is 0.65, the diode loss is only

half of the conduction loss. At 150 MHz, inductor loss is

still the dominant loss component, while the overall power

efficiency is 84.5%.

The lack of complementary devices in the used tech-

nology contributed to the increase in gate driver losses.

For the duty cycle of 0.65, the diode loss is almost 10% of

the overall losses. The contribution of the diode loss is

expected to increase for lower power level. Using syn-

chronous rectifiers with dead-time control circuit will

maintain the efficiency over a wide output power range.

The contribution of the closed loop control circuitry to the

overall power consumption is less than 1%, given the

digital nature of the circuits involved and the use of CMOS

technology.

5 Characterization results of hysteretic controlled

DC–DC converter

The complete DC–DC converter system is composed of the

power converter stages with coupled inductors imple-

mented in GaAs 0.5 lm p-HEMT technology and hyster-

esis controller with delay locked loop and adaptive dead-

time controller designed in 0.25 lm BiCMOS technology.

Section 5.1. A presents the measurement results of the two

phase interleaved GaAs converter, while the closed loop

simulation results are given in Section 5.2.

5.1 Two phase interleaved DC–DC converter

performance

The circuit shown in Fig. 11 is designed for 150 MHz

switching frequency with 8.77 nH coupled inductors and
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Fig. 21 Simulated power efficiency of single phase synchronous
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Fig. 22 Power loss trend with increasing switching frequency

Fig. 23 Power loss contribution of various elements in the two phase

interleaved converter with negative coupled inductors at 4.5/3.3 V,

1 A output and 150 MHz switching frequency
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20 nF load capacitor. The circuit converts 4.5 V input to

3.3 V output with 1 A output current. The die micrograph

is shown in Fig. 24. The area of the converter is

2 9 2.1 mm2 and 2.3 9 2.7 mm2 for the coupled induc-

tors. Both dies use C4 bump for flip chip packaging, which

eliminate the parasitic inductances and resistances

introduced by bondwires. The circuit test board is a four-

layer PC board with copper plus OSP. An input decoupling

capacitor of 22 lF is mounted close to the input supply

voltage to avoid any oscillations.

Fig. 24 a DC–DC converter

and b coupled inductors die
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The two stage interleaved DC–DC converter is tested

using an external pulse input provided by Agilent B1110A

generator with the output measured using HP Infinium

1.5 GHz Oscilloscope. Figure 25 shows the signal at the

output node with a measured output ripple of 116 mV. This

is slightly higher than the simulated output ripple of 72 mA

due to the deviation in the coupling factor of the imple-

mented inductors from the optimum value, for maximum

ripple cancellation. The implemented inductors have a

effective coupling factor of 0.46 compared the optimum

value of 0.3 from the analysis in Section 2. This is mainly

due to the fact that the coupled inductors are flip mounted

on the four layer PCB, which increases the distance

between copper layer and ground. Figure 26 gives the two-

phase operation waveform with the internal access at the

input of coupled inductors, showing a 180� phase delay

between two phases.

The efficiency using integrated coupled inductors as

well as external uncoupled surface-mount inductance are

compared to simulation results in Fig. 27. The measured

efficiency using integrated coupled inductors at the target

conversion ratio of 4.5/3.3 V is 83.8%. As the duty ratio

changes from 0.2 to 0.8, the efficiency drops about 30%.
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Table 1 Measured performance summary

Technology 0.5 lm GaAs p-HEMT

Circuit area 4.22 mm2

Inductor area 5.94 mm2

Inductance value 8.77 nH

Coupling factor 0.46

Q at 150 MHz 26

Input voltage 4.5 V

Output voltage 3.3 V

Output current 1 A

Switching frequency 150 MHz

Peak efficiency 84%

Voltage ripple 116 mV
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For the measurements using external uncoupled inductors,

7.5 nH 0603 SMT inductors by Coilcraft [31] with a

quality factor of 28 at 150 MHz and dc resistance of

0.059 ohm, are used. The simulation results are based on

circuit models provided by the manufacturer and the

extracted lumped element parameters from EM simulations

of the coupled inductors. The measurement result using

non-coupled SMT inductor is about 1.5% less efficient than

coupled inductors at the target conversion ratio.

