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PERIODIC GROUPS SATURATED
WITH FINITE SIMPLE GROUPS L4(q)
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If M is a set of finite groups, then a group G is said to be saturated with the set M

(saturated with groups in M) if every finite subgroup of G is contained in a subgroup
isomorphic to some element of M . It is proved that a periodic group with locally finite
centralizers of involutions, which is saturated with a set consisting of groups L4(q),
where q is odd, is isomorphic to L4(F ) for a suitable field F of odd characteristic.

Let M be a nonempty set of finite groups. By definition, a group G is saturated with groups
in M , or saturated with the set M , if every finite subgroup of G lies in a subgroup isomorphic to
some element of the set M .

Our goal is to prove the following:

THEOREM. Let G be a periodic group saturated with groups in the set

M = {L4(q) | q is odd}.
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If all centralizers of involutions in G are locally finite, then G is isomorphic to the group L4(F ) for
some locally finite field F of odd characteristic.

1. NOTATION AND PRELIMINARY RESULTS

We will use the notation from [1]. For a number q = ps, where p is an odd prime, by P we
denote a field GF (q) of order q. Let L̃ = SL4(q) be the special linear group of dimension 4 over
P , i.e., a group of (4 × 4)-matrices over P with determinants equal to 1, and

C̃ =

〈[ α · · ·
· 1 · ·
· · α−1 ·
· · · 1

] ∣
∣
∣
∣
∣
α ∈ P, α �= 0

〉

,

ĩ1 =
[ −1 · · ·

· −1 · ·
· · 1 ·
· · · 1

]

=

[
−E 0
0 E

]

, ĩ2 = −ĩ1, t̃ =

[
0 E

E 0

]

,

S̃1 =

〈[
X 0
0 E

] ∣
∣
∣
∣
∣
X ∈ SL2(P )

〉

, S̃2 =

〈[
E 0
0 X

] ∣
∣
∣
∣
∣
X ∈ SL2(P )

〉

,

H̃ = H̃(q) = 〈S̃1, S̃2, C̃, t̃〉.

An easy check shows that C̃ is a cyclic group of order q − 1, ĩ1 and ĩ2 are involutions, 〈C̃, t̃〉 =
(q − 1) : 2 is a dihedral group, and

H̃ = 〈S̃1, S̃2, C̃, t̃〉 = 〈S̃1, S̃2〉 · 〈C̃, t̃〉 = (SL2(q) × SL2(q)) : (q − 1) : 2.

Denote by H, i1, i2, C, S1, S2, and t the corresponding images of H̃, ĩ1, ĩ2, C̃, S̃1, S̃2, and t̃ under
the canonical homomorphism of SL4(q) onto L4(q) = PSL4(q).

LEMMA 1. (1) S1 � S̃1 � S̃2 � S2 � SL2(q), 〈S1, S2〉 = S1 ◦ S2 is a central product of the
groups S1 and S2, i = i1 = i2 is the unique involution in the center of S1S2, S2 = St

1, St
2 = S1,

and CH(S1) = S2Z, where Z is the image of a cyclic subgroup
〈[ α · · ·

· α · ·
· · α−1 ·
· · · α−1

] ∣
∣
∣
∣
∣
α ∈ P, α �= 0

〉

under the canonical homomorphism of SL4(q) onto L4(q), and CH(S2) = S1Z.
(2a) If r ∈ S1S2 and r2 = i, then r ∈ S1 ∪ S2.
(2b) H contains a subgroup isomorphic to SL2(3). If D is one of these subgroups, then the

subgroup O2(D) isomorphic to the quaternion group of order 8, is contained in Sj for some j ∈
{1, 2}, and CH(O2(D)) = CH(Sj). If D1 � D and [O2(D), O2(D1)] = 1, then CH(O2(DD1)) = Z.

(3) H contains an elementary Abelian subgroup A of order 16 satisfying the following conditions:
(3a) NL(A) contains a subgroup K ≥ A of index at most 2, where K/A is isomorphic to the

alternating group Alt (6) for q ≡ 1(mod 4), and to the alternating group Alt (5) for q ≡ −1(mod4);
(3b) 〈H,K〉 = L for q > 3.
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(4a) An involution t is conjugate in L to i. For q > 3, H is a maximal subgroup of L which
coincides with CL(i).

(4b) If q ≡ 1(mod 8), then every involution of L is conjugate to i; otherwise, the centralizer
of every involution that is not conjugate to i in L contains a section isomorphic to L2(q2). If U

is a subgroup of L isomorphic to SL2(3) ◦ SL2(3), then an involution lying in the center of U is
conjugate to i.

