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Abstract A new idea for generation of quadrature signals
on chip is presented. The topology is based on a passive RC
polyphase filter, where the resistive parts are made active by
using inverters. The active filter combines quadrature gener-
ation, isolation, and gain without losing quadrature perfor-
mance compared to a regular RC polyphase filter. The filter
technique is demonstrated in a 10 GHz front-end application
where a broadband VCO, having a tuning range of 1.44 GHz,
drives an active polyphase filter to generate quadrature LO
signals. According to simulations the quadrature phase error
shows a typical tuned behavior and stays below 0.8◦ for the
complete tuning range. Since the signal amplitude is high
throughout the filter the noise is low, below 160 dBc/Hz at
10 MHz offset. The high amplitude also reduces the need for
high gain tuned buffers, thereby enabling significant reduc-
tions in chip area.
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1 Introduction

The low-IF receiver is a good compromise between the clas-
sic heterodyne receiver and the homodyne receiver. The IF
filters and amplifiers operate at low frequencies like in a
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homodyne structure, which is beneficial, but the image re-
jection can be troublesome. Since the image is located only
two times the IF from the desired signal, it will pass the
band-select filter unattenuated, putting very high demands
on the image rejection by the receiver front-end. The image
rejection ratio for a quadrature receiver can be expressed
according to:

IRR ≈ 4

ε2 + θ2

∣
∣
∣
∣
Small ε and θ

(1)

where ε denotes the gain mismatch and θ the phase error
between the I an Q branches. Large image rejection requires
well matched receiver building blocks and accurate quadra-
ture LO signals. Since switching mixers are typically used
the phase accuracy is more important than the amplitude
accuracy of the LO signals.

The most basic way to generate quadrature signals is to
let resistors and capacitors form a symmetrical polyphase
filter [1]. The main advantages of this structure are the sim-
plicity (only passive components), high quadrature accuracy
(good matching), and high frequency capabilities. However,
the passive polyphase filter is not a power efficient solu-
tion. Power consuming active buffers are typically needed
to compensate for the signal attenuation in the passive fil-
ter. The buffers are also needed to provide isolation between
the mixer and the VCO. Strong signals in the mixer could
otherwise disturb the sensitive VCO through pulling. An-
other common method for quadrature generation is to let a
differential VCO work at twice the desired frequency and
obtain quadrature by means of frequency division, which
can be accomplished using a digital divide-by-two flip-flop.
The main drawback using this technique is the large cur-
rent consumption needed in order to achieve good phase
noise performance. A quadrature VCO (QVCO) can gen-
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erate quadrature signals directly and it can be realized by
coupling two differential LC VCOs to each other. The cou-
pling forces the output phases to lock in quadrature, and the
good phase noise performance of the LC oscillator can be
preserved. In a standard quadrature receiver two mixers work
in parallel, following the LNA. For low supply voltages it
gives an advantage in terms of dynamic range to implement
these mixers as quadrature passive mixers [2]. In order to
minimize the on-resistance of the switches the LO voltage
drive must be large, which can be accomplished by a tuned
buffer. However, a quadrature LC-tuned buffer occupies a
large chip area due to inductors [3] and together with the
QVCO this solution is not very cost efficient. In this work
an active polyphase filter is therefore considered instead,
where the main idea is to combine isolation, gain, and small
chip area. So far, active polyphase filters have been used in
low frequency applications such as channel select filters, e.g.
[4], but as demonstrated here the idea can be used for high
frequency quadrature LO generation as well.

The paper is organized as follows. After recalling the reg-
ular RC-polyphase filter, Section 2 presents the active gm-C
structure and describes its behavior. Section 3 introduces the
In-C topology, where the gm-cell is implemented using a
regular CMOS inverter, and finally Section 4 presents sim-
ulation results of a 10 GHz quadrature signal generator in
130 nm CMOS technology.

