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Let R and Rϕ be associative rings with isomorphic subring lattices, and ϕ be a lattice
isomorphism (or else a projection) of the ring R onto the ring Rϕ. We call Rϕ the
projective image of a ring R and call R itself the projective preimage of a ring Rϕ. The
main result of the first part of the paper is Theorem 5, which proves that the projective
image Rϕ of a one-generated finite p-ring R is also one-generated if Rϕ at the same
time is itself a p-ring. In the second part, we continue studying projections of matrix
rings. The main result of this part is Theorems 6 and 7, which prove that if R = Mn(K)

is the ring of all square matrices of order n over a finite ring K with identity, and ϕ

is a projection of the ring R onto the ring Rϕ, then Rϕ = Mn(K
′), where K ′ is a ring

with identity, lattice-isomorphic to the ring K.

INTRODUCTION

Associative rings are considered. The lattice of all subrings of an arbitrary ring R is denoted
by L(R). Two rings R and R′ are said to be lattice-isomorphic if their subring lattices L(R) and
L(R′), respectively, are isomorpic. A lattice isomorphism (or else a projection) L(R) ∼= L(R′) is
denoted by the letter ϕ and the ring R′ is denoted as Rϕ. We call Rϕ the projective image of a ring
R and call R itself the projective preimage of a ring Rϕ. If the lattice isomorphism L(R) ∼= L(Rϕ)

implies an isomorphism R ∼= Rϕ, then we say that the ring R is lattice definable. We say that some
class of rings K is lattice definable if the projective images of rings in the class K also belong to K.
In studying lattice isomorphisms of rings, we consider the problems of lattice definability of classes
of rings and of lattice definability of rings.
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Let k be a natural number. A finite ring R is said to be k-generated if any of its minimal sets of
generators consists of k elements. For k = 1, R will be referred to as a one-generated ring. In [1, 2],
it was proved that the property of being one-generated for rings is preserved under projections of
nilpotent rings and finite fields. Lattice definability of Galois rings was stated in [3] (for a definition
of a Galois ring, see [3, Def. 1]). However, one-generatedness of rings is not always preserved under
projections [4, Example 2]. It is worth noting that the problem of preserving the property of being
k-generated under lattice isomorphisms is important as for proving the lattice definability of rings
as well as for constructing examples [5, Lemma 3, Example 2]. Let Kp be a class of rings whose
additive groups are p-groups. The main results of the first part of the paper are Theorem 5 and
Corollary 1, which prove that the property of being k-generated for a finite ring is preserved under
projections in the class Kp. The relevance of these statements is strengthened by the fact that
projective images of rings in Kp not infrequently themselves belong to Kp, which is confirmed in
the second part of the paper devoted to projections of matrix rings.

Lattice isomorphisms of matrix algebras were first considered by D. W. Barnes [6], who proved
that an algebra lattice-isomorphic to an algebra Mn(Δ), where n � 2 and Δ is a finite-dimensional
division algebra, is also a matrix algebra Mn(D) considered over some division algebra D lattice-
isomorphic to Δ. A. V. Yagzhev [7] generalized Barnes’s result by lifting the restriction on the
dimension of the algebra Δ. That matrix rings treated over different types of Galois rings are
lattice definable was proved in [8, 9]. Lattice isomorphisms of matrix rings, when considered over
finite local rings, were dealt with in [10]. The main results of the second part of this paper are
Theorems 6 and 7, which prove that if R = Mn(K) is the ring of all square matrices of order
n over a finite ring K with identity, and ϕ is a projection of the ring R onto the ring Rϕ, then
Rϕ = Mn(K

′), where K ′ is a ring with identity, lattice-isomorphic to the ring K. The question
whether the ring R is lattice definable remains open.

We specify the notation used in the paper. Let S and T be subgroups in the additive group R+

of a ring R. If R = {s+ t | s ∈ S∧ t ∈ T}, then we use the notation R = S+T . And use R = S�T

whenever R = S + T and S ∩ T = {0}. The equality R = S ⊕ T will mean that R = S � T and
S and T are two-sided ideals in R. In this case we say that a ring R is decomposable into a direct
sum of rings S and T . Other designations are standard: S ∨T is a subring generated by subrings S
and T in a ring R; RadR is the Jacobson radical of a ring R; L(R) is the subring lattice of a ring
R; l(R) is the length of a ring R, i.e., the length of its subring lattice L(R), where by the length of
a finite lattice L is meant the greatest of the lengths of the chains in L; charR is the characteristic
of a ring R; N and Z are the sets of natural numbers and integers, respectively; 〈a1, a2, . . . , an〉 is
a ring generated by elements a1, a2, . . . , an; (r) is a principal ideal generated by an element r in
R; o(r) is the additive order of an element r; ind r is the nilpotency index of an element r; the
letters k, l,m, n, p, q with or without indices stand for natural numbers, and p and q also stand for
prime numbers. Lower-case Greek letters, except ϕ, denote integers. The letter ϕ is used to denote
a lattice isomorphism of the ring R onto the ring Rϕ. In the cases when the projective image of
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a ring R generated by an element r is a one-generated ring, we denote 〈r〉ϕ as 〈r′〉, in particular
〈0〉ϕ = 〈0′〉.

1. PRELIMINARY INFORMATION

By a p-ring R we mean a ring whose additive group is a p-group. By an algebraic ring we mean
a ring in which every element is a root of some primitive polynomial in the ring xZ[x]. In proving
a series of statements, we use a description of p-rings whose subring lattices are decomposable into
direct products of lattices. For the reader’s convenience, we give this description.

THEOREM 1 [11, Thm. 1]. The subring lattice of a p-ring R is decomposable into a direct
product of lattices if and only if R is an algebraic ring isomorphic to one of the rings

Q1 = N ⊕ P, L(Q1) ∼= L(N)× L(P ),

Q2 = (N ⊕ S)� 〈e〉, L(Q2) ∼= L(N)× L(S � 〈e〉),
Q3 = Q2 ⊕ P, L(Q3) ∼= L(N)× L((S � 〈e〉)⊕ P );

here N , P are nonzero rings, N is a nil ring, P is a ring without nilpotent elements other than zero,
S = {0} or S is a ring without nilpotent elements other than zero, and e is the identity element of
order p in the ring Q2.

As a criterion for one-generatedness of a finite commutative ring we use the following:

THEOREM 2 [4, Prop. 2]. Let a finite commutative p-ring R be representable as R = S+(r),
where S is a subring decomposable into a direct sum of Galois rings and r is a nilpotent element.
The ring R is generated by a single element if and only if the subring S is generated by a single
element.

To study projective images of finite one-generated p-rings, we need a description of rings whose
subring lattices are finite chains. We give this description.

THEOREM 3 [12, Thm. 1.6]. The subring lattice of a ring R is a finite chain if and only if R
is isomorphic to one of the rings

C1 = 〈r〉, where o(r) = pn, r2 = pkr, k = 1, n,

C2 = 〈r〉, where o(r) = p, ind r = 3,

C3 = 〈e〉, where o(e) = pn, e2 = e,

C4 = GF (pq
n
).

2. PROJECTIONS OF k-GENERATED FINITE RINGS

Recall that by Kp we denoted a class of p-rings. Let k ∈ N. It is easy to see that the property of
a ring to be k-generated is preserved under projections in the class Kp if it is preserved for k = 1.
Therefore, in this section we mainly focus on the projections of one-generated finite p-rings.

355



PROPOSITION 1. Let R be a one-generated nilpotent ring of order pn, and let ϕ be a lattice
isomorphism of the ring R onto the ring Rϕ. Then Rϕ is a one-generated ring. If L(R) is not a
chain, then Rϕ is a nilpotent ring of order pn; if, in addition, charR = charRϕ = p, then R ∼= Rϕ.

Proof. Let R = 〈r〉 The ring R is finite and contains a unique maximal subring M = pR+R2,
so Rϕ is a one-generated ring. Let Rϕ = 〈r′〉.

Suppose that the lattice L(R) is not a chain. According to [1, Thm. 1], Rϕ is a nilpotent p-ring.
By [1, Lemma 7], |Rϕ| = |R|. If charR = charRϕ = p, then R and Rϕ are lattice-isomorphic finite-
dimensional nilpotent algebras over a finite prime field GF (p). For finite-dimensional nilpotent
algebras, the dimension of an algebra coincides with the length of its subalgebra lattice [6, p. 107].
Then indRϕ − 1 = dimRϕ = l(Rϕ) = l(R) = dimR = indR − 1, whence indRϕ = indR. It is
clear that indr = indR = indRϕ = ind r′, and so 〈r〉 ∼= 〈r′〉. The proposition is proved.

