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Abstract This paper details the Particle Swarm Optimi-

zation (PSO) technique for the optimal design of analog

circuits. It is shown the practical suitability of PSO to solve

both mono-objective and multiobjective discrete optimi-

zation problems. Two application examples are presented:

maximizing the voltage gain of a low noise amplifier for

the UMTS standard and computing the Pareto front of a bi-

objective problem, maximizing the high current cut off

frequency and minimizing the parasitic input resistance of

a second generation current conveyor. The aptness of PSO

to optimize difficult circuit problems, in terms of numbers

of parameters and constraints, is shown.

Keywords Metaheuristics � Particle swarm optimization �
Mono-objective � Multiobjective � Low noise amplifier �
Second generation current conveyor

1 Introduction

Advances in VLSI technology nowadays allow the reali-

zation of complex integrated electronic circuits and

systems [1]. Analog components are important part of

integrated systems either in terms of elements and area in

mixed-signal systems or as vital parts in digital systems [1,

2]. Despite their importance, design automation for analog

circuits still lags behind that of digital circuits. As a matter

of fact optimal design of analog component is often a

bottleneck in the design flow. Analog synthesis is com-

plicated because it does not only consist of topology and

layout synthesis but also of component sizing [3]. The

sizing procedure is often a slow, tedious and iterative

manual process which relies on designer intuition and

experience [4]. Optimizing the sizes of the analog com-

ponents automatically is an important issue towards being

able to rapidly design true high performance circuits [2, 4].

Common approaches are generally either fixed topology

ones or/and statistic-based techniques (see for instance

[5–8]). They generally start with finding a ‘‘good’’ DC

operating point, which is provided by the analog ‘expert’

designer. Then a simulation based tuning procedure takes

place. However these statistic-based approaches are time

consuming and do not guarantee the convergence to the

global optimum solution [9].

Some heuristic-based mathematical approaches were

also used, such as local search (LS) [10], simulated

annealing (SA) [11–14], tabu search (TS) [15, 16], scatter

search (SS) [17], genetic algorithms (GA) [11, 18–20] etc.

However these techniques do not offer general solution

strategies that can be applied to problem formulations

where different types of variables, objectives and constraint

functions are used (linear/non linear objective and con-

straint functions, posynomial/signomial objective function,

etc.). In addition, their efficiency is also highly dependent

on the algorithm parameters, the dimension of the solution

space, the convexity of the solution space, and the number

of variables.
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Actually, most of the circuit design optimization prob-

lems simultaneously require different types of variables,

objective and constraint functions in their formulation.

Therefore, the abovementioned optimization procedures

are generally not adequate or not flexible enough.

In order to overcome drawbacks of these optimization

procedures, a new set of nature inspired heuristic optimi-

zation algorithms were proposed. These techniques are

resourceful, efficient and easy to use. These algorithms are

part of Swarm Intelligence. They focus on animal behavior

and insect conduct in order to develop some metaheuristics

which can mimic their problem solution abilities, namely

Ant Colony (AC) [21], Artificial Bee Colony (ABC) [22],

Wasp Nets [22] and Particle Swarm Optimization (PSO)

[23, 24].

This work deals with optimal analog circuit sizing using

the PSO technique. In Sect. 2, we deal with the general

formulation of the analog constrained optimization prob-

lem. In Sect. 3, we focus on the PSO heuristic for both

mono and multiobjective problems. In Sect. 4, two appli-

cation examples are given. The first application is a mono-

objective problem that deals with optimizing the sizing of a

low noise amplifier to meet fixed specifications. The sec-

ond application is a multiobjective problem that consists of

generating the trade off surface (Pareto front) linking two

conflicting performances of a current conveyor. Conclusion

remarks are given in Sect. 5.