The output efficiency at different input voltages is

plotted in Fig. 28 at a constant load and duty ratio. Fig-

ure 29 shows the efficiency at different load resistors with

constant input of 4.5 V and a duty ratio of 0.65. The

relation between efficiency and switching frequency is

shown in Fig. 30. The measurement results show that the

optimum point is at around 120 MHz which is about 20%

offset from the designed frequency. Table 1 summarizes

the measurement results of the proposed two phase inter-

leaved dc–dc converter with negative coupled inductors in

0.5 lm GaAs p-HEMT technology.

5.2 Closed loop system performance

The closed loop power control, shown in Fig. 10, is

designed in 0.25 lm BiCMOS technology, using 3.3 V

thick oxide transistors. The input is 4.5 V for power stage

and 3.3 V for CMOS stage, with peak output current of

1 A. The output load capacitor is 20 nF and the load

resistor is 3.3 ohm. The inductor ripple sensing network,

RF and CF are selected as 4 Kohm and 5 pF for switching

frequency equals to 150 MHz at peak output power.

Transient response performance is simulated for a step

change in reference voltage at 500 ns. The rise time of the

step function is 5 ns. It takes the output 32 ns to stabilize as

depicted in Fig. 31. The closed loop efficiency at different

outputs is shown in Fig. 32. The peak efficiency at 3.3 W is

85.68%, and control loop power consumption is 71 mW,

which is less than 1% of the overall power. Compared to

the asynchronous buck converter topology characterized in

the previous section, which showed 30% efficiency varia-

tion as the power changes from 1 to 3.3 W, the simulation

results of the closed loop control uses a synchronous

converter topology which improves the overall efficiency

variation to about 11%.

Hysteresis controller has the inherent problem of

switching frequency variation with duty ratio. Figure 33

provides the switching frequency at different output volt-

age. At 3.3 W, the switching frequency is 150 MHz. It

reaches the peak frequency of 180 MHz at Vout = 2.2 V,

which is about D = 0.5, where the frequency variation is

20%. To maintain a constant switching frequency, another

frequency control block should be inserted after the hys-

teresis comparator to compare and adjust the signal fre-

quency of the output of the hysteresis comparator based on

an external clock signal.

The comparison between this work and prior art within the

same switching frequency range and/or with integrated

filters, is given in Table 2. As can be seen, the majority of
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Table 2 A sample of the state-of-the-art, high switching speed, integrated DC–DC converters in silicon and GaAs technologies

Ref. Technology No. of phases Vin/Vout(V/V) Iout (A) fsw (MHz) L (nH) Eff. (%)

[15] 0.13 lm CMOS 2 1.2/0.9 0.19 170 2 on die 77.9

[16] 90 nm CMOS 4 1.2/0.9 0.3 233 6.8 SMT 82.5

[18] 0.18 lm BICMOS 2 2.8/1.8 0.2 45 11 on die 64

[12] Discrete 1 16/12 0.833 100 100 SMT 72

[19] 0.18 lm BiCMOS 2 1.8/0.9 0.5 200 2.14 on die 64

[20] 0.13 lm CMOS 1 1.2/0.8 0.12 180 8.22 SMT 80

[21] 0.18 lm CMOS 1 3.6/1.8 0.15 140 18 bondwire 65

This work 0.5 lm GaAs p-HEMT 2 4.5/3.3 1 150 8.77 on die 85.68
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DC–DC converters in CMOS technology do not satisfy the

high output power requirements of communication standards

such as GSM/EDGE and WCDMA. Also, the efficiency of the

majority of CMOS prototypes with integrated filters is well

below 80%. Hysteresis controller provides a fast transient

response for high speed DC–DC converters. Measurement

results of the output switching stage and gate driver as well as

simulation results of the closed loop hysteretic controller

show an expected peak efficiency of 85.68% at 150 MHz.