2 Analysis of ideal RC and gm-C filters

The basic passive polyphase filter is shown in Fig. 1. The
structure is symmetrical and the only building blocks are
resistors and capacitors. To increase its frequency range
a complete filter may consist of several links like the one
depicted in Fig. 1 in cascade, where each link may have a
different value of R and C [1]. The essential behavior of such
a filter can, however, be found by investigating the structure
of Fig. 1. A small phase-imbalance, θ , is introduced to the
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Fig. 1 A passive RC polyphase filter
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Fig. 2 The active gmC polyphase filter

input signals. The phase difference between VA and VC (and
between VB and VD) will still equal 180◦ thanks to the circuit
symmetry. However, the phase difference between VA and VB

will depend on both the circuit tuning and the angle θ . If V0

is treated as the reference phase, the phases of VA and VB will
be:

∠VA,V0=ref = arctan

(
cos (θ ) + 1/ (ωRC)

sin (θ )

)

∠VB,V0=ref = arctan

( − sin (θ )

cos (θ ) + ωRC

)
(2)

when the circuit is perfectly tuned, i.e. ωRC = 1, the phase
difference will be independent of θ and always equal to
90◦.

If the resistors of the regular polyphase filter in Fig. 1
are replaced by transconductances, an active counterpart is
found, see Fig. 2. This topology behaves in the same way as
the regular structure if gm equals 1/R and ideal source and
load is assumed. However, the high input impedance of the
transconductor reduces the loading of the preceding stage.
The voltage gain of an unloaded single stage equals

√
2 for

the RC structure and 2 for the gmC structure. If a cascade of
identical stages are used, the gain per stage of the passive
filter drops to 1/

√
2. For the active filter this calculation is

more difficult, as illustrated in Fig. 3. For an arbitrary stage in
a large cascaded structure it can be assumed that Zin equals
ZL, which represents ZIN of the following stage. By using
nodal analysis we can derive the analytical expression for
ZIN . By inspection we get:

Ic + Ig + IZ = gm Vine− j π
2

Ic = Vin − VL
(

1
jωC

) = ωCe j π
2 (Vin + IZ ZL ) (3)
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Fig. 3 Model of the active gmC polyphase filter for calculating the
stage gain

By using Ig = − VLgo and setting the input impedance Zin

equal to load impedance ZL we get the following expression
for ZL:

ZL = Zin = Vin

Ic
= 1 − jωC · ZL

(

j go

ωC − 1
)

jωC(1 + ZL (− jgm + go))
(4)

If a suitable software is used, ZL can be solved analytically. It
is assumed that the stage is tuned to ensure gm = ωC which
leads to the following analytical solution:

ZL = Zin = go ± √

g2
o + 4g2

m + j4gm go

2g2
m + 2 jgm go

(5)

The stage-gain is now easily derived by inspection of
Fig. 3.

|VL |
|Vin| =

∣
∣
∣
∣
1 + j

1

ωC · ZL

∣
∣
∣
∣
=

∣
∣
∣
∣
1 + j

1

gm ZL

∣
∣
∣
∣

(6)

For an ideal inverter, having a zero output conductance, the
load impedance becomes 1/gm and the stage drops from 2
(the unloaded stage-gain) to

√
2. However, a real inverter

implemented in CMOS has a non-negligible, signal depen-
dent, go which stabilizes the output amplitude of the filter,
but makes it difficult to predict the true gain for the whole ac-
tive polyphase filter by hand. Instead the designer must rely
on simulations, using extensive transistor models, in order to
achieve the desired filter performance.

Compared to the passive filter in Fig. 1, the active design
in Fig. 2 has the reverse phase order due to the inverter func-
tion of the transconductors. In order to analyze the quadra-
ture behavior (the phases of Vα and Vβ) of the active filter in
Fig. 2, a simplified model can be used, see Fig. 4. To better
model the behavior of an active transconductor, a phase dif-
ference ξ has been introduced between its output current and
input voltage. As in Fig. 1, θ represents the input quadra-
ture skew. The output signals Vα and Vβ can be expressed

gm

gm
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Fig. 4 A model of the gmC structure, suitable for phase error analysis

as:

Vα = Vine j(π/2−θ ) − Vingme jξ 1

jωC

= Vine jπ/2
(

e− jθ + gm

ωC
e jξ

)

= Vine jπ/2 · Qα (7)

Vβ = Vin − Vine− j(π/2+θ )gme jξ 1

jωC

= Vin

(

1 + gm

ωC
e j(ξ−θ )

)

= Vin · Qβ (8)

For a perfect quadrature output signal, Qα and Qβ must be
equal. In (9) the phases of Qα and Qβ are examined and after
some algebra it can be shown that the phases are identical
when � = 1, e.g. when gm = ωC. This means that the
transconductor phase shift ξ and input phase skew θ only
affect the absolute phase of the outputs of a perfectly tuned
filter.