2 The constrained problem formulation

Typically, an analog circuit designer formulates the

requirements for the design of analog block in terms of

bounds on performance functions. Analytical equations

that predict these performance functions are then expressed

in terms of device model parameters [25]. Next, these

model parameters are replaced by their symbolic expres-

sions at the design variables level. For instance, a simple

MOSFET amplifier is depicted in Fig. 1. Expression 1

gives its voltage transfer function V0/Vin:

where gmMi, g0Mi, CgsMi, are transconductance, conduc-

tance and grid to source capacitance of the corresponding

MOS transistor, respectively. I0 is the bias current. Wi and

Li are width and length of the MOSFET’s channel,

respectively. Cox, kN, kP, KN and KP are technology

parameters. The variable vector x~ represents bias voltages,

bias currents and device sizes.

Optimal sizing of the circuit consists in finding variable

set x~¼ L1;W1; L2;W2; . . .f g that optimizes performance

function(s) and meets imposed specifications, such as

maximizing the amplifier’s bandwidth while satisfying

(V0/Vin)dB[GaindB. GaindB is the gain low boundary that

depends on the application.

Besides additional constraints have to be satisfied, such

as voltage range constraints (MOS saturation condi-

tions…), size ranges (minimum sizing allowed by the

technology…), etc.

Thus, a general optimization problem can be defined in

the following format:

Minimize f ð x!Þ; f ð x!Þ 2 R
such that :
g!ð x!Þ� 0; g!ð x!Þ 2 R m

and h
!ð x!Þ ¼ 0; h~ð x!Þ 2 R n

�
�
�
�
�
�
�
�

where xLi� xi� xUij ; i 2 1; p½ �

ð2Þ

M3 M2

M1

R

Vin

Vcc
+

-

V0

Fig. 1 A MOSFET amplifier

V0

Vin
¼� gmM1ðx~Þ
ðCgsM2ðx~Þ þ CgsM3ðx~ÞÞsþ ðg0M1ðx~Þ þ g0M2ðx~Þ þ gmM2ðx~ÞÞ

¼ �

ffiffiffiffiffiffiffiffiffiffiffi
KPI0W1

L1

q

L1L2

kNI0L2 þ kPI0L1 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
KPI0W2

L2

q

L1L2 þ 2
3
CoxL1L2ðL2W2 þ L3W3Þ

ð1Þ

72 Analog Integr Circ Sig Process (2010) 63:71–82

123



m inequality constraints to satisfy; n equality constraints to

assure; p parameters to manage; and x~L and x~U are lower

and upper boundaries vectors of the parameters.

Actually, circuit optimization problems involve more

than one objective. For instance, for the MOSFET ampli-

fier, more than one objective function (OF) may be opti-

mized, such as gain, noise figure, slewrate, bandwidth, etc.

Consequently expression 2 should be modified as:

Minimize f~ð x!Þ; f~ð x!Þ 2 R k

subject to :
g!ð x!Þ� 0; g!ð x!Þ 2 R m

and h
!ð x!Þ ¼ 0; h

!ð x!Þ 2 R n

�
�
�
�
�
�
�
�

where xLi� xi� xUi; i 2 1; p½ �j

ð3Þ

where k number of objectives (C2); m inequality con-

straints to satisfy; n equality constraints to assure; and p

parameters to manage.

The flowchart depicted in Fig. 2 summarizes main steps

of the sizing approach.

The goal of optimization is usually to minimize an

objective function; the problem for maximizing f~ð x!Þ can

be transformed to minimizing �f~ð x!Þ. This goal is reached

when the variables are located in the set of optimal

solutions.

As it was introduced in section I, there exist many

papers and books dealing with mathematical optimization

methods and studying in particular their convergence

properties (see for example [9, 11, 26]). These optimizing

methods can be classified into two categories: deterministic

methods and stochastic methods, known as heuristics.

Deterministic methods, such as simplex [27], branch and

bound [28], goal programming [29], dynamic programming

[30]… are effective only for problems of small size. They

are not efficient when dealing with NP-hard and multi-

criterion problems. In addition, it was proven that these

optimization techniques impose several limitations due to

their inherent solution mechanisms and their tight

dependence on the algorithm parameters. Besides they rely

on the type of objective, the type of constraint functions,

the number of variables and the size and the structure of the

solution space. Moreover, they do not offer general solu-

tion strategies.