6 Conclusion

A high efficiency, high frequency two stage interleaved

DC–DC converter with negative coupling has been dem-

onstrated in 0.5 lm, p-HEMT GaAs technology. GaAs

technology provides a faster switch with lower on-resis-

tance and smaller parasitic capacitors compared to CMOS

technology. The inductors are fabricated in 65 lm thick

copper layer and achieve Q of 26 at 150 MHz when flip

mounted. The interleaved open-loop converter achieves a

measured peak efficiency of 84% at 150 MHz with 4.5/

3.3 V output and 1 A load current. Hysteresis control of the

DC–DC converter provides fast output regulation for high

frequency switching. The control loop is designed in

0.25 lm BiCMOS technology using 3.3 V thick oxide

transistors. The complete closed loop converter achieves a

simulated peak efficiency of 85.68% at 150 MHz with

efficiency variation of only 11% from 1 to 3.3 W. The

proposed architecture and AlGaAs/GaAs technology are

suitable for high frequency, high efficiency DC–DC con-

verters for integration with GaAs power amplifier modules.

Acknowledgement The authors would like to acknowledge Tri-

Quint Semiconductor for chip fabrication.

References

1. Kitchen, J. N., Deligoz, I., Kiaei, S., & Bakkaloglu, B. (2007).

Polar SiGe class E and F amplifiers using switch-mode supply

modulation. IEEE Transactions on Microwave Theory and
Techniques, 55(5), 845–856.

2. Qin, J., Guo, R., Park, J., & Huang, A. (2009). A low noise. High

efficiency two stage envelope modulators structure for EDGE

polar modulation. In Proceedings of IEEE international sympo-
sium on circuits and systems, pp. 1089–1092, Taipei.

3. Hanington, G., Chen, P.-F., Asbeck, P., & Larson, L. (1999).

High-efficiency power amplifier using dynamic power-supply

voltage for CDMA applications. IEEE Transactions on Micro-
wave Theory and Techniques, 47(8), 1471–1476.

4. Wong, J. (1990). A low noise low dropout regulator for portable

equipment. In Proceedings of Power conversion and intelligent
motion, pp. 38–43, May 1990.

5. Gupta, V., & Rincon-Mora, G. (2007). A 5 mA 0.6 lm CMOS

Miller-compensated LDO regulator with -27 dB worst-case

power-supply rejection using 60 pF of on-chip capacitance. In

Proceedings of IEEE international solid-state circuits confer-
ence, pp. 520–521, February 2007.

6. Lam, Y.-H., & Ki, W.-H. (2008). A 0.9 V 0.35 lm adaptively

biased CMOS LDO regulator with fast transient response. In

Proceedings of IEEE international solid-state circuits confer-
ence, pp. 442–626, February 2008.

7. Al-Kuran, S., Scheinberg, N., & Saders, J. V. (2000). GaAs

switched capacitor DC-to-DC converter. IEEE Journal of Solid-
State Circuits, 35(8), 1121–1127.

8. Favrat, P., Deval, P., & Declercq, M. (1998). A high-efficiency

CMOS voltage doubler. IEEE Journal of Solid-State Circuits,
33(3), 410–416.

9. Ma, D., Su, L., & Somasundaram, M. (2010). Integrated inter-

leaving SC power converters with analog and digital control

schemes for energy-efficient microsystems. In Proceedings of
Analog integrated circuits and signal, pp. 361–372, March 2010.

10. Severns, R., & Bloom, G. (1985). Modern DC–DC switch mode
power converter circuits. Van Nostrand Reinhold.

11. Ajram, S., & Salmer, G. (2001). Ultrahigh frequency DC-to-DC

converters using GaAs power switches. IEEE Transactions on
Power Electronics, 16(5), 594–602.

12. Rivas, J. M., Jackson, D., Leitermann, O., Sagneri, A. D., Han, Y.,

& Perreault, D. J. (2006). Design considerations for very high

frequency dc–dc converters. In Proceedings of IEEE power elec-
tronics specialists conference (PESC ’06), pp. 1–11, June 2006.

13. Kwak, T.-W., Lee, M.-C., & Cho, G.-H. (2007). A 2W CMOS

hybrid switching amplitude modulator for EDGE polar trans-

mitters. IEEE Journal of Solid-State Circuits, 42(12), 2666–2676.

14. Chu, W.-Y., Bakkaloglu, B., & Kiaei, S. (2008). A 10 MHz-

bandwidth 2 mV-ripple PA-supply regulator for CDMA trans-

mitters. In Proceedings of IEEE international solid-state circuits
conference, pp. 448–626, February 2008.