We move on to examining projections of one-generated nonnilpotent rings. Projections of one-
generated finite rings with identity were studied in detail in [4], where sufficient conditions were
found under which the projective image of a finite one-generated ring with identity likewise is a
one-generated ring.

LEMMA 1. Let R be a finite nonnilpotent commutative ring without identity. The ring R is
one-generated if and only if R is representable as

R = 〈t〉 ⊕ 〈r〉, (1)

where 〈t〉 is a subring with identity, decomposable into a finite direct sum of rings Ti = Si + (ri),
i = 1, n; moreover, Si

∼= GR(pni ,mi), ri is a nilpotent element, and the identity element of the
subring Si is also one in Ti, and r is a nonzero nilpotent element.

Proof. Necessity. Let R be one-generated. Since R is not a nil ring, it contains at least one
nonzero idempotent element and, hence, contains a maximal orthogonal system of idempotents
e1, . . . , en. Using the Peirce decomposition of R with respect to idempotents ei, i = 1, n, we
represent R as R = T ⊕ N , where T = e1R ⊕ · · · ⊕ enR is a subring with identity and N is a
nilpotent subring. As shown in [4, Lemma 1], if the ring R is one-generated, then so are its direct
summands T and N : T = 〈t〉 and N = 〈r〉, where t, r ∈ R. Consequently, equality (1) holds. The
structure of finite one-generated rings with identity is described in [4, Thm. 1]. According to that
description, the ring 〈t〉 is decomposable into a finite direct sum of rings Ti = Si+(ri), i = 1, n, in
which case Si

∼= GR(pni ,mi), ri is a nilpotent element, the identity of the subring Si is also one
in Ti.

Sufficiency. Let R be representable in form (1). Denote by e an identity element of the subring
〈t〉 and represent e as a polynomial in t, setting e = f(t), where f(x) ∈ xZ[x]. Let v = t+ r. Then
f(v) = e + f(r). Let rk = 0. Then (f(v))k = e, and so e ∈ 〈v〉, whence 〈v〉 = R. The lemma is
proved.

As follows from Lemma 1, the simplest one-generated rings not containing an identity are rings
decomposable into a direct sum of two subrings, of which one is generated by an idempotent and
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the other, by a nilpotent element. A description of projective images of such rings is given in

PROPOSITION 2. Let ϕ be a lattice homomorphism of the p-ring R = 〈e〉 ⊕ 〈r〉, where
o(e) = pn, e2 = e, and r is a nonzero nilpotent element, onto the ring Rϕ. Then Rϕ is a one-
generated ring and the following conditions are satisfied:

(1) if n = 1 and 〈r〉 ∼= Ci, i = 1, 2 (cf. Theorem 3), then Rϕ ∼= P1 or Rϕ ∼= P2, where
P1 = 〈s′〉 ⊕ 〈t′〉, o(s′) = p1, 〈t′〉 is a p2-ring, p1, p2 are primes, 〈t′〉 ∼= Cj, and also either

(a) (s′)2 = 0′ or (s′)2 = s′ and j = 1, 4, p2 �= p1, or
(b) (s′)2 = 0′ and j = 3, 4, p2 = p1, or
(c) (s′)2 = s′ and j = 1, 2, p2 = p1;

P2 = 〈s′〉� 〈t′〉, o(s′) = p1, 〈t′〉 ∼= Cj, j = 1, 2, s′ is the identity of P2;
(2) if n = 1 and the lattice L(〈r〉) is not a chain, then Rϕ = 〈e〉ϕ � 〈r〉ϕ, 〈r〉ϕ = 〈r′〉 is a

nilpotent p-subring, 〈e〉ϕ = 〈s′〉, o(s′) = q (q is a prime), and also
(a) for q = p, it is true that (s′)2 = s′, s′r′ = r′s′ = 0′ or s′ is the identity of the ring Rϕ;
(b) for q �= p, it is true that s′r′ = r′s′ = 0′, (s′)2 = 0′ or (s′)2 = s′;
(3) if n > 1, then Rϕ is a q-ring, 〈e〉ϕ = 〈e′〉, (e′)2 = e′, o(e′) = qn, 〈r〉ϕ = 〈r′〉, r′ is a nilpotent

element, and one of the following holds:
(a) Rϕ = 〈e′〉� 〈r′〉, where e′ is an identity, q = p;
(b) Rϕ = 〈e′〉 ⊕ 〈v′〉, where v′ is a nilpotent element, q = p;
(c) Rϕ ∼= GF (qq1)⊕GF (q), and also n = 2, p = 2, q1 is a prime.
Proof. The ring R satisfies the hypotheses of Theorem 3 in [13] and, therefore, contains exactly

two maximal subrings. This means that the ring R itself and its projective image Rϕ are one-
generated. There are three cases to consider.

Case 1. Let n = 1 and 〈r〉 ∼= Ci, i = 1, 2. According to Theorem 1, L(R) ∼= L(〈e〉)×L(〈r〉). Let
〈e〉ϕ = 〈s′〉 and 〈r〉ϕ = 〈t′〉. By Theorem 3, o(s′) = p1 and (s′)2 = 0′ or (s′)2 = s′, 〈t′〉 is a p2-ring,
and 〈t′〉 ∼= Cj , j = 1, 4, p1, p2 are some primes. If p2 �= p1, then Rϕ ∼= P1 by [11, Thm. 2], and
condition (1a) holds. Let p2 = p1. If Rϕ does not contain an identity, then Rϕ ∼= P1 by Theorem 1,
and condition (1b) or (1c) holds, and if Rϕ is a ring with identity, then Rϕ ∼= P2.

Case 2. Let n = 1 and the lattice L(〈r〉) not be a chain. In view of Proposition 1, 〈r〉ϕ = 〈r′〉
is a nilpotent p-subring. According to Theorem 1, L(R) is decomposable into a direct product of
lattices L(〈e〉) and L(〈r〉). The subring 〈e〉 is an atom in the lattice L(R), so 〈e〉ϕ = 〈s′〉, where
s′ ∈ Rϕ and o(s′) = q for some prime q.

Suppose q = p. Since L(Rϕ) ∼= L(〈s′〉)× L(〈r′〉), and the subring 〈r′〉 is nilpotent, the subring
〈e〉ϕ does not contain nonzero nilpotent elements, and we may therefore assume that (s′)2 = s′.
Applying Theorem 1, we conclude that either s′r′ = r′s′ = 0′ or s′ is the identity in the ring Rϕ.
In the latter case, it is obvious that o(r′) = p. If q �= p, then s′r′ = r′s′ = 0′, and either (s′)2 = 0′

or (s′)2 = s′. Conditions (2a) and (2b) hold.
Case 3. Let n > 1. If the subring 〈r〉 contains just p elements, then conditions (3a)-(3c) hold

in view of [3, Lemma 7]. Therefore, below we assume that |〈r〉| > p. Then a nilpotent subring
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S = 〈pe〉⊕ 〈r〉 contains more than p2 elements. Furthermore, its subring lattice is not a chain, and
hence the projective image Sϕ is a p-ring, as follows by [1, Thm. 1]. Recall that Rϕ is a commutative
ring. Applying again [1, Thm. 1] to the subring S, we conclude that Sϕ is a p-nil ring. This fact
and Proposition 1 imply that 〈r〉ϕ = 〈r′〉 is a nilpotent subring. In addition, Rϕ is a p-ring because
all minimal subrings of Rϕ are contained in the subring Sϕ. Since L(〈e〉) is a finite chain, it follows
by Theorem 3 that the ring 〈e〉ϕ either is a finite field or is generated by a nilpotent or idempotent
element. The ring 〈e〉ϕ cannot be a finite field since 〈e〉ϕ∩Sϕ = 〈pe〉ϕ is a nonzero nil ring. Suppose
that 〈e〉ϕ = 〈s′〉, where s′ is a nilpotent element. Then the ring Rϕ is generated by two nilpotent
elements s′ and r′, and Rϕ being commutative implies that it will be nilpotent. We have arrived
at a contradiction with [13, Lemma 2], which says that a finite p-ring that contains exactly two
maximal subrings will contain a nonzero idempotent element. Hence 〈e〉ϕ = 〈e′〉, where (e′)2 = e′

and o(e′) = pn. Thus the ring Rϕ is generated by elements e′, r′ and contains exactly two maximal
subrings. If the element e′ is an identity in the ring Rϕ, then condition (3a) holds.