Most of the optimization problems require different

types of variables, objective and constraint functions

simultaneously in their formulation. Therefore, classical

optimization procedures are generally not adequate. Heu-

ristics are necessary to solve large size problems and/or

with many criteria [31]. They can be ‘easily’ modified and

adapted to suit specific problem requirements, as it is

illustrated in Fig. 3 [22]. Even though they don’t guarantee

to find in an exact way the optimal solution(s), they give

‘good’ approximation of it (them) within an acceptable

computing time. Heuristics can be divided into two classes:

on the one hand, there are algorithms which are specific to

a given problem and, on the other hand, there are generic

algorithms, i.e., metaheuristics. Metaheuristics are classi-

fied into two categories: local search techniques, such as

simulated annealing, tabu search … and global search ones,

like evolutionary techniques, swarm intelligence tech-

niques …
AC, ABC, PSO are swarm intelligence techniques, they

form a subset of metaheuristics. Metaheuristics are inspired

from nature and were proposed by researchers to overcome

drawbacks of the aforementioned methods. In the follow-

ing we focus on the use of the Particle Swarm Optimization

technique for the optimal design of both mono-objective

and multiobjective optimization problems [24], (http://

www.particleswarm.info/).

3 The particle swarm optimization

The Particle Swarm Optimization (PSO) is a metaheuristic

inspired from nature. This technique mimics some animal’s

problem solution abilities, such as bird flocking or fish

schooling. Interactions between animals contribute to the

collective intelligence of the swarm. This approach was

proposed in 1995 by Kennedy and Eberhart [23].

In PSO, multiple candidate solutions coexist and coop-

erate with each other simultaneously. Each solution, called

a particle, ‘flies’ within the problem search space looking

for the optimal position to land [22]. A particle, as time

passes through its quest, adjusts its position according to its

own ‘experience’ as well as the experience of its neigh-

boring particles. Each particle remembers its best position

and is informed of the best position reached by the swarm

in the global version of the algorithm, or by the particle’s

neighborhood in the local version of the algorithm.

PSO system combines local search method (through self

experience) with global search methods (through

sp
ec
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Fig. 2 Pictorial view of a design optimization approach
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neighboring experience) [22]. It is becoming popular due to

the fact that the algorithm is relatively straightforward and

is easy to be implemented [24]. Additionally there is plenty

of source codes of PSO available in public domain (see for

example http://www.swarmintelligence.org/codes.php).

When compared to the other well known heuristics, such

as GA (NSGA II for multiobjective problems) and SA,

PSO presents the advantage of the rapid convergence to the

promising regions. On the other hand, PSO can be trapped

into a local minimum. This phenomenon highly relies on

the global search constituent. We refer the reader to [24]

for further details on such characteristics.

3.1 Mono-objective PSO

PSO has been proposed for solving mono-objective prob-

lems and has been successfully used for both continuous

non linear and discrete mono-objective optimization. In

short, the approach consists of the following [24].

The algorithm starts with a random initialization of a

swarm of particles in the multi-dimensional search space,

where a particle represents a potential solution of the

problem being solved. Each particle is modeled by its

position in the search space and its velocity. At each time

step, all particles adjust their positions and velocities, i.e.,

directions in which particles need to move in order to

improve their current position, thus their trajectories.

This is done according to their best locations and the

location of the best particle of the swarm in the global

version of the algorithm, or of the neighbors in the local

version. Figure 4 illustrates this principle.

Changes to the position of the particles within the search

space are based on the social-psychological tendency of

individuals to emulate the success of other individuals [32].

Thus each particle tends to be influenced by the success of

any other particle it is connected to.