∠Q A,Vin=ref = arctan

(
� sin(ξ − θ )

1 + � cos(ξ − θ )

)

∠Q B,Vin=ref = arctan

(
� sin(ξ ) − sin(θ )

cos(θ ) + � cos(ξ )

)

(9)

� = gm/(ωC)

3 Inverter-C filters

When the transconductor is implemented using a CMOS
inverter, depicted in Fig. 5, two major effects must be con-
sidered. First, the transconductance will be signal dependent,
and thereby time variant. Second, the output conductance, as-
sumed to be zero in the ideal model, will also show a signal
dependence. These effects prevent the use of a regular small
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Fig. 5 CMOS inverter implementation. The effective gm is called
gm,eff , and as before ξ indicates the phases difference between the
output current and input voltage

signal analysis to understand the filter behavior. In order to
analyze the active filter, implemented with CMOS inverters,
an effective transconductance (gm) can be used. By making a
periodic steady state (or transient) analysis, the fundamental
output current amplitude and the voltage amplitude can be
found. From that an effective gm for the fundamental fre-
quency can be calculated. It is important that the inverter is
simulated with the same load and at the same signal level
as in the polyphase filter for gm,eff to be accurate. Since the
effective gm, called gm,eff from now on, takes all parasitic
effects of the inverter into account it can be used to analyze
the active filter.

To verify the effective transconductance approach, the
active inverter based polyphase filter, called InC filter, has
been simulated at a low frequency (1 MHz). Both gm,eff

and the output current phase of the inverters can be found by
simulation. The quadrature phase error can then be calculated
using (7, 8). As can be seen in Fig. 2, the filter is symmetrical
and all transconductors are assumed to behave exactly the
same. However, when a phase skew (θ ) of the input signal
is present the inverters must be treated as two pairs, having
different gm,eff and ξ . In Fig. 6 the phase error is depicted for
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Fig. 6 Simulated phase error for both the RC filter and the InC filter.
The input phase skew is 2◦

both the passive RC implementation and the InC structure
implemented in a 0.35 µm CMOS process. The input phase
skew is θ = 2◦ and both filters are tuned to 1 MHz. As
can be seen, the two different filter implementations show
about the same performance. Also the estimated phase error
of the InC filter is plotted. The estimation is based on (9)
with simulated values of gm,eff and ξ .

Using the same technique on the passive RC filter the ef-
fective transconductances of the resistors can be expressed
according to (10). As for the InC filter, the four resistors can
be treated as two pairs, having different effective transcon-
ductances. When the filter is tuned and there is no input phase
skew (θ = 0), the transconductances all become equal to ωC,
which is expected.

gm1,eff =
√

2(1 + sin(θ ))(ωC)2

1 + (ωRC)2

gm2,eff =
√

2(1 − sin(θ ))(ωC)2

1 + (ωRC)2

(10)

Figure 7 shows gm,eff for both an RC filter and an InC filter
as function of frequency. Both filters are tuned to 1 MHz.
The behavior of gm,eff is very similar for the two filters and
the static difference is due to the phase shift ξ of the CMOS
inverters. The difference between the two gm,eff—pairs is
proportional to the input phase skew θ . Since the effective
gm of the inverter can easily be changed by scaling the width
of the transistors, the filter can be fine tuned to the correct
operating frequency. In Fig. 7 the ideal gm that would produce
perfect quadrature signals at all frequencies is indicated. The
ideal gm is proportional to the frequency. Figure 8 shows a
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Fig. 7 Effective transconductances as function of frequency for tuned
RC and InC filters (1 MHz). The input phase skew is 2◦
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Table 1 Summary of
simulation results Tuning range 9.14–10.58 GHz