15. Wibben, J., & Harjani, R. (2008). A high-efficiency DC–DC

converter using 2 nH integrated inductors. IEEE Journal of Solid-
State Circuits, 43, 844–854.

16. Hazucha, P., Schrom, G., Hahn, J., Bloechel, B., Hack, P., Der-

mer, G., Narendra, S., Gardner, D., Karnik, T., De, V., & Borkar,

S. (2005). A 233-MHz 80%-87% efficient four-phase DC–DC

converter utilizing air-core inductors on package. IEEE Journal
of Solid-State Circuits, 40, 838–845.

17. Schrom, G., Hazucha, P., Hahn, J., Gardner, D., Bloechel, B. A.,

Dermer, G., Narendra, S., Karnik, T., & De, V. (2004). A 480-

MHz, multi-phase interleaved buck DC–DC converter with

hysteretic control. In Proceedings of IEEE power electronics
specialists conference (PESC ’04), pp. 4702–4707, June 2004.

18. Abedinpour, S., Bakkaloglu, B., & Kiaei, S. (2007). A multistage

interleaved synchronous buck converter with integrated output

filter in 0.18 lm SiGe process. IEEE Transactions on Power
Electronics, 22(6), 2164–2175.

19. Sun, J., Lu, J., Giuliano, D., Chow, T., & Gutmann, R. (2007). 3D

power delivery for microprocessors and high-performance

ASICs. In Proceedings of IEEE applied power electronics con-
ference (APEC ’07), pp. 127–133, February 2007.

20. Li, P., Bhatia, D., Xue, L., & Bashirullah, R. (2008). A

90–240 MHz hysteretic controlled DC–DC buck converter with

digital PLL frequency locking. In Proceedings of Custom inte-
grated circuits conference, pp. 21–24, September 2008.

21. Wen, M., & Steyaert, M. (2008). A fully-integrated 0.18 lm

CMOS DC–DC step-down converter, using a bondwire spiral

inductor. In Proceedings of Custom integrated circuits confer-
ence, pp. 17–20, September 2008.

22. Wong, P.-L., Xu, P., Yang, P., & Lee, F. (2001). Performance

improvements of interleaving VRMs with coupling inductors.

IEEE Transactions on Power Electronics, 16(5), 499–507.

23. Abu-Qahouq, J., Batarseh, M., Huang, L., & Batarseh, I. (2007).

Analysis and small signal modeling of a non-uniform multiphase

346 Analog Integr Circ Sig Process (2011) 66:331–348

123



buck converter. In Proceedings of IEEE power electronics spe-
cialists conference (PESC ’07), pp. 961–967, June 2007.

24. Pala, V., Varadarajan, K., & Chow, T. (2009) GaAs pseudo-

morphic HEMTs for low voltage high frequency DC–DC con-

verters. In Proceedings of international symposium on Power
semiconductor devices and IC’s, pp. 120–123, June 2009.

25. Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of
power electronics (2nd ed.). New York: Springer.

26. ASITIC, http://rfic.eecs.berkeley.edu/niknejad/asitic.html.

27. Li, P., Xue, L., Hazucha, P., Karnik, T., & Bashirullah, R. (2009).

A delay-locked loop synchronization scheme for high-frequency

multiphase hysteretic dc–dc converters. IEEE Journal of Solid-
State Circuits, 44(11), 3131–3145.

28. Maneatis, J., & Horowitz, M. (1993). Precise delay generation

using coupled oscillators. IEEE Journal of Solid-State Circuits,
28(12), 1273–1282.

29. Maneatis, J. (1996). Low-jitter process-independent dll and pll

based on self-biased techniques. IEEE Journal of Solid-State
Circuits, 3(11), 1723–1732.

30. Hass, K. J., & Cox, D. F. (2000) Level shifting interfaces for low

voltage logic. In 9th NASA symposium on VLSI design,

pp. 3.1.1–3.1.7.

31. Coilcraft, available at http://www.coilcraft.com.

Han Peng received the B.S.

degrees in Electrical Engineer-

ing from Southeast University,

Nanjing, P.R. China, in 2006.