Expressions of a particle position at time step t and its

velocity are as follows [22, 33]:

v~iðtÞ¼xv~iðt�1Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Inertia

þc1r1ðx~pbesti� x~iðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Personal Influence

þc2r2ðx~leaderi� x~iðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Social Influence

ð4Þ
x~iðtÞ ¼ x~iðt � 1Þ þ v~iðtÞ ð5Þ

where xpbesti is the best personal position of a given parti-

cle, xleaderi refers to the best position reached by the par-

ticle’s neighborhood, x is an inertia weight that controls

the diversification feature of the algorithm, c1 and c2 con-

trol the attitude of the particle of searching around its best

location and the influence of the swarm on the particle’s

behavior, respectively (c1 and c2 control the intensification

PROBLEM Modifications
SOLUTION

TECHNIQUE

Problem
dependent

NOT Easy

IF linear Programming Model
USE (Simplex);

IF Integer Programming Model
USE (Branch and Bound);
...

Classical
Optimization
Techniques

PROBLEM Modifications
SOLUTION

TECHNIQUE

General
purpose

EASY

Any model USE (Genetic Algorithms);
Any model USE (Simulated Annealing);
Any model USE (Ant colony Optimization);
Any model USE (Artificial Bee colony);
...

Nature
Inspired
Heuristic
Optimization
Techniques

Fig. 3 A pictorial comparison

of classical and modern

heuristic optimization strategies

(taken from [22])

Towards
its best

performance

Towards the best
performance of its

best neighbor

Towards the
point reachable
with its velocity

New
position

Actual
Position

Fig. 4 Principle of the movement of a particle
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feature of the algorithm). r1 and r2 are random values

uniformly sampled in [0,1] for each dimension.

Figure 5 illustrates the flowchart of the mono-objective

PSO. N is the swarm’s size. Pi = [pi,1, pi,2,…, pi,N] denotes

the best location reached by the ith particle at time t.

Xi = [xi,1, xi,2,…,xi,N] is the ith particle position and

g = [g1, g2,…, gN] represents the best location reached by

the entire swarm.

An application example of performance maximization in

terms of voltage gain of a Low Noise Amplifier is given in

section IV.

3.2 Multiobjective PSO

As it was introduced in section II, multiobjective optimi-

zation is a common task in circuit design. Commonly

designers transform the multiobjective problem into a

mono-objective one using the aggregation approach [34].

The latter requires the designer to select values of weights

for each objective. The so obtained mono-objective func-

tion can be written as:

Fðx~Þ ¼
Xk

i¼1

xifiðx~Þ ð6Þ

xi, i [ [1, k], are weighting coefficients

For instance, in [35] a normalization method was used to

guide the choice of the weighting coefficients. Yet, this

approach is not suitable in most problems since it is not

able to detect solutions when the solution space is not

convex. Furthermore, it was shown in [36] that varying the

weighting coefficients xi cannot allow sweeping the entire

Pareto front and cannot also ensure a homogeneous dis-

tribution of the design over the Pareto front. Besides,

obtained solutions may be very sensitive to a small varia-

tion of these coefficients [36].

Even though some approaches, such as geometric pro-

gramming, have overcome this main drawback by con-

verting the non convex problem into a convex one [37],

using the weighting approach, only a unique ‘‘optimal’’

point can be obtained. This solution depends on the choice

of the weighting coefficients.

On the other hand, a multiobjective approach (MO) can

be stated as finding vectors x~¼ ðx1; x2; . . .; xnÞ that satisfy

the constraints and optimize the vector function f~ðx~Þ [38].

However, the objective functions may be in conflict. Thus,

the goal of the MO algorithm is to provide a set of Pareto

optimal solutions of the aforementioned problem [26, 38–

40]. It is to be noticed that a solution x~of a MO problem is

said Pareto optimal if and only if there does not exist

another solution y~ such that f~ðy~Þ dominates f~ðx~Þ, i.e., no

component of f~ðx~Þ is smaller than the corresponding com-

ponent of f~ðy~Þ and at least one component is greater [41].

Without loss of generality, we consider the minimization

case. Figure 6 depicts the multiobjective approach.