Assume that e′ is not an identity in Rϕ and consider the Peirce decomposition: Rϕ = e′Rϕ ⊕
(1 − e′)Rϕ. According to [13, Lemma 4], the subrings e′Rϕ and (1 − e′)ϕR each contains one
maximal subring. The ring e′Rϕ contains a nonzero idempotent element e′ of nonprime order. By
[13, Thm. 1], one of the following two cases holds: either e′Rϕ = 〈e′〉 or e′Rϕ ∼= GR(pn, qm2 ),
where q2 is a prime. If the second case holds, then [3, Thm. 3] says that the subring R contains
a subring isomorphic to the ring GR(pn, qm2 ). The ring R does not have such subrings since any
subring of R containing an idempotent element e has the form 〈e〉⊕T , where T ⊆ 〈r〉, and cannot
be isomorphic to GR(pn, qm2 ). Hence e′Rϕ = 〈e′〉. If the subring (1 − e′)ϕR is nonnilpotent, then
it contains a nonzero idempotent element e′1, and hence the ring Rϕ will have two orthogonal
idempotent elements e′ and e′1. By virtue of [3, Lemmas 6, 8], the projective image of a subring
〈e′〉 ⊕ 〈e′1〉 should also contain two nonzero orthogonal idempotent elements. Clearly, the ring R

lacks such idempotent elements. Consequently, the subring (1− e′)Rϕ is generated by a nilpotent
element. Let (1 − e′)Rϕ = 〈v′〉. Then Rϕ = 〈e′〉 ⊕ 〈v′〉, and condition (3b) holds. Proposition 2 is
proved.

LEMMA 2. Let a finite one-generated p-ring R = S + (r) be given, where S = GR(pn,m),
m,n ∈ N, r is a nilpotent element. Suppose also that ϕ is a projection from the ring R to the ring
Rϕ. Then Rϕ is a one-generated ring.

Proof. Let r = 0. If, in addition, m = 1, then R = GR(pn, 1) is a ring generated by an
idempotent and L(R) is a finite chain. That the statement of the lemma is true in this case follows
from Theorem 3. If n = 1 and m > 1, then R = GR(p,m) is a field of order pm. In this case the
statement of the lemma is true in virtue of [2, Thm. 2.1]. For n > 1 and m > 1, R ∼= Rϕ according
to [3, Thm. 4], and hence Rϕ is one-generated.

Let r �= 0. Further we assume that m > 1 since R = GR(pn, 1)⊕ 〈r〉 for m = 1, and according
to Proposition 2, the ring Rϕ is one-generated.

Let e be an identity element of a ring S. By [4, Lemma 14], e is the unique nonzero idempotent
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element of the ring R. Suppose R is a ring with identity. Then e is the identity element in R.
If n > 1, then [4, Lemma 17] implies that the statement of the lemma is true. Let n = 1. Then
S ∼= GF (pm), and by [5, Lemma 3], Rϕ ∼= R. Hence the ring Rϕ is generated by a single element.

Let R be a ring without identity. Consider the Peirce decomposition of R with respect to an
idempotent e: R = eR⊕ (1− e)R. The subring (1− e)R is nilpotent since e is the unique nonzero
idempotent element of the ring R. Let r = s1 + r1, where s1 ∈ S and r1 ∈ (1 − e)R. Since
R = S ∨ 〈r〉 = S ∨ 〈r1〉 = S ⊕ 〈r1〉, there is no loss of generality in assuming that er = 0, and so
R = S ⊕ 〈r〉. There are two cases to consider.

Case 1. Let n = 1. Then S = GF (pm). By Theorem 1, the subring lattice L(R) is decomposable
into a direct product of lattices: L(R) ∼= L(S)× L(〈r〉). Consequently, L(Rϕ) ∼= L(Sϕ)× L(〈r〉ϕ).
In view of [2, Thm. 2.1], combined with Proposition 1, Sϕ and 〈r〉ϕ are one-generated rings. Let
Sϕ = 〈s′〉 and 〈r〉ϕ = 〈r′〉. The rings 〈s′〉 and 〈r′〉 have primary additive groups since their subring
lattices are not decomposable into direct products of lattices. Let 〈s′〉 be a p1-ring and 〈r′〉 a p2-
ring, where p1 and p2 are primes. If p1 �= p2 then 〈s′ + r′〉 = 〈s′〉 ⊕ 〈r′〉 = Rϕ. Let p1 = p2. The
rings Sϕ and 〈r〉ϕ are one-generated, and by Theorem 1, Rϕ is a commutative ring, and the set of
its nilpotent elements is an ideal. Hence Rϕ satisfies the hypotheses of Theorem 2 and is therefore
one-generated.

Case 2. Let n > 1. By [3, Thm. 4], Sϕ ∼= S, and by [4, Cor. 2], Rϕ is a p-ring. Let a number
m have the following canonical decomposition: m = qm1

1 . . . qmk
k , where q1, . . . , qk are primes.

According to [14, Lemma XVI.7], the ring S contains subrings Gi = GR(pn, qmi
i ), i = 1, k. By

[14, Thm. XVI.8], S = G1 ∨G2 ∨ · · · ∨Gk. In view of [13, Thm. 3], the ring Si = Gi ⊕〈r〉, i = 1, k,
contains exactly two maximal subrings; hence the subring Sϕ

i = Gϕ
i ∨〈r〉ϕ, i = 1, k, is commutative,

and so therefore is the ring Rϕ itself. In accordance with Theorem 2, Rϕ is a one-generated ring.
The lemma is proved.

It is well known that direct sums of Galois rings play an important role in finite ring theory.
Projective images of finite rings decomposable into direct sums of different types of Galois rings
were dealt with in [4]. The structure of projective images of one-generated finite rings decomposable
into direct sums of Galois rings are described in the following:

THEOREM 4. Let R be a finite one-generated p-ring decomposable into a direct sum of n
Galois rings. Suppose also that ϕ is a projection of the ring R onto the p-ring Rϕ. Then Rϕ is a
one-generated ring, and if n > 1 and R � GF (2q) ⊕GF (2), then Rϕ is also decomposable into a
direct sum of n Galois rings.

Proof. By hypothesis, R is a ring with identity. We represent R as follows: R = R1⊕R2 ⊕R3,
where R1 = {0} or R1 = GR(pk1 , α1)⊕ · · · ⊕GR(pkl , αl) and (∀i = 1, l) (ki > 1, αi > 1); R2 = {0}
or R2 = GF (pm1)⊕ · · · ⊕GF (pms) and (∀j = 1, s) (mj > 1); R3 = {0} or R3 = 〈v1〉 ⊕ · · · ⊕ 〈vn〉,
v2i = vi, i = 1, n. By hypothesis, the ring R is one-generated, and so are the subrings R1, R2, R3

by [4, Lemma 1]. We prove that projective images of these subrings are one-generated.
Consider the ring R1. According to [4, Thm. 9], Rϕ

1 = (GR(pk1 , α1))
ϕ⊕· · ·⊕(GR(pkl , αl))

ϕ and
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(∀i = 1, l) (GR(pki , αi))
ϕ ∼= GR(pki , αi)). Consequently, Rϕ

1
∼= R1, and so Rϕ

1 is a one-generated
ring.

Consider the ring R2. If s = 1, then R2 is a finite field, and by [2, Thm. 2.1], Rϕ
2 is a one-

generated ring. Let s > 1 and

R2 = GF (pm1)⊕ · · · ⊕GF (pm1)
︸ ︷︷ ︸

n1

⊕ · · · ⊕GF (pms)⊕ · · · ⊕GF (pms)
︸ ︷︷ ︸

ns

.

In view of [4, Thm. 6],

Rϕ
2 = (GF (pm1))ϕ ⊕ · · · ⊕ (GF (pm1))ϕ

︸ ︷︷ ︸

n1

⊕ · · ·

⊕ (GF (pms))ϕ ⊕ · · · ⊕ (GF (pms))ϕ
︸ ︷︷ ︸

ns

,

with
(∀i = 1, s

)

(

(GF (pmi))ϕ ∼= GF (pm
′
i)
)

, and if ni > 1, then m′
i = mi by virtue of [4, Lemma 7].

The subring R2 is generated by a single element, and according to [4, Prop. 1], for all i = 1, s the
following condition is satisfied:

ni � Np(mi), (2)

where Np(mi) is the number of all normed irreducible polynomials of degree mi over the field
GF (p). Applying [4, Prop. 1] to Rϕ

2 , we conclude that Rϕ
2 is one-generated.