VCO current (DC) 3.8 mA
Polyphase filter operating current (DC) 10.2 mA
Phase noise at 10 MHz offset <− 160 dBc/Hz (polyphase filter only)
Quadrature error (9.14–10.58 GHz) < 0.8◦

Supply voltage 1.2 V
CA 126 fF
CB 188 fF
Cc 230 fF
Cosc 90 fF
Lsym 450 pH
CL Transistor gate: 87.2 × 0.13 µm2

Rb 10 k	

Inverter NMOS transistor W = 8 µm, L = 0.13 µm
Inverter PMOS transistor W = 16 µm, L = 0.13 µm

Fig. 8 The remaining quadrature error at the output of the InC filter
implementation. The PMOS transistor width is set to 2.5 times the
NMOS width

simulation of the remaining part of the quadrature error at
the InC filter output as function of both transistor width and
frequency. As can be seen, for a minimum output quadrature
error the width should be scaled linearly with frequency.
This is expected since the ideal gm is proportional to the
frequency, and the gm of the inverters is proportional to the
transistor width.

4 Simulation of 10 GHz quadrature signal generation in
130 nm CMOS

When used in practice, polyphase filters use cascaded stages
in order to achieve larger bandwidth and less sensitivity to
process variations. In this design example a 10 GHz quadra-
ture LO signal is generated by a broadband differential VCO
and a three stage active polyphase filter, implemented in
a standard 0.13 µm CMOS process, see Fig. 9. The first
InC link (A) generates a coarse quadrature signal, whereas
the following InC link (B) reduces the quadrature error and
makes the filter broadband. The output link is only an inverter
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Fig. 9 Architecture of the quadrature LO signal generation. The DC
feedback of the inverters, stabilizing the bias point, is included

buffer circuit to improve the VCO isolation. The buffer drives
the gates of the transistors in a quadrature passive mixer in
the front-end, and the capacitive load is represented by CL

in this example. The VCO is implemented as a differential
negative resistance oscillator, using a symmetrical differen-
tial inductor and a small CMOS varactor for fine tuning. In
order to achieve a broad tuning range two larger capacitors
can be switched in and out of the resonance tank as described
in [5]. A simulation of the quadrature generation is shown
in Fig. 10, where the VCO output amplitude, the polyphase
filter output amplitude, and the output quadrature phase er-
ror are depicted as functions of the VCO frequency. In order
to get realistic results a quadrature passive mixer was used
as a load. The tuning range of the VCO is 1.44 GHz, with
a center frequency of 9.86 GHz. As expected, the output
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Fig. 10 Simulation of the single ended VCO amplitude, the output
amplitude (Q + , Q− , I + , I − ), and the output quadrature error

amplitude drops with frequency due to the capacitive load
of the passive mixers, which adds complexity to the mixer
design where there is already a significant trade off between
switch transistor width and conversion gain. However, the
amplitude drop is only 10% over the whole tuning range,
making the conversion loss variation of the mixer small. The
quadrature error shows a typical tuned behavior and stays be-
low 0.8◦ for the complete VCO tuning range. In a filter with
this many transistors it is important to investigate the far out
phase noise performance, which is important to many radio
transceivers. Thanks to the high signal amplitude throughout
the filter the noise is low, below −160 dBc/Hz at 10 MHz
offset.

5 Summary

In this paper an active polyphase filter architecture for gener-
ation of quadrature signals on chip has been presented. It has
been shown how the regular RC polyphase filter structure can
be modified, using inverters instead of resistors. Sufficient
gain and isolation can thereby be achieved without addi-
tional tuned buffers. By using a differential VCO, without
tuned buffers, significant chip area can be saved. Also, since
there is no need for additional buffers, this compensates for
the power dissipation of the active devices. The technique is
exemplified by a simulated 130 nm CMOS 10 GHz design
and the performance is summarized in Table 1.
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