She is currently a Ph.D. candi-

date in the Electrical, Computer

and Systems Engineering

Department, Rensselaer Poly-

technic Institute, Troy, NY. She

was a research assistant in the

Institute of RF&-OE-ICs., at

Southeast University, Nanjing,

P.R. China, from 2006 to 2007.

During summer of 2009, she

was with TriQuint Semicon-

ductor Inc., Hillsboro, OR, developing high frequency, fully inte-

grated DC–DC converter systems. She is currently intern at National

Semiconductor Inc’s research laboratory. Her research interests are in

the area of fully integrated power management circuit design.

Vipindas Pala received his

Bachelors and Masters degree in

Electrical Engineering from

Indian Institute of Technology,

Chennai, India in 2007 and is

currently working towards his

Ph.D. Degree in Rensselaer

Polytechnic Institute, Troy, NY,

USA. His research interests

include power device design,

compound semiconductor

device physics and high speed

circuit design.

Peter Wright has been with

TriQuint Semiconductor in

Hillsboro, Oregon since 2000.

Before that he was with Thom-

son-Microsonics in Sophia-An-

tipolis, France. He has worked

widely in Europe and the United

States. He holds undergraduate

degrees from Cambridge Uni-

versity, UK, and an S.M. and

Ph.D. from MIT, Boston, MA.

For many years he was involved

with the development of surface

acoustic wave devices and

acoustic signal processing. He

pioneered many of the architectures and analysis techniques for SAW

single-phase unidirectional transducers and resonators. While at

Schlumberger, he developed a fast algorithm for processing wellbore

evaluation logs to image cement integrity on the outside of the casing.

At TriQuint Semiconductor, he has focused on the development of

advanced RF front-end modules for cellular handsets.

T. Paul Chow was a member of

the technical staff at GE-CRD

from 1977 to 1989. Since 1989,

he has been with RPI, where he

is now professor of the Electri-

cal, Computer and Systems

Engineering Department. He

has been working in the power

semiconductor device area since

1982. His present research

activities include novel device

concepts, processing and circuit

models for high-voltage silicon,

GaAs and wide bandgap (par-

ticularly SiC and GaN) semi-

conductor power devices. He has published over 100 papers in

scientific journals, has contributed seven chapters in technical text-

books, and has filed over fifteen patents. He is a fellow of the IEEE

and a member of the Electrochemical Society.

Mona Mostafa Hella received

the B.Sc. and Masters degrees

with Honors from Ain-Shams

University, Cairo, Egypt, in

1993, and 1996, and the Ph.D.

degree, in 2001, from The Ohio-

State University, Columbus,

Ohio, all in Electrical Engi-

neering. From 1993 to 1997, she

was a teaching and research

assistant at Ain Shams Univer-

sity. From 1997 to 2001 she was

a research assistant at the Ohio-

state University. She was with

the Helsinki University of

Technology (HUT), Espoo, Finland as a visiting scholar in the sum-

mer of 1998, and with the analog group at Intel cooperation, Chan-

dler, AZ in summer 1999. She was a senior designer at Spirea AB,

Analog Integr Circ Sig Process (2011) 66:331–348 347

123

http://rfic.eecs.berkeley.edu/niknejad/asitic.html
http://www.coilcraft.com


Stockholm, Sweden working on CMOS power amplifiers

(2000–2001). From 2001 to 2003, she was a senior designer at RFMD

Inc, Billerica, MA working on Optical communication systems, as

well as silicon-based wireless systems. She joined the Electrical,

Computer and Systems Engineering department at Rensselaer Poly-

technic Institute as an Assistant Professor in 2004. Her research

interests include the areas of mixed-signal and RFIC design for

wireless and wire-line applications.

348 Analog Integr Circ Sig Process (2011) 66:331–348

123


	High efficiency, high switching speed, AlGaAs/GaAs P-HEMT DC--DC converter for integrated power amplifier modules
	Abstract
	Introduction
	Interleaved topology with negative coupled inductors
	Steady state analysis
	System stability and transient response

	Technology considerations
	Circuit implementation
	GaAs two phase interleaved DC--DC converter with coupled inductors
	Coupled inductors design
	Closed loop based on hysteretic controller
	Power loss analysis

	Characterization results of hysteretic controlled DC--DC converter
	Two phase interleaved DC--DC converter performance
	Closed loop system performance

	Conclusion
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


