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Abstract When very fast phenomena and small structure

dimensions are involved, the classical law of Fourier

becomes inaccurate. A more sophisticated model is then

needed to describe the thermal conduction mechanisms in a

physically acceptable way. In this paper the according

diffusion equation is solved for a nano-scaled semicon-

ductor substrate, in order to gain physical insight in the

problem. Analytical solutions for the temperature and heat

flux distributions are presented. The complex thermal

impedance and thermal step response of the structure are

discussed. The most remarkable fact is that the temperature

inside the substrate can go below the ambient temperature

for a short amount of time. The results also clearly dem-

onstrate the wave character of the heat propagation and the

analogy with RLC transmission lines.

Keywords Non-Fourier conduction � Nano-scale heat

transfer � Thermal waves � Thermal impedance �
Hyperbolic diffusion equation

1 Introduction

In heat transfer applications, thermal conduction is gener-

ally modelled by the very well known law of Fourier:

~q ¼ �k ~rT ð1Þ

In words: a temperature gradient ~rT [K/m] gives rise to a

heat flux~q½W=m2� or vice versa. Both quantities are related

through the thermal conductivity k[W/mK], a material

dependent parameter.

The main objection to (1) is (the lack of) its behaviour

with respect to time. When some sort of heat source is

suddenly switched on, one will notice a small but imme-

diate temperature rise even for regions at relatively large

distances from the source. Since conduction is essentially a

mechanical process—heat spreads through the material due

to the atoms passing vibrational energy from one to an-

other—this observation is physically not acceptable. In

opposition to (1) which allows heat to travel infinitely fast,

the velocity of heat propagation is in reality limited to the

speed of sound c[m/s] in the material.

1.1 Non-fourier conduction

To overcome this problem, a modification of Fourier’s law

was proposed by Cattaneo [1] and Vernotte [2]:

~qþ s
@~q

@t
¼ �k ~rT ð2Þ

which expresses a gradual growth of the heat flux to the

classical value �k ~rT , with a time constant s. Expressing

the energy balance for an arbitrary volume of the material

and taking (2) into account leads to:
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kr2T � Cv
@T

@t
� sCv

@2T

@t2
¼ �p� s

@p

@t
ð3Þ

where Cv [J/m3K] is the specific heat per volume unit and p

[W/m3] the power density. Equation (3) is sometimes

denoted as the hyperbolic heat equation [3, 4]; setting s = 0

produces the classical diffusion equation. The third

term—being proportional to the second order time

derivative—gives rises to thermal wave effects. This

indeed ensures a finite velocity for the heat propagation.

Identification with the classical wave equation where c

must be used as wave speed yields:

s ¼ k

Cvc2
ð4Þ

Additionally it can be shown that the term sCvð@2T=@t2Þ
can be associated with a thermal inductance. This element

shows a temperature drop if the heat flow changes in time

(clearly indicating that it as such cannot exist in practice).

An arbitrary small portion of a material under non-Fourier

conduction can be represented by the network shown in

Fig. 1.

1.2 Aims and purpose

For most solid state materials one has c � 5000

m/s = 5 nm/ps. In the case of silicon with k = 160 W/mK

and Cv = 1.78 · 106 J/m3K, (4) leads to s � 3.5 ps. The

very small magnitude of the time constant indicates that for

most practical applications, the effects of non-Fourier

conduction are negligible. In electronics however things

may be somewhat different. As the miniaturisation and

tendency towards higher circuit speeds continue, micro-

electronics push Fourier’s law to its limits. For future

device generations it is to be expected that thermal wave

effects will more and more come into play, and (3) is

needed to describe these phenomena properly.

This paper will be dedicated to a theoretical investiga-

tion of non-Fourier conduction in a very small semicon-

ductor substrate. On one hand this may give us a glimpse of

the (exotic) behaviour that might be expected from

tomorrow’s electronics. On the other hand the geometry is

quite simple, allowing an analytical approach and provid-

ing fundamental physical insight.

2 Solution of the heat equation

2.1 Investigated structure

Let us consider a bar-shaped silicon substrate with thick-

ness H and cross-section area A (Fig. 2). The top surface is

entirely covered with a uniform heat source dissipating a

power density p0(t) [W/m2], the bottom plate is perfectly

cooled (ambient temperature T = 0). The rest of the sub-

strate surface (the side walls) is thermally isolated, i.e., the

normal component of the heat flux equals zero. Using (2)

this leads to @T=@n ¼ 0, as for the case of classical Fourier

conduction.