Consider the ring R3. If R3 = 〈v1〉, then L(R3) is a chain, and so Rϕ
3 is a one-generated ring.

Let R3 = 〈v1〉 ⊕ 〈v2〉. If o(v1) = o(v2) = p, then, in view of R3 being one-generated, we conclude
that p �= 2. By hypothesis, Rϕ is a p-ring. If we apply [6, Lemma 6] we conclude that Rϕ

3
∼= R3.

In all other cases, to R3 we can apply [5, Prop. 2], according to which Rϕ
3

∼= R3. The above
argument implies that the theorem that we are proving is true if some two summands in the sum
R = R1 ⊕R2 ⊕R3 equal zero.

Let R3 = {0} and R1, R2 be nonzero subrings. Then

R = GR(pk1 ,m1)⊕ · · · ⊕GR(pkl ,ml)
︸ ︷︷ ︸

R1

⊕GF (pml+1)⊕ · · · ⊕GF (pml+s)
︸ ︷︷ ︸

R2

. (3)

If among the positive integers m1, . . . ,ml+s there are repetitions, then we number them anew,
assigning all equal ones the same number. Let γ be the amount of the resulting numbers. Denote
by ni the amount of positive integers in the sequence m1, . . . ,ml+s equal to mi, 1 � i � γ. Taking
into account that GF (pm) = GR(p,m), we rewrite equality (3) in the following form:

R = (R11 ⊕ · · · ⊕R1n1)⊕ · · · ⊕ (Rγ1 ⊕ · · · ⊕Rγnγ ), (4)

where Rij
∼= GR(pki ,mi), i = 1, γ, j = 1, ni, and m1, . . . ,mγ are pairwise distinct positive integers.

The ring R is one-generated, and [4, Prop. 1] says that the positive integers ni, i = 1, γ, satisfy
equality (2). By [4, Thm. 11],

Rϕ = (Rϕ
11 ⊕ · · · ⊕Rϕ

1n1
)⊕ · · · ⊕ (Rϕ

γ1 ⊕ · · · ⊕Rϕ
γnγ

), (5)
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with Rϕ
ij
∼= Rij or Rϕ

ij
∼= GF (pm

′
j ) for all i = 1, γ and all j = 1, ni. Consider an arbitrary summand

Ti = (Ri1 ⊕ · · · ⊕ Rini) in the right part of (4) and its projective image Tϕ
i = (Rϕ

i1 ⊕ · · · ⊕ Rϕ
ini

).
Minimal polynomials of elements generating subrings Rij (j = 1, ni) have the same degree equal
to mi. If ni > 1, then [4, Lemma 7, Thm. 9, Lemma 13] says that minimal polynomials of elements
generating subrings Rϕ

ij (j = 1, ni) have the same degree mi. If ni = 1, then the degrees mi and m′
i

of minimal polynomials of elements generating rings Ti and Tϕ
i , respectively, may differ; however,

mi �= mk for i �= k, and so m′
i �= m′

k, i, k = 1, γ. Consequently, inequality (2) for the ring Rϕ holds,
and by [4, Prop. 1], Rϕ is a one-generated ring.

Let R2 = {0} and R1, R3 be nonzero subrings. Then

R = GR(pk1 ,m1)⊕ · · · ⊕GR(pkl ,ml)
︸ ︷︷ ︸

R1

⊕〈v1〉 ⊕ · · · ⊕ 〈vn〉
︸ ︷︷ ︸

R3

, (6)

where v1, . . . , vn are nonzero idempotent elements. Let ei be the identity element of the ring
GR(pki ,mi), i = 1, l. By [3, property 9], 〈ei〉ϕ = 〈e′i〉 and e′i is the identity element in the ring
GR(pki ,mi)

ϕ. Consider a subring W = 〈e1〉⊕· · ·⊕〈el〉⊕〈v1〉⊕· · ·⊕〈vn〉. By hypothesis, o(e1) = pk1

and k1 > 1. To the subring W , therefore, we can apply [5, Prop. 2], which says that Wϕ ∼= W .
Let Wϕ = 〈e′1〉 ⊕ · · · ⊕ 〈e′l〉 ⊕ 〈v′1〉 ⊕ · · · ⊕ 〈v′n〉, where (v′j)

2 = v′j , j = 1, n. At the beginning of the
proof, it was noted that Rϕ

1
∼= R1, so

Rϕ = (GR(pk1 ,m1))
ϕ ⊕ · · · ⊕ (GR(pkl ,ml))

ϕ

︸ ︷︷ ︸

Rϕ
1

⊕〈v′1〉 ⊕ · · · ⊕ 〈v′n〉
︸ ︷︷ ︸

Rϕ
3

∼= R.

Consequently, being one-generated for R implies being one-generated for Rϕ.
Let R1 = {0} and R2, R3 be nonzero subrings. Then

R = GF (pm1)⊕ · · · ⊕GF (pms)
︸ ︷︷ ︸

R2

⊕〈v1〉 ⊕ · · · ⊕ 〈vn〉
︸ ︷︷ ︸

R3

, (7)

where v1, . . . , vn are nonzero idempotent elements. We rewrite (7) in the form

R = GF (pm1)⊕ · · · ⊕GF (pm1)
︸ ︷︷ ︸

n1

⊕ · · · ⊕GF (pms)⊕ · · · ⊕GF (pms)
︸ ︷︷ ︸

ns

⊕ 〈v1〉 ⊕ · · · ⊕ 〈vn〉,
(8)

where, as above, ni is the number of direct summands in the right part of (8) which are defined by
a minimal polynomial of degree mi, i = 1, s. Consider several versions.

(a) Let s = n1 = n = 1, R = GF (pm1)⊕〈v1〉, and o(v1) = p. If l(GF (pm1)) = 2, then it follows
by [13, Thm. 3] that the ring R contains only two maximal subrings, and so both the rings R and
Rϕ are one-generated. If l(GF (pm1)) > 2, then l(R) > 3, and by [2, Cors. 3.1, 3.2]. the projective
image Rϕ is decomposable into a direct sum of two finite fields F ′

1 and F ′
2 of characteristic p. In

view of [5, Lemma 7], the fields F ′
1 and F ′

2 are not isomorphic, and hence the ring Rϕ satisfies the
hypotheses of [4, Prop. 1] and is therefore one-generated.
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(b) Let s = n1 = n = 1, R = GF (pm1)⊕〈v1〉, o(v1) = pk, and k > 1. According to [4, Lemma 8,
Remark 1], the rings R and Rϕ are one-generated, with Rϕ decomposable into a direct sum of two
Galois rings.

(c) Let s = n1 = 1, n > 1, R = GF (pm1) ⊕ 〈v1〉 ⊕ · · · ⊕ 〈vn〉, and o(vi) = p (i = 1, n). In
this case [2, Cor. 3.1] implies that the ring Rϕ is decomposable into a direct sum of n + 1 fields
in characteristic p. Among these fields, only (GF (pm1))ϕ is not a prime field, and the other n

fields are isomorphic to GF (p). If the ring R is one-generated, then it satisfies [4, Cor. 1], and so
n < p. This means that the ring Rϕ satisfies the hypotheses of [4, Prop. 1] and is therefore also
one-generated.