PSO was adapted to be able to deal with multiobjective

optimization problems. The idea consists of the use of an

external memory: an archive, in which each particle deposits

its ‘flight’ experience at each running cycle. More precisely,

the aim of the archive is to store all the non-dominated

solutions found during the optimization process. At the end

of the execution, all the positions stored in the archive give us

an approximation of the theoretical Pareto Front.

Algorithm 1 Archive’s update

For i = 1…N

If particle[i] dominates some elements of the archive

Delete dominated elements

End If

If particle[i] is nondominated

If the archive is not full

Add particle[i] to the archive

Else

Compute the crowding distances

Sort the element of the archive by crowding distance

Replace the particle with the lower crowding distance by

particle[i]

End If

End If

End For

Stopping criterion?

Random Initialization of
the swarm

Computation of the
fitness of each particle

Pi=Xi(i=1..N)
computation of g

Updating velocities and
positions

Computation of the
fitness of each particle

Updating of Pi (i=1..N)
Updating of g

End

Fig. 5 Flowchart of the mono-objective PSO
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In order to avoid excessive growing of this memory, its

size is fixed. This implies to define some rules for the

update of the archive. Algorithm 1 depicts the pseudo-code

of these rules.

The crowding distance of the ith element of the archive

estimates the size of the largest cuboid enclosing the point i

without including any other point in the archive. The idea

is to maximize the crowding distance of the particles in

order to obtain a Pareto front as uniformly spread as pos-

sible. In Fig. 7, the crowding distance of the ith solution of

the archive (black spots) is the average side length of the

cuboid shown by the dashed box. The flowchart presented

in Fig. 8 depicts the MO-PSO [41, 42].

In the following section we give two application

examples where mono-objective and multiobjective PSO

are considered.

4 Application examples

4.1 A mono-objective problem:

The problem consists of optimally sizing a common source

low noise amplifier (LNA) with an inductive degeneration

[43] presented at Fig. 9, for the UMTS standard.

The problem is defined in the following way.

4.1.1 Constraints

• Ensure input and output matching of the LNA to

guarantee a maximum power transfer from the antenna

parameter space: X constraint space: C solution space: F

g1(X)>0

g2(X)>0

CX

F

DVS
FDVS

FSS

feasible
solutions

non-feasible
solutions

non-reachable
solutions

f1

f2g2

g1x1

x2

DVS
Decision Variable

Space
FDVS

Feasible  Decision
Variable Space

FSS
Feasible Solution

Space

Pareto
front

non-dominated
solutions

ideal point

Fig. 6 Illustration of a general

multiobjective optimization

problem

f2

f1

i-1
i

i+1

Fig. 7 Crowding distance

Stopping criterion?

Random Initialization of
the swarm

Computation of the
fitness of each particle

Pi=Xi(i=1..N)
computation of g

Initialization of the
archive

Updating velocities and
positions

Mutation

Computation of the
fitness of each particle

Updating of Pi(i=1..N) 
Updating of g

Updating of the archive

End

Fig. 8 Flowchart of a MO-PSO
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to the LNA then to the pre-amplifier. This leads to the

equality constraints 7 and 8:

Ls ¼ RsCgs

gm
ð7Þ

Lg ¼ 1

x2
0Cgs
� LS ð8Þ

where Cgs and gm are the grid to source capacitance and

the transconductance of the MOS transistor M1,

respectively. x0 is the pulsation of the UMTS standard,

x0 = 2pf0, with f0 = 2.14 GHz.

• Linearity, which is highly dependent on the saturation

of the MOS transistors. Thus inequalities 9 and 10 must

be satisfied. These conditions were determined by

fixing the 1 dB compression point value (CP1=0 dBm).

VDS1 min [ VDSsat1 ð9Þ
VDS2 min [ VDSsat2 ð10Þ

where VDSimin and VDSsati are the minimum drain to

source voltages and the saturation voltages of transis-

tors M1 and M2, respectively.

• Noise Figure: the reduced NF expression proposed in

[44] was used. The constraint is:

NF\ðNFmax ¼ 1dBÞ ð11Þ

• Transit frequency: fT must be five times higher than the

UMTS frequency.