Due to the geometry of the problem and its boundary

conditions, one can see the isothermal surfaces are per-

pendicular to the side walls. Hence the temperature dis-

tribution is one-dimensional, T = T(x, t), and the heat

equation can be solved relatively easily.

2.2 Solution in the laplace domain

Since (3) is a partial differential equation it is best solved

for the Laplace transform with respect to time

Tðx; sÞ ¼ L½Tðx; tÞ� of the temperature. As there is no

power dissipation inside the substrate, i.e., p = 0, trans-

formation of Eq. (3) reads:

k
d2Tðx; sÞ

dx2
� sð1þ ssÞCvTðx; sÞ ¼ 0 ð5Þ

which immediately leads to:

Tðx; sÞ ¼ C1 coshðcxÞ þ C2 sinhðcxÞ ð6Þ

where

Fig. 1 Section of distributed thermal network representation for non-

Fourier conduction (quasi 1-dimensional heat flow assumed) Fig. 2 Silicon substrate completely covered by uniform heat source
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c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð1þ ssÞCv

k

r

ð7Þ

The coefficients C1 and C2 are found by applying the

boundary conditions at the bottom and top surfaces. For the

former we readily have

Tð0; sÞ ¼ 0 ð8Þ

and for the latter the law of Cattaneo–Vernotte (2) yields:

k
dTðx; sÞ

dx
x¼Hj ¼ ð1þ ssÞp0ðsÞ ð9Þ

The rest of this paper will mainly focus on the thermal

step response. In other words, the heat source is suddenly

switched on at t = 0 and the temperature distribution is

studied. Therefore we set:

p0ðtÞ ¼ p0 � uðtÞ ) p0ðsÞ ¼
p0

s
ð10Þ

in which

uðtÞ ¼ 0 t\0

1 t[0

�

ð11Þ

is the Heaviside function. Combining (6), (8) and (9)

produces:

Tðx; sÞ ¼ p0ð1þ ssÞ sinhðcxÞ
ksc coshðcHÞ ð12Þ

From Eq. (12) the heat flux flowing in the –x direction

(source to sink) can be derived by applying (2):

qðx; sÞ ¼ þk

1þ ss
dTðx; sÞ

dx
¼ p0 coshðcxÞ

s coshðcHÞ ð13Þ

Moreover, if we divide the source temperature T(H, s) by

the total power P(s) = A � p0(s) we obtain the thermal

impedance of the substrate:

ZthðsÞ ¼
H

kA
� ð1þ ssÞ tanhðcHÞ

cH
ð14Þ

The thermal impedance is commonly evaluated for s = jx,

providing the thermal frequency response (AC analysis).

One can verify that the DC limit Zth(s fi 0) of (14)

produces the correct and well known result for the thermal

resistance, i.e., Rth ¼ H=kA. As Zth does not depend on the

particular waveform of the power dissipation, it captures

the entire dynamic behaviour of the substrate. Therefore

the complex thermal impedance (and more precise its

Nyquist plot in particular) can be used for thermal char-

acterization of electronic packages [5–8].

To facilitate the interpretation of the results, we will

henceforth work with dimensionless forms of the expres-

sions (12), (13) and (14). The temperature, heat flux and

impedance are normalized respectively to the steady state

temperature of the source Tss ¼ TðH; t!1Þ ¼ p0H=k,

the flux at the source p0 and the DC impedance Rth. Nor-

malized Laplace expressions and their time domain coun-

terparts will be indicated with a tilde. Summarizing:

~T ¼ k

p0H
� T; ~q ¼ q

p0

; ~Zth ¼
kA

H
� Zth ð15Þ

2.3 Thermal step response

2.3.1 Temperature

The transient behaviour of the temperature in the substrate

can be obtained by taking the inverse Laplace transform of
~Tðx; sÞ, being the normalized form of (12). First we write:

sinhðcxÞ
coshðcHÞ ¼

e�cH ecx� e�cx½ �
1þ e�2cH

¼ ecx� e�cx½ � e�cH � e�3cH þ e�5cH � . . .
� �

¼ e�cðH�xÞ � e�cðHþxÞ � e�cð3H�xÞ

þe�cð3HþxÞ þ e�cð5H�xÞ � e�cð5H�xÞ � . . . ð16Þ

This shows that ~Tðx;sÞ can be written as the summation of

terms of the following form

1þ ss
s
� e
�ca

cH
¼ 1þ ss

s
� /ðs; aÞ ð17Þ

where a takes the form (2n + 1)H ± x. After some

manipulation we obtain:

/ðs; aÞ ¼ c

H

exp � a
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 1=sÞ
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 1=sÞ
p ð18Þ

for which the inverse Laplace transform is found to be [9]

/ðt; aÞ ¼ c

H
exp � t

2s

� �

I0

1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � a2

c2

r

 !

u t � a

c

� �

ð19Þ

with I0 the modified Bessel function from the first kind with

order 0. The remaining factor 1þss
s ¼ 1

s þ s in (17) produces

the integral and a fraction s of the function /(t, a). The

normalized step response temperature is finally given by:

~Tðx; tÞ ¼
X

1

n¼0

an s/ðt; anÞ þ
Z t

0

/ðt; anÞdt

� �

ð20Þ

with
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a2i ¼ ð�1Þi; a2iþ1 ¼ ð�1Þiþ1 ð21Þ

and

a2i ¼ ð2iþ 1ÞH � x; a2iþ1 ¼ ð2iþ 1ÞH þ x ð22Þ

It is important to point out the presence of uðt � a
cÞ in

both /(t, a) and � /(t, a). This Heaviside function intro-

duces a time delay a
c. A first consequence is that (20) is

eventually not an infinite series; starting from n = 0, more

terms must be gradually included as time progresses. Even

more important, these time delays have a physical mean-

ing: a
c is indeed nothing else than the time needed for a

wave with speed c to travel a distance a. Moreover, the

values (22) for an correspond exactly to the total distance

traversed at location x by a wave reflecting back and forth

between the top and bottom surface of the substrate

(Fig. 3). These observations clearly indicate that the

hyperbolic diffusion equation gives rise to thermal waves,

running at the speed of sound c. These waves are however

strongly damped and are only important for very thin

substrates, as we will see in a further section. For thicker

substrates the wave effects are hardly noticable and they

can be neglected. In such cases, as expected, the classical

Fourier conduction can be used.

2.3.2 Heat flux from source towards sink

Using the method similar to what has been been done for

the temperature, ~qðx; sÞis found to be composed of terms of

the following form:

exp � a
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 1=sÞ
p

� �

s
ð23Þ

Using [9] yields after some manipulation:

~qðx; tÞ ¼
X

1

n¼0

bn

Z

t

0

wðt; anÞdt ð24Þ

where an is given by (22),

b2i ¼ ð�1Þi; b2iþ1 ¼ ð�1Þi ð25Þ

and

wðt; aÞ ¼ exp � t
2s

� �

�
h

a=cs

2
ffiffiffiffiffiffiffiffi

t2�a2

c2

p I1
1
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � a2

c2

q

� �

u t � a
c

� �

:

þ I0
1
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � a2

c2

q

� �

d t � a
c

� �

i

ð26Þ

with I1 the modified Bessel function from the first kind

with order 1 and d the Dirac function. Since I0(x fi
0) = 1, the integration in (24) of the second term of (26)

can be simplified and gives rise to

exp � a

2cs

� �

u t � a

c

� �

ð27Þ

Like before, the Heaviside functions cause a time delay

an=c for the n-th term of the heat flux (24). This underlines

again the wave character of the solution. The heat travels at

a finite speed c through the substrate, consistent with the

mechanical nature of the heat propagation stated before. As

the an values did not change, the physical explanation of

Fig. 3 still remains valid.

3 Results and discussion

Further analysis will now be carried out for a silicon sub-

strate with square shaped cross-section (A = 100 nm ·
100 nm). The graphs that are presented were produced by

plotting Eqs. (14), (20) and (24) with a symbolic mathe-

matics computer program.

3.1 Thermal Impedance

We will study the thermal impedance along the imaginary

axis s = jx, revealing the AC behaviour of the substrate.