(d) Let s = n1 = 1, n > 1, R = GF (pm1) ⊕ 〈v1〉 ⊕ · · · ⊕ 〈vn〉, o(vi) = pki , ki > 1, i = 1, t, and
1 < t � n. In this case, by [4, Lemma 9; 3, Lemma 6], Rϕ = GF (pm

′
1) ⊕ 〈v′1〉 ⊕ · · · ⊕ 〈v′n〉, where

〈v′i〉 ∼= 〈vi〉, i = 1, n. By [4, Prop. 1], the rings R and Rϕ are one-generated for n < p.
(e) Let s > 1. Suppose also that β = n1 + · · ·+ ns. In view of [4, Thm. 6],

Rϕ
2 = GF (pm

′
1)⊕ · · · ⊕GF (pm

′
1)⊕ · · · ⊕GF (pm

′
s)⊕ · · · ⊕GF (pm

′
s)

︸ ︷︷ ︸

β

,

where GF (pm
′
i) = (GF (pmi))ϕ, i = 1, β; moreover, in view of [4, Lemma 7], m′

i = mi, for ni > 1,
and m′

i �= m′
k for ni = 1 and i �= k. Let ei be the identity of a field GF (pmi), i = 1, β, and

〈ei〉ϕ = 〈e′i〉. Then e′i is an identity of the field GF (pm
′
i), and e′1, . . . , e′β is an orthogonal system

of idempotents. Consider a subring U = 〈e1〉 ⊕ · · · ⊕ 〈eβ〉 ⊕ 〈v1〉 ⊕ · · · ⊕ 〈vn〉. Since β + n > 2,
and Rϕ is a p-ring, it follows by [5, Prop. 2] that Rϕ contains idempotents v′i, i = 1, n, satisfying
the following conditions: o(v′i) = o(vi) (i = 1, n) and Uϕ = 〈e′1〉 ⊕ · · · ⊕ 〈e′β〉 ⊕ 〈v′1〉 ⊕ · · · ⊕ 〈v′n〉.
Consequently,

Rϕ = GF (pm
′
1)⊕ · · · ⊕GF (pm

′
1)

︸ ︷︷ ︸

n1

⊕ · · · ⊕GF (pm
′
s)⊕ · · · ⊕GF (pm

′
s)

︸ ︷︷ ︸

ns

⊕ 〈v′1〉 ⊕ · · · ⊕ 〈v′n〉.

Numbers ni, i = 1, s, satisfy ni � Np(m
′
i) and n < p, and by Theorem 2, Rϕ is a one-generated

subring.
Let R = R1 ⊕R2 ⊕R3 and Ri �= {0}, i = 1, 3. Consider a subring

K = GR(pk1 ,m1)⊕ · · · ⊕GR(pkl ,ml)
︸ ︷︷ ︸

R1

⊕GF (pml+1)⊕ · · · ⊕GF (pml+s)
︸ ︷︷ ︸

R2

.

According to [4, Thm. 11],

Kϕ = (GR(pk1 ,m1))
ϕ ⊕ · · · ⊕ (GR(pkl ,ml))

ϕ

︸ ︷︷ ︸

Rϕ
1

⊕ (GF (pml+1))ϕ ⊕ · · · ⊕ (GF (pml+s))ϕ
︸ ︷︷ ︸

Rϕ
2

.
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Let ei be an identity of the ring GR(pki ,mi), i = 1, l, and el+j be one of the field GF (pml+j ),
j = 1, s. Consider a subring E = 〈e1〉⊕ · · ·⊕〈el+s〉⊕〈v1〉⊕ · · ·⊕〈vn〉. Since Rϕ is a p-ring, Eϕ ∼= E

by virtue of [5, Prop. 2]. Consequently, there exist idempotent elements v′i ∈ Rϕ, i = 1, n, for which
Rϕ = Kϕ⊕〈v′1〉⊕ · · ·⊕〈v′n〉. Rewriting the ring K in form (4) and applying equality (5), we obtain

Rϕ = (Rϕ
11 ⊕ · · · ⊕Rϕ

1n1
)⊕ · · · ⊕ (Rϕ

γ1 ⊕ · · · ⊕Rϕ
γnγ

)⊕ 〈v′1〉 ⊕ · · · ⊕ 〈v′n〉. (9)

Numbers ni, i = 1, γ, in (9) satisfy the condition ni � Np(m
′
i), and the inequality n < p holds

likewise. By [4, Prop. 1], Rϕ is a one-generated ring. The theorem is proved.
One of the basic results of the paper is the following:

THEOREM 5. Let ϕ be a projection of a finite one-generated p-ring R onto a p-ring Rϕ.
Then Rϕ is a one-generated ring.

The proof is divided into two parts.
Part 1. Let R be a ring with identity. By [15, Thm. II.5], R is decomposable into a direct sum

of n local rings Ri, i = 1, n. In view of [4, Lemma 1], every subring Ri, i = 1, n, is one-generated
and is therefore representable as Ri = Si + (ri), where Si = GR(pki ,mi), ri is a nilpotent element,
and the identity ei of the subring Si is also one in Ri. Let S = S1 ⊕ · · · ⊕Sn and r = r1 + · · ·+ rn.
Then R = S + (r).

That the theorem that we are proving is true for n = 1 follows from Lemma 2.
Let n > 1. By Theorem 4, the subring Sϕ is one-generated, and if r = 0, then we are done.
Let r �= 0. Consider the particular case where n = 2, S1

∼= GF (2q), and S2
∼= GF (2). Then

R = (S1⊕S2)+(r). We prove that the ring (S1⊕S2)
ϕ does not contain nonzero nilpotent elements.

Assume the contrary. The subring S1⊕S2 satisfies [3, Lemma 7]. Consequently, (S1⊕S2)
ϕ contains

nonzero nilpotent elements iff Sϕ
1 is generated by an idempotent element of order 22. If e1r = 0,

then S1r = {0}, and by Theorem 1, L(S1 ⊕ 〈r〉) ∼= L(S1)× L(〈r〉). In view of Theorem 1, a p-ring
whose subring lattice decomposes into a direct product of lattices does not contain idempotent
elements of nonprime additive order. If e1r �= 0, then S1 + (e1r) is a local ring. According to [5,
Lemma 3], (S1+(e1r))

ϕ ∼= S1 +(e1r). This argument implies that the subring (S1 ⊕S2)
ϕ contains

no nonzero nilpotent elements and, therefore, decomposes into a direct sum of two finite fields.
Coming back to the general case and applying Theorem 4 to a subring S, we conclude that Sϕ

is a one-generated ring decomposable into a direct sum of n Galois rings.
Let (∀i = 1, n) Sϕ

i = S′
i. The ring Sϕ is one-generated, so (∀i, j = 1, n) S′

iS
′
j = S′

jS
′
i.

Proposition 1 implies that 〈r〉ϕ = 〈r′〉, where r′ ∈ Rϕ. Then Rϕ = S′
1 ∨ · · · ∨ S′

n ∨ 〈r′〉. If we
apply Lemma 2 to a subring Si+(r) for every i = 1, n we conclude that S′

i∨〈r′〉 is a one-generated
subring. Consequently, the ring Rϕ is commutative.

By hypothesis, R is a ring with identity. Obviously, an identity in R is the element e = e1 +

· · · + en. Since er = r �= 0, there exists an index i ∈ {1, . . . , n} with which eir = ri �= 0. Without
loss of generality, we may assume that i = 1. Let 〈r1〉ϕ = 〈r′1〉. We prove that r′1 is a nilpotent
element. Consider a subring H = 〈e1, r1〉 ⊕ 〈e2〉. By [13, Thm. 3], the subrings H1 = 〈e1, r1〉 and
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H2 = 〈e2〉⊕〈r1〉 each contains two maximal subrings, while H3 = 〈e1〉⊕〈e2〉, in view of [3, Lemma 4],
contains three maximal subrings. Let 〈ei〉ϕ = 〈e′i〉, i = 1, 2. If o(e1) > p or o(e2) > p, then Hϕ

3
∼= H3

by virtue of [3, Lemmas 6, 8]; so e′i are nonzero idempotents, and r′1 is a nonzero nilpotent element
by virtue of [13, Thm. 3]. Suppose o(e1) = o(e2) = p. Then o(r1) = p, and so pH = {0}. According
to Theorem 1, L(H) ∼= L(H3) × L(〈r1〉). Consequently, L(Hϕ) ∼= L(Hϕ

3 ) × L(〈r1〉ϕ〉). In view of
[11, Cor, 6], one of the subrings Hϕ

3 or 〈r1〉ϕ is nilpotent and the other, on the contrary, contains
no nonzero nilpotent elements. If the subring Hϕ

3 is nilpotent, then p = 2 and 〈r1〉ϕ is a chain of
length at most two. By Theorem 3, either 〈r1〉ϕ = GF (2) or 〈r1〉ϕ = GF (2q). According to [4,
Cor. 4], the ring H is not generated by one element in either case. Therefore, R �= H. Hence two
cases are possible.

Case (1). Let o(e1) = o(e2) = p and l(S1) + l(S2) > 2. Suppose l(S1) > 1. Then the subring S1

is a field, and S1 � 〈r1〉 is a local subring. In view of [16, Thm. 3], the subring 〈r1〉ϕ is nilpotent,
which contradicts the assumption. If l(S2) > 2, then the subring S2 is a field. If we apply [2,
Cor. 3.1] to a subring S1⊕S2 we conclude that S2 is a field of length 2. By Theorem 1, L(〈e1, r1〉⊕
S2) ∼= L(〈e1〉 ⊕ S2) × L(〈r1〉). The subrings 〈e1〉ϕ and 〈e2〉ϕ being nilpotent implies that so is
Sϕ
2 . Consequently, the subring (〈e1〉 ⊕ S2)

ϕ, too, is nilpotent. However, (〈e1〉 ⊕ S2) satisfies the
hypotheses of [3, Lemma 7] and cannot be lattice-isomorphic to a nilpotent ring, a contradiction.
Hence Case (1) is impossible.