4.1.2 Objective function

• Gain: its symbolic expression was computed using the

small-signal equivalent circuit and the objective func-

tion is that the gain has to present its maximum value at

the UMTS frequency. The gain’s expression is not

given due to its large number of terms.

This optimizing problem was solved using mono-

objective PSO technique. The algorithm was programmed

using C?? software. Notice that, boundaries of parameters

were imposed by the used technology. PSO algorithm

parameters are given in Table 1 [33]. Optimal obtained

parameters are presented in Table 2. We notice that 25 runs

were performed, and the average computing time equals

1.57 s.1 Simulation conditions and reached performances,

obtained using ADS software (Agilent Advanced Design

System), are given in Tables 3 and 4, respectively.

ADS simulation results are depicted in the following

figures; they show the good agreement between ADS and

expected results. Figure 10(a) and (b) prove that input and

output matching are insured (50 X). Figure 11 shows the

LNA performs a compression point CP1 of -2 dBm.

Figure 12(a) and (b) illustrate LNA noise figure and volt-

age gain that equal 0.91 dB, and 13.35 dB, respectively.

4.2 A multiobjective problem

The problem consists of optimizing performances of a

second generation current conveyor (CCII) [45, 46]

regarding to its main influencing performances. The aim

M1

M2

VDD

RL

Cch(Lch, rch)
R2

R1

M3

Rs Cs Lg

LS

Vin

Fig. 9 A CMOS LNA with biasing network

Table 1 Parameters of the mono-objective algorithm

Size of

the swarm

Number of

iterations

c1 c2 x

20 10,000 0.5 ? log(2) 0.5 ? log(2) 1/(2 log(2))

Table 2 Optimal parameters’ values

CC (pF)

10

Lg (nH)

8.110

LS (nH)

0.320

Lch (nH)

0.715

Cch (pF)

7.44

rch (X)

1.92

R1 (kX)

1

R2 (kX)

1.03

W1(lm)/L1(lm)

640/0.35

W2(lm)/L2(lm)

630/0.35

W3(lm)/L3(lm)

40/0.35

Table 3 Simulation conditions
Technology AMS 0.35 lm

Supply

voltage (VDD)

Single 2.5 V

LNA bias

current (Id)

29 mA

Table 4 Reached performances

(Gain at umts frequency)
Theoretical

(Maple software)

17.46 dB

Simulation

(ADS software)

13.35 dB

1 a (2 GHz, 2 Go RAM) core 2 DUO PC was used for this purpose.
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consists of maximizing the conveyor high current cutoff

frequency and minimizing its parasitic X-port resistance

[47]. Figure 13 illustrates the conventional positive second

generation current conveyor.

4.2.1 Constraints

• Transistor saturation conditions: all the CCII transistors

must operate in the saturation mode. Saturation con-

straints of each MOSFET were determined. For

instance, expression 12 gives constraints on M2 and

M8 transistors:

VDD

2
� VTN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I0

KPW2=L2

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I0

KNW8=L8

s

ð12Þ

where I0 is the bias current, Wi/Li are the aspect ratio of

the ith MOS transistor. KN, KP and VTN are technology

parameters. VDD is the DC voltage power supply.

4.2.2 Objective functions

• RX: the value of the X-port input parasitic resistance has

to be minimized.

freq (1.000GHz to 3.000GHz)
S

(1
,1

) m1

m1
freq=2.140GHz
S(1,1)=0.022 / 170.116
impedance = Z0 * (0.958 + j0.007)

freq (1.000GHz to 3.000GHz)

S
(2

,2
) m1

m1
freq=2.140GHz
S(2,2)=0.006 / 153.848
impedance = Z0 * (0.989 + j0.005)

(b)(a)

Fig. 10 Input (a) and output (b)

matching (scattering parameters

S(1,1) and S(2,2))

-30 -20 -10 0 10 20 30-40
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100

Pin

P
ou

t_
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1
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indep(m1)=-2.000
plot_vs(Pout_dBm1, Pin)=-24.470

Fig. 11 The LNA compression point (CP1)
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• fchi: the high current cut off frequency has to be

maximized.