This information can be interpreted directly in terms of an

equivalent electrical distributed network. The most con-

venient way of representing Zth is using its Nyquist curve,

being a plot of Im[Zth(jx)] versus Re[Zth(jx)] with x as a

parameter. Nyquist impedance plots for various substrate

thickness values are shown in Figs. 4–7.

For the ‘thick’ 100 nm substrate the results for non-

Fourier and classical (s = 0) conduction are compared

(Fig. 4). Whereas the low frequency part of the two curves

almost coincide, the high frequency behaviour is quite

different. The non-Fourier impedance tends to converge to

a value which is not equal to zero. This high frequency

(HF) limit can be calculated by taking the limit s fi ¥ of

(14). After normalization we obtain:
Fig. 3 Physical interpretation of an values as total wave travel

distance
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~Zth;HF ¼
kA

H
lim
s!1

ZthðsÞ ¼
k

HcCv
ð28Þ

For H = 100 nm and with the silicon parameters

mentioned earlier we get 0.18 which is indeed the value

observed on the graph. The result (28) can also be

explained physically. Due to the geometry of the

substrate, the elements shown in Fig. 1 are all identical

(R*, L* and C* are constant). For very high frequencies,

such that x L*� R*, the series resistance can be neglected.

At that point the equivalent distributed network for the

substrate is nothing else than a LC transmission line, for

which the characteristic impedance is known as

Z0 ¼
ffiffiffiffiffiffi

L�

C�

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
kA
� 1

CvA

r

¼ 1

AcCv
ð29Þ

where (4) has been used. Division by Rth for normalization

gives ~Z0 ¼ k
HcCv

, being exactly the same result that has been

found in (28).

For thinner substrates, some more interesting things start

to happen. For H = 50 nm one can notice oscillations of

the higher frequency part (Fig. 5). Not surprisingly, the

impedance fluctuates around the characteristic impedance

of the equivalent transmission line (Eq. (28) now produces

0.36). The most remarkable fact is the Nyquist plot tra-

versing the first quadrant of the complex plane, where

Im[Zth] > 0. Such inductive behaviour is not possible for

classical Fourier conduction.

As the thickness of the substrate further decreases, the

inductive character can even be observed for low

frequencies (Figs. 6 and 7). At the same time the high

frequency fluctuations start to grow dramatically. As the

frequency is increased the impedance curve tends to a

circle, with its origin located on the real axis. This fact can

be proven by a profound analysis of (14). As can be seen on

the Nyquist plots, the circle becomes bigger and is moved

to the right as the substrate gets thinner.

One remarkable observation for the 10 nm case is that

the radius of the normalized impedance circle is relatively

large compared to 1. Hence the magnitude of the imped-

ance is significantly exceeding the steady-state value in

certain frequency ranges. This is important from a reli-

ability point of view, since the temperature of a device

operating in this frequency range will be wildly oscillating

between very high and sub-ambient values.

3.2 Transient step response

Throughout the graphs, the time scale has been normalized

to a value H=c. This is the time a wave needs to travel

between the heat source and the bottom of the substrate.

Fig. 4 Nyquist plot of normalized thermal impedance (H = 100 nm)

Fig. 5 Nyquist plot of normalized thermal impedance (H = 50 nm)

Fig. 6 Nyquist plot of normalized thermal impedance (H = 25 nm)

Fig. 7 Nyquist plot of normalized thermal impedance (H = 10 nm)
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The results presented here have been carefully checked.

Comparison to those obtained by numerical inverse Fourier

transform of (12) and (13) showed a very good agreement.

The numerical method is much faster, but as it produces a

lot of numerical noise (rapid fluctuations around the ana-

lytical plot) these results will not be shown here.

We will mainly focus on a very thin substrate:

H = 10 nm. Note that for this case the ’wave time’ H=c is

only 2 ps. Temperature and heat flux for different locations

in the substrate after source switch-on at ~t ¼ 0 are shown in

Fig. 8.

To begin with, the horizontal lines for the normalized

bottom temperature and heat flux at the top (values 0 and 1

respectively) should be noted. They prove that the solutions

(20) and (24) fulfill the boundary conditions.