Case (2). Let n > 2. Consider a subring D = H ⊕ 〈e3〉, where e3 is the identity of the subring
S3. Let E = 〈e1〉 ⊕ 〈e2〉 ⊕ 〈e3〉. By Theorem 1, L(H ⊕ 〈e3〉) ∼= L(E) × L(〈r1〉). According to
[2, Lemma 3.1], Eϕ ∼= E, and hence the assumption that the subring Hϕ

3 is nilpotent is untrue.
Consequently, nilpotent is the subring 〈r1〉ϕ. Thus the element r′1 is nilpotent, as also are all
elements r′i (i = 1, n).

Let 〈r〉ϕ = 〈r′〉 and 〈ri〉ϕ = 〈r′i〉, i = 1, n. Since r ∈ 〈r1, . . . , rn〉, we have r′ ∈ 〈r′1, . . . , r′n〉, The
ring Rϕ is commutative, so the ring 〈r′1, . . . , r′n〉 is nilpotent. This implies that r′ is a nilpotent
element. It is clear that Rϕ = Sϕ + (r′), and since Sϕ is a one-generated subring, Rϕ is a one-
generated ring, as follows by Theorem 2.

Part 2. Let R be a ring without identity. If R is nilpotent, then the result follows from Prop. 1.
Let R be nonnilpotent. By Lemma 1, the ring R is representable as R = 〈t〉⊕〈r〉, where 〈t〉 is a

nonzero subring with identity, decomposable into a finite direct sum of rings Ti = Si+(ri), i = 1, n,
in which case Si

∼= GR(pni ,mi), ri is a nilpotent element, an identity element of a subring Si is one
in Ti, and r is a nonzero nilpotent element. The first part of the proof implies that the projective
image of a subring 〈t〉 is one-generated. Let 〈t〉ϕ = 〈t′〉. In view of Proposition 1, 〈r〉ϕ = 〈r′〉 for
some element r′ ∈ Rϕ. Consequently, Rϕ = 〈t′〉 ∨ 〈r′〉.

We prove that Rϕ is a commutative ring. Consider a subring Wi = Ti⊕〈r〉 = (Si + (ri))⊕〈r〉 =
Si + (wi), where wi = ri + r, i = 1, n. Obviously, wi is a nilpotent element. By hypothesis, every
subring Si, i = 1, n, is one-generated, and so is the ring Wi in virtue of Theorem 2. By Lemma 2,
the ring Wϕ

i is also one-generated. Since (∀i = 1, n) (Wϕ
i = Tϕ

i ∨ 〈r′〉 and Tϕ
1 ∨ · · · ∨ Tϕ

n = 〈t′〉), we
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have r′t′ = t′r′, and hence Rϕ is commutative.
Let w = r1+· · ·+rn+r. Then w is a nilpotent element, and R = S+(w), where S = S1⊕· · ·⊕Sn.

By hypothesis, the ring R is one-generated, and so is the ring S in virtue of Theorem 2. Since w is
a nilpotent element, 〈w〉ϕ is a one-generated ring. Let 〈w〉ϕ = 〈w′〉. By Theorem 4, the ring Sϕ is
one-generated. If w′ is a nilpotent element, then Rϕ = Sϕ + (w′), and Rϕ is a one-generated ring
by Theorem 2.

Let N = 〈r1〉 ⊕ · · · ⊕ 〈rn〉 ⊕ 〈r〉. It is clear that w ∈ N . There are three cases to consider.
Case (a). Suppose (∀i = 1, n) (ri = 0). Then N = 〈r〉 and R = S ⊕ 〈r〉. By Lemma 2, Rϕ is a

one-generated ring for n = 1.
Let n = 2 and S ∼= GF (2q)⊕GF (2). According to Theorem 1, L(S⊕〈r〉) ∼= L(S)×L(〈r〉). By

[11, Cor. 6], one of the subrings Sϕ or 〈r〉ϕ is nilpotent and the other contains no nonzero nilpotent
elements. In view of [3, Lemma 7], no nil ring can be lattice-isomorphic to a ring S. Therefore, the
subring 〈r〉ϕ is nilpotent, and hence r′ is a nilpotent element. If n � 2 and S � GF (2q)⊕GF (2),
then it follows by Theorem 4 that Sϕ is decomposable into a direct sum of n Galois rings, and so
Sϕ contains an orthogonal system of n nonzero idempotents. If the ring Nϕ is nonnilpotent, then
Rϕ will contain an orthogonal system of n + 1 nonzero idempotents. Since n + 1 � 3, it follows
by [5, Prop. 2] that such an orthogonal system of idempotents should also be in R. Obviously, in
the ring R = S1 ⊕ · · · ⊕ Sn ⊕ 〈r〉 any orthogonal system of nonzero idempotents consists of not
more than n elements. Thus if n > 1 and (∀i = 1, n) (ri = 0), then the subring Nϕ = 〈r〉ϕ = 〈r′〉
is nilpotent, and hence, as shown above, Rϕ is a one-generated ring.

Case (b). Let (∃i, j ∈ {1, . . . , n}) (i �= j, ri �= 0, rj �= 0). By [1, Thm. 1], Nϕ is a nil ring, and
hence, as above, Rϕ is a one-generated ring.

Case (c). Let (∃i ∈ {1, . . . , n}) (ri �= 0) and (∀j ∈ {1, . . . , n} \ {i}) (rj = 0). There is no
loss of generality in assuming that i = 1. Then R = (S1 � 〈r1〉) ⊕ · · · ⊕ Sn ⊕ 〈r〉. For n = 1,
R = (S1 � 〈r1〉)⊕〈r〉 = S1 +(w), where w = r1+ r. By Lemma 2, Rϕ is one-generated. Let n > 1.
If we treat the subring R1 = S1 ⊕ · · · ⊕ Sn ⊕ 〈r〉 and apply to it the argument from Case (a) we
conclude that r′ is a nilpotent element. Then the ring Nϕ contains a nonzero nilpotent element r′,
and by [1, Thm. 1], Nϕ is a nil ring. Since w′ ∈ Nϕ, the ring Rϕ = Sϕ + (w′) is one-generated by
Theorem 2. The theorem is proved.

Using Theorem 5 as the base of induction on a variable k, we derive

COROLLARY 1. Let ϕ be a projection of a k-generated finite p-ring R onto a p-ring Rϕ.
Then Rϕ is a finite k-generated ring.

3. PROJECTIONS OF MATRIX RINGS

The theorem below likewise pertains to the basic results of the paper. Its proof relies essentially
on the results and methods in [8-10].

THEOREM 6. Let R = Mn(K), where K is a finite p-ring with identity, n � 2. Let ϕ be a
lattice isomorphism of the ring R onto the ring Rϕ. The following statements are valid:
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(1) Rϕ = Mn(K
′), where K ′ is a finite p-ring with identity;

(2) 〈u〉ϕ = 〈u′〉, where u and u′ are the identity elements of the rings R and Rϕ, respectively;
(3) charRϕ = charR;
(4) the projective image Y ϕ of a nilpotent ring Y ⊂ R is a nilpotent ring;
(5) (RadR)ϕ = RadRϕ;
(6) |RadRϕ| = |RadR|;
(7) if K is a semiprime ring then Rϕ ∼= R;
(8) |Rϕ| = |R|;
(9) (eiiReii)

ϕ = e′iiR
ϕe′ii, where eii are diagonal matrix units in R, and 〈eii〉ϕ = 〈e′ii〉, i = 1, n;

(10) the ring K ′ is matrix isomorphic to the ring K.
Proof. Let R = Mn(K), where n > 1, and K be a finite p-ring with identity e. Suppose also

that o(e) = pk. Let ϕ be a projection of R onto Rϕ. Consider a subring S = Mn(〈e〉). By [8,
Thm. 1.2], Sϕ ∼= S. This, in particular, implies that the subring Sϕ and hence the ring Rϕ itself
will be p-rings. Consequently, ϕ is a projection of the p-ring R onto the p-ring Rϕ. According
to Theorem 5, the projective image of any one-generated subring in R will be a one-generated
subring in Rϕ, and conversely, the projective preimage of any one-generated subring in Rϕ will be
a one-generated subring in R. In what follows, these facts will be used without further comments.