Symbolic expressions of these functions are not given

due to their large number of terms.

Table 5 gives PSO algorithm parameters. PSO optimal

parameter values and simulation conditions are shown in

Tables 6 and 7, respectively, where LN, WN, LP and WP

refer to length and width of NMOS and PMOS transistors,

respectively. The average time taken for 25 runs, under the

same conditions as in the mono-objective case, equals

2.32 s Fig. 14 shows both the parameter space and the

solution space (Pareto front) and the correspondence

between each parameter value and its solution. Notice that

additional degrees of freedom are given to the designer to

choose his ‘optimal’ parameter vector within the set of the

non-dominated solutions. For instance, an additional cri-

terion can be the occupied area. Figure 15 illustrates the

solution space (RX vs. fchi) for different values of the bias

current I0. Finally, Figs 16, 17, 18, 19 show SPICE simu-

lation results performed for two particular solutions, i.e.,

edges of the Pareto boarder (solutions giving the maximum

fchi and the minimum RX, respectively). These results are in

good agreement with the expected theoretical ones.

Table 8 summarizes and compares reached performances.

Table 5 Parameters of the multiobjective algorithm

Size of the swarm Number of iterations c1 c2 x

20 10,000 1 1 0.4

Table 6 Optimal parameters’ values

LN

(lm)

WN

(lm)

LP

(lm)

WP

(lm)

Lower edge of the Pareto

front

0.35 30.00 0.57 20.07

Higher edge of the Pareto

front

0.35 7.28 0.55 12.60

Table 7 Simulation conditions

Technology AMS 0.35 lm

Supply voltage (VSS/VDD) -2.5 V/?2.5 V

CCII bias current (I0) 100 lA
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Fig. 14 Illustration of the correspondence between parameter and solution spaces
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Finally, it is to be highlighted that this CCII was opti-

mized in [48], but using a weighting approach. The unique

‘optimal’ solution given in [48] belongs to the Pareto front

and it corresponds to its high boundary. Besides, and for

comparison reasons, NSGA II algorithm (http://www.math

works.com/matlabcentral/fileexchange/10351) was used to

generate the Pareto front (RX, fchi). Figure 20 presents

fronts obtained using PSO and NSGA II, for I0 = 100lA.

Results obtained using PSO are much better than those of

NSGA II. This is mainly due to the fact that PSO handles

constraints better than its counterpart.

5 Conclusion

This paper details the particle swarm optimization (PSO)

technique for the optimal design of analog circuits.

Reached results can be summarized as follows:

• We show the practical applicability of PSO to optimize

performances of analog circuits and its suitability for

solving both a mono-objective optimization problem

and a multiobjective one. Two applications were

presented. The first deals with maximizing the voltage

gain of a low noise amplifier: a mono-objective

optimization problem. The second is a bi-objective

one. It consists in computing the Pareto tradeoff surface

in the space solutions: parasitic input resistance vs. high

current cutoff frequency.

• According to the simulation results, severe parameter

tuning is not required. Indeed, PSO only requires less

than 10,000 iterations for obtaining ‘‘optimal’’ solu-

tions, even for large-scale systems.

Our current work focuses on integrating PSO approach

in an automated design flow.
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Fig. 17 SPICE simulation results for RX: solution giving minimum

RX
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Fig. 18 SPICE simulation results for fchi: solution giving maximum
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Fig. 19 SPICE simulation results for fchi: solution giving minimum

RX

Table 8 Reached performances (points located at the pareto front edges)

Theoretical (MATLAB software) Simulation (SPICE software)

fchi(GHz) RX(X) fchi(GHz) RX(X)

Lower edge of the Pareto front 1.078 382 1.122 462

Higher edge of the Pareto front 1.802 633 1.620 848
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Fig. 20 PSO front versus NSGA II front
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