Second, the wave character can be observed very

clearly. Both temperature and heat flux show discontinu-

ities. Due to the normalization choice of the time scale, the

moment at which these steps occur at various depths can be

easily understood by tracking the position of the wavefront

as shown in Fig. 3.

Third, we focus on the non-zero starting value for the

source temperature. Immediately after it is switched on

(thus corresponding to very high frequencies) the source

‘feels’ a LC transmission line, hence:

TðH; 0þÞ ¼ Ap0 � Z0 )
ð29Þ

~TðH; 0þÞ ¼ k

HcCv
ð30Þ

giving 1.80 as observed in Fig. 8(a). From (12) it can be

demonstrated that for all other locations 0 £ x < H the

starting value for the temperature identically equals 0, in

accordance with the time delays involved. As time pro-

gresses, one can see the temperature and flux are con-

verging towards their (classical) steady state values,

namely x=H and 1 respectively.

Finally and most remarkable, a rather exotic behaviour

is noticed. Although the heat source is continuously

injecting energy into the substrate, temperatures can

decrease for a while. During some periods of time, circled

in Fig. 8, even negative temperatures (or in better words,

below ambient) are observed. It should be stressed that this

is not a violation of the second nor third law of thermo-

dynamics. Considering the second, it tells in which direc-

tion a process should evolve spontaneously, e.g. heat flows

from higher to lower temperatures. In this point of view,

temperature decrease while heating seems impossible.

However, such happens only during a very short time.

Also, thermodynamic laws try to describe equilibrium,

whereas non-Fourier conduction especially aims at a cor-

rect description of the transient behaviour. About the third

law, suppose (as a ‘Gedankenexperiment’) the substrate is

placed in an environment at absolute zero. According to

Debye, for very low temperatures we have Cv � T3 [10].

The problem now becomes non-linear and the solution

derived earlier for the heat equation is no longer valid.

In addition, the negative temperatures may be caused by

the rather strict boundary condition T(0, t) = 0. As the

initial temperature wave approaches the bottom, a virtual

Fig. 8 Temperature and heat flux at various depths in the substrate as

function of time (H = 10 nm)
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negative wave coming from the opposite direction (leading

to the reflection of the incident wave) is induced to force

the temperature at zero value. Considering the substrate on

top of a much larger carrier material with large heat

capacity (e.g. copper), such that the interface is nearly

isothermal, might be more realistic. This will be the subject

of future work. The suggested extension might also pave

the way for experimental verifications, since the situation

currently presented is nearly impossible to achieve in

practice. Establishing a uniform heat dissipation on top of a

very thin layer while keeping the bottom perfectly cooled

would be extremely difficult. Also the temperature mea-

surement is posing problems, as the non-Fourier phenom-

ena are occuring at time scales of no more than a few

picoseconds. Further research including a second, much

thicker, material on which a thin layer is deposited may

help to overcome these practical considerations. It should

be noted that the analysis which is presented here is only

meant as a first step to gain more insight into non-Fourier

thermal conduction, and to illustrate that thermal wave-like

behaviour is observed when considering very small struc-

tures.

For thicker substrates, the discontinuous behaviour

including the negative temperatures disappears gradually.

The normalized source temperature and bottom heat flux

for H = 50 and 100 nm are presented in Fig. 9.

The results start looking quite similar to the classical

conduction solutions, however two obvious differences are

noticed. The non-Fourier conduction manifests itself in the

presence of a time delay, due to the finite heat propagation

speed, and the non-zero initial source temperature.

4 Summary and conclusions

The Cattaneo-Vernotte model has the potential of growing

indespensible in microelectronics design: due to high cir-

cuit speed and extremely small dimensions of the devices,

the finite velocity of heat propagation can no longer be

neglected. Non-Fourier conduction in a semiconductor

substrate has been studied by means of analytical solutions

for the temperature, heat flux and thermal impedance. The

thermal behaviour for very fast phenomena (high fre-

quencies) has been successfully explained by a transmis-

sion line equivalence. Especially for very thin substrates,

thermal waves are clearly noticed. The wave character

gives rise to effects which do not occur under classical

Fourier conduction. Key observations are inductive

behaviour, discontinuities in the thermal step response, and

negative (subambient) temperatures while heating. The

latter may be induced by the perfect heat sink boundary

condition; more attention will be dedicated to this problem

in further research.
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