Let eij (i, j = 1, n) be a system of matrix units in a ring S and u = e11+ · · ·+enn be an identity
in the ring R. By [10, Lemma 6],

(∀i = 1, n
)

(∃ e′ii ∈ Rϕ) (〈eii〉ϕ = 〈e′ii〉 ∼= 〈eii〉); e′11, e′22, . . . , e′nn is
an orthogonal system of idempotents; u′ = e′11 + e′22 + · · ·+ e′nn is an identity of the ring Sϕ, and

〈u〉ϕ = 〈u′〉. (10)

By [10, Thm. 3], the system of idempotents e′11, e′22, . . . , e′nn can be complemented to a full system
of matrix units e′ij , i, j = 1, n in the ring Sϕ.

We prove that u′ is the identity in the ring Rϕ. Assume the contrary and consider a two-sided
Peirce decomposition of Rϕ with respect to an idempotent u′:

Rϕ = u′Rϕu′ � u′Rϕ(1− u′)� (1− u′)Rϕu′ � (1− u′)Rϕ(1− u′). (11)

Note that Sϕ ⊆ u′Rϕu′ since u′Rϕu′ is the greatest subring of Rϕ in which the element u′ is an
identity. In addition, the subring u′Rϕu′ contains a system of matrix units e′ij , i, j = 1, n, and
according to [17, Prop. 6], u′Rϕu′ = Mn(K

′), where K ′ is a subring of u′Rϕu′ consisting of all
elements commuting with all e′ij , i, j = 1, n. The projective preimage of the ring u′Rϕu′ contains
a subring S; hence it contains an identity element and a system of matrix units and is therefore
also the complete matrix ring over some subring B of K. Let T = Mn(B) and Tϕ = u′Rϕu′.
By [10, Lemma 5], the ring T contains as a subring the Galois ring T1 = GR(pk, n). If k = 1,
then T1 = GF (pn), and since the unique minimal subring of the field T1 is the subring 〈u〉, with
equality (10) in mind, we conclude that u′ ∈ Tϕ

1 . Projective images of finite fields were taken up
in [2]. According to [2, Thm. 2.1], Tϕ

1 is a field. If k > 1, then Tϕ
1
∼= T1 in view of [3, Thm. 4].
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Suppose that u′Rϕ(1 − u′) �= {0′} and choose a nonzero element s′ ∈ u′Rϕ(1 − u′) of additive
prime order. It is clear that u′s′ = s′, s′u′ = 0′, and (s′)2 = 0′. For any integer α, therefore, the
element u′ + αs′ is a nonzero idempotent, and hence a subring U ′ = 〈u′〉 � 〈s′〉 contains exactly
p+ 1 maximal subrings

〈u′〉, 〈u′ + s′〉, . . . , 〈u′ + (p− 1)s′〉, p〈u′〉� 〈s′〉.

The ring R contains an element s of additive prime order such that 〈s〉ϕ = 〈s′〉. A subring
U = 〈u〉 � 〈s〉 is the projective preimage of the ring U ′ under the lattice isomorphism ϕ. The
subring U is commutative and is not a nil ring. In addition, it is not a direct sum of prime fields
if k > 1 and, obviously, L(U) is not a chain. By virtue of [13, Thm. 4], the ring U contains a
subring in which there are exactly two maximal subrings. In U ′ every commutative subring either
is generated by an idempotent element or is a nil ring, and by [13, Thm. 4], also, it does not contain
a subring having exactly two maximal subrings, a contradiction. Consequently, u′Rϕ(1−u′) = {0′}
for k > 1.

Let k = 1. Again we address the subring T1 = GF (pn) and its projective image Tϕ
1 . Let

Tϕ
1 = 〈x′〉. Then x′s′, s′ are linearly independent nilpotent elements. A subring W ′ = 〈u′, x′s′, s′〉

has order p3, and the length of its subring lattice equals three. The subring lattice of the projective
preimage W of the ring W ′ also has length three. According to [2, Lemma 3.1], the ring W cannot
be decomposed into a direct sum of three prime fields, and W , being generated by its subrings of
order p, lacks subfields of length 2. Consequently, the ring W contains a nonzero nilpotent element
y of nilpotency index 2 and additive order p. Clearly, a subring 〈u, y〉 contains exactly two proper
subrings 〈u〉 and 〈y〉. By [13, Thm. 4], the ring W ′ does not contain a subring in which there
would be only two proper subrings, a contradiction. Consequently, for k = 1, too, the equality
u′Rϕ(1− u′) = {0′} holds.

The equality (1− u′)Rϕu′ = {0′} is proved in a similar way.
Suppose that (1− u′)Rϕ(1− u′) �= {0′} and choose in (1− u′)Rϕ(1− u′) a nonzero element w′.
Let w′ be a nilpotent element of characteristic p and nilpotency index 2 in the subring (1 −

u′)Rϕ(1 − u′), w ∈ R, and 〈w〉ϕ = 〈w′〉. Consider a subring V ′ = Tϕ
1 ⊕ 〈w′〉 and its projective

preimage V = T1 � 〈w〉. If k = 1, then, as noted, Tϕ
1 is a nonprime field, and by Theorem 1,

the subring lattice L(V ′) decomposes into a direct product of lattices. It is not hard to see that
a ring V does not satisfy the hypotheses of Theorem 1, and so the subring lattice L(V ) does not
decompose into a direct product of lattices. If k > 1, then Tϕ

1
∼= T1 = GR(pk, n), and Theorem 2

says that V ′ is a one-generated subring. Applying [4, Lemma 16] to the inverse projection ϕ−1, we
conclude that V ∼= V ′. We are led to a contradiction since the ring V contains the identity of R,
while the ring V ′ has no identity element. Consequently, the ring (1− u′)Rϕ(1− u′) lacks nonzero
nilpotent elements and, therefore, decomposes into a direct sum of fields.

Let y′ be a nonzero idempotent in a subring (1−u′)Rϕ(1−u′), y ∈ R, and 〈y〉ϕ = 〈y′〉. Applying
[9, Thm. 4(2)] to a subring Y ′ = Sϕ ⊕ 〈y′〉 and the inverse projection ϕ−1, we conclude that y
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is a nonzero idempotent of characteristic p. According to [10, Lemma 5], a subring Sϕ contains a
Galois subring G′

1 = GR(pk, n) which contains the identity element u′ of the subring Sϕ. If k = 1,
then G′

1
∼= GR(p, n), i.e., G′

1 is a field of length n > 1. In this case the projective preimage G1 of
G′

1 is also a field since it cannot contain nonzero nilpotent elements in virtue of [10, Thm. 3(b)].
Furthermore, the field G1 contains the identity of R, and so the subring G1 ∨ 〈y〉, in view of [2,
Lemma 1.2, Cor. 3.1], cannot be lattice-isomorphic to ring G′

1 ⊕ 〈y′〉. If k > 1, then G1
∼= G′

1

by [3, Thm. 4], and by [4, Lemma 12], the subring G1 ∨ 〈y〉 too cannot be lattice-isomorphic to
G′

1 ⊕ 〈y′〉. Thus our supposition is invalid. Hence u′ is an identity element in the ring Rϕ, and so
Rϕ = Mn(K

′). Statements (1) and (2) are proved.
The truth of statement (3) follows from statement (2).
(4) Let N be a nilpotent subring in the ring R. Consider a local subring D = 〈u〉 +N and its

projective image Dϕ = 〈u′〉+Nϕ. The subring D and the projection ϕ of the ring D onto the ring
Dϕ satisfies the hypotheses of Lemma 4 in [10], which says that Nϕ is a nilpotent subring.

(5) Let M be a maximal nilpotent subring in R. According to statement (4), Mϕ is a nilpotent
subring in Rϕ. Suppose that the subring Mϕ is not a maximal nilpotent subring in the ring Rϕ.
Let Mϕ ⊂ M ′

1, where M ′
1 is a nilpotent subring in Rϕ. A subring H ′ = 〈u′〉 + M ′

1 is a local
ring. The projective preimage of the ring H ′ is a ring H = 〈u〉 +M1, where M1 is the projective
preimage of the subring M ′

1. Applying [10, Lemma 4] to a subring H ′ and the inverse projection
ϕ−1, we conclude that M1 is a nilpotent subring. Since M is a proper subring of M1, we arrive at
a contradiction. Hence Mϕ is a maximal nilpotent subring in Rϕ. According to [18], RadR is the
intersection of all maximal nilpotent subrings in R. Consequently, (RadR)ϕ = RadRϕ.

Statement (6) follows from [1, Lemma 7].
(7) Let K be a semiprime ring, and namely: K = K1⊕· · ·⊕Km, where Ki is a finite prime ring,

i.e., either Ki = GF (pki) or Ki = Mni(GF (pki)), with ni > 1, i = 1,m. Then R = Mn(K1)⊕ · · ·⊕
Mn(Km). By statement (1), (Mn(Ki))

ϕ = Mn(K
′
i), where K ′

i is a ring with identity, i = 1,m. Let ei
be an identity in a ring Ki, i = 1,m. Then e = e1+· · ·+em, and so S = Mn(〈e〉) = Mn(〈e1〉)⊕· · ·⊕
Mn(〈em〉). In view of [10, Thm. 3.4] and statement (1), Sϕ = Mn1(〈e′1〉)⊕ · · · ⊕Mnm(〈e′m〉), where
e′i is an identity element of a ring K ′

i, i = 1,m. This implies that Rϕ = Mn(K
′
1)⊕ · · · ⊕Mn(K

′
m).

Let i ∈ {1, . . . ,m}. For Ki = GF (pki), the lattice definability of a ring Mn(Ki) follows from [9,
Thm. 1]. If Ki = Mni(GF (pki)), then Mn(Ki) = Mn(Mni(GF (pki)) = Mnni(GF (pki)), and so the
lattice definability of Mn(Ki) again follows from [9, Thm. 1]. Statement (7) is proved.

Statement (5) implies that the factor rings R = R/RadR and Rϕ = Rϕ/RadRϕ are lattice-
isomorphic. In view of statement (7), R ∼= Rϕ, and in virtue of statement (6), |RadRϕ| = |RadR|.
Hence |R| = |R| · |RadR| = |Rϕ| · |RadRϕ| = |Rϕ|. Statement (8) is proved.

(9) Let |K| = pκ. We use induction on κ.
For κ = 1, K = 〈e〉, o(e) = p, and R = Mn(〈e〉). That statement (9) is true follows from [10,

Thm. 3(d)].
Suppose statement (9) has been proven for all numbers 1 � κ < ν. Let κ = ν. If K = 〈e〉, then
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the truth of statement (9) again follows from [10, Thm. 3(d)]. Let K �= 〈e〉. Suppose that the ring
K contains two distinct maximal subrings W1 and W2 containing an identity e. Let Ti = Mn(Wi),
i = 1, 2. By the induction hypothesis, the following equalities hold: (ejjTiejj)

ϕ = e′jjT
ϕ
i e

′
jj for

i = 1, 2 and j = 1, n. It is obvious that

(ejjT1ejj) ∨ (ejjT2ejj) = ejj(T1 ∨ T2)ejj

= ejjMn(W1 ∨W2)ejj

= ejjMn(K)ejj

= ejjRejj.

Therefore,

(ejjRejj)
ϕ = (e′jjT

ϕ
1 e

′
jj) ∨ (e′jjT

ϕ
2 e

′
jj)

= e′jj(T
ϕ
1 ∨ Tϕ

2 )e
′
jj

= e′jjMn(W
ϕ
1 ∨Wϕ

2 )e
′
jj

= e′jjMn(K
′)e′jj

= e′jjR
ϕe′jj.

Let W be the unique maximal subring in K containing an identity e. Obviously, (∀v ∈ K \
W ) (〈e, v〉 � W ), and so 〈e, v〉 = K. This implies that K is a commutative ring. It is well known
that a finite commutative ring with identity either is local or is decomposable into a direct sum
of local rings [15, Chap. 2, Thm. 5]. Let K be decomposable into a direct sum of local rings,
i.e., K = P1 ⊕ · · · ⊕ Pl. Put Rj = Mn(Pj) (j = 1, l). Then eiiReii = eiiR1eii ⊕ · · · ⊕ eiiRleii.
By [10, Thm. 3], (∀j = 1, l)((eiiRjeii)

ϕ = e′iiR
ϕ
j e

′
ii. By [10, Cor. 2], Rϕ = Rϕ

1 ⊕ · · · ⊕ Rϕ
l . Hence

(∀i = 1, n)((eiiReii)
ϕ = (eiiR1eii)

ϕ ⊕ · · · ⊕ (eiiRleii)
ϕ = e′iiR

ϕ
1 e

′
ii ⊕ · · · ⊕ e′iiR

ϕ
l e

′
ii = e′iiR

ϕe′ii.
Thus statement (9) is true also for κ = ν, and hence for all numbers κ.
(10) In view of [17, Prop. 6], there are isomorphisms e11Re11 ∼= K and e′11Rϕe′11 ∼= K ′. By virtue

of statement (9), the rings e11Re11 and e′11R
ϕe′11 are lattice-isomorphic, and so L(K) ∼= L(K ′).

The theorem is proved.

THEOREM 7. Let R = Mn(K), where K is a finite ring with identity, n � 2. Suppose also
that ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then Rϕ = Mn(K

′), where K ′ is
a finite ring with identity, lattice-isomorphic to the ring K.

Proof. Let K = K1 ⊕ · · · ⊕ Km be a decomposition of K into a direct sum of pi-rings Ki

taken over distinct prime numbers pi, i = 1,m. Then R = R1 ⊕ · · · ⊕ Rm, where Ri = Mn(Ki),
i = 1,m, and L(R) ∼= L(R1)× · · · ×L(Rm). Let ϕ be a lattice isomorphism of R onto Rϕ. Clearly,
L(Rϕ) ∼= L(Rϕ

1 )× · · · ×L(Rϕ
m). By Theorem 6, Rϕ

i = Mn(K
′
i), where K ′

i is a pi-ring with identity,
lattice isomorphic to a ring Ki, i = 1,m. Since prime numbers pi, i = 1,m, are pairwise distinct,
we have Rϕ = Rϕ

1 ⊕ · · · ⊕Rϕ
m. Let K ′ = K ′

1 ⊕ · · · ⊕K ′
m. Then Rϕ = Mn(K

′) and K ′, in this case,
is a ring with identity, lattice-isomorpic to the ring K. The theorem is proved.
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THEOREM 8. Let R = Mn1(K1) ⊕ · · · ⊕ Mnl
(Kl), where Ki is a finite local p-ring,

|Ki/RadKi| = pmi , i = 1, l. Suppose that R is not isomorphic to the rings GF (pq) ⊕ GF (p)

(q is a prime) and GF (p)⊕GF (p). Let ϕ be a lattice isomorphism of the ring R onto the ring Rϕ.
Then the following statements hold:

(1) Rϕ = Rϕ
1 � · · · �Rϕ

l (group sum);
(2) (∀i = 1, l) (Ri is a prime ring ⇒ Rϕ

i is a prime ring);
(3) if nimi > 1 for all i = 1, l, then Rϕ = Rϕ

1 ⊕ · · · ⊕Rϕ
l , and also (RadR)ϕ = RadRϕ.

Proof. Let Ri = Mni(Ki), i = 1, l. According to [14, Thm. XIX.4], every local p-ring Ki,
i = 1, l, contains as a subring the Galois ring Si = GR(pki ,mi), i = 1, l. In R we consider a subring
T = T1 ⊕ · · · ⊕ Tl, where Ti = Mni(Si). This subring satisfies the hypotheses of [9, Thm. 4], which
implies that statements (1) and (2) are true.

Suppose that, for all i ∈ {1, . . . , l}, the conditions that nimi > 1 are satisfied. By [9, Thm. 4],
(∀i, j = 1, l)(i �= j ⇒ (Ti ⊕ Tj)

ϕ = Tϕ
i ⊕ Tϕ

j ). These equalities imply the equality

Rϕ = Rϕ
1 ⊕ · · · ⊕Rϕ

l . (12)

It is clear that RadR = RadR1 ⊕ · · · ⊕ RadRl. Let i ∈ {1, . . . , l}. According to [17, Thm. 3],
RadRi = Mni(RadKi), i = 1, l. For ni = 1, Ri = Ki, and since mi > 1, in view of [16, Thm. 3] it
is true that

(RadRi)
ϕ = RadRϕ

i . (13)

If ni > 1 then, by [10, Thm. 3], equality (13) holds as well. The truth of statement (3) follows from
equalities (12) and (13). The theorem is proved.
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