Proof. (1) Is straightforward.
(2a) Let r = s1s2, where s1 ∈ S1, s2 ∈ S2, and r2 = i. Then r2 = s2

1s
2
2 = i, whence S1 � s2

1 =
s−2
2 i ∈ S2 and s2

1 ∈ S1 ∩ S2 = 〈i〉 � s−2
2 i. Suppose that s2

1 = 1. Since i is the only involution in
S1, we have s1 ∈ 〈i〉 ≤ S2 and r ∈ S2. Suppose now that s2

1 �= 1. Then s2
1 = i = s−2

2 i, s2
2 = 1, and

r ∈ S1.
(2b) Let D be a subgroup of H isomorphic to SL2(3). Since H/S1S2 is a dihedral group,

O2(D) ≤ S1S2.
If D does not contain i, then D ∩ S1 = 1, which is impossible because in that case O2(D)

would be isomorphically embeddable in a dihedral group, a Sylow 2-subgroup of the group L2(q) �
S1S2/S1. Let 〈r1〉, 〈r2〉, and 〈r3〉 be different subgroups of order 4 in O2(D). Then r2

1 = r2
2 = r2

3 = i.
By (2a), two of the three subgroups lie in Sj for some j ∈ {1, 2} and generate O2(D), i.e., O2(D) ≤
Sj. We have CSj (O2(D)) = 〈i〉, therefore CH(O2(D)) = CH(Sj). Besides, O2(D1) ≤ S3−j, which
implies that CH(O2(DD1)) = CH(S1S2) = Z.

(3) The group H̃ ≤ SL4(q) contains a subgroup Ã of symplectic type, which is isomorphic to
the extraspecial group 21+4 for q ≡ −1(mod 4), and to the group 4 ◦ 21+4 for q ≡ 1(mod 4). The
image N of the subgroup NSL4(q)(Ã) in L4(q) under the natural homomorphism of SL4(q) onto
L4(q) is equal to A : A5 or A : S5 for q ≡ −1(mod4), and for q ≡ 1(mod 4), it is equal to A : A6

or A : S6, where A is the image of Ã (see [2, Sec. 4.6; 3, Sec. 2.2.6, Table 8.8]).
For q > 3, the subgroup H contains a Sylow 2-subgroup of the group L4(q), in which case we

may assume that A = O2(N) ≤ H. It is clear that K = [N,N ] �≤ H. Since H for q > 3 is a
maximal subgroup in L4(q), we have 〈H,K〉 = L4(q).

(4a) Follows from [3, Table 8.8].
(4b) See the proof in [4, pp. 424-427]. The lemma is completed.

2. MAIN RESULT

Proof of the theorem. If an involution in L is such that its centralizer contains a subgroup
isomorphic to SL2(3) ◦ SL2(3), then we will say that it is an involution of principal type in L.

Let G be a periodic group saturated with the set M = {L4(q) | q is odd}, in which the
centralizer of every involution is locally finite. Denote by M(G) the set of subgroups of G isomorphic
to elements in M .
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If M(G) = {L4(3)}, then the theorem is true [5]. Below, therefore, we will assume that M(G) �=
{L4(3)}.

We take in M(G) a subgroup L � L4(q) with q ≡ 1(mod 4). If, however, M(G) does not have
such subgroups, then as L � L4(q) we take a subgroup in M(G) for which q > 3.

We fix L till the end of the proof of the theorem and keep the notation from Section 1 for
its subgroups and elements. Fix a subgroup D1 � SL2(3) from S1. Let D2 = Dt

1. Note that
D1D2 = D1 ◦ D2 and, in particular, [D1,D2] = 1.

LEMMA 2. C = CG(O2(D1D2)) is a locally cyclic group. If D is a subgroup of CG(i)
isomorphic to SL2(3) ◦ SL2(3), then CG(O2(D)) = C and, in particular, C � CG(i).

Proof. Let x, y ∈ C. Then X = 〈D1D2, x, y〉 ≤ CG(i), and therefore X is finite. Let L∗ �
L4(q∗) be a subgroup in M(G) that contains X, and H∗ = CL∗(i). Since H∗ contains D1D2 �
� SL2(3) ◦ SL2(3), it follows by Lemma 1(4b) that H∗ has a normal subgroup S∗

1 ◦ S∗
2 , where

S∗
1 � S∗

2 � SL2(q∗). In view of Lemma 1(2b), the elements x and y belong to a cyclic group
CH∗(O2(D1D2)), and C is a locally cyclic group.

Suppose that x ∈ CG(O2(D)) and y ∈ CG(O2(D1D2)). Then 〈x, y,D,D1D2〉 is a finite subgroup
of CG(i) lying in some element L∗ of the set M(G). As above, i is an involution of principal type in
L∗, and if H∗ = CL∗(t), then CH∗(O2(D)) = CH∗(O2(D1D2)) and x, y ∈ CG(O2(D1D2)). Hence
C = CG(O2(D)) = CG(O2(D1D2)).

If now x ∈ CG(i), then Cx = CG(O2(Dx
1Dx

2 )) = C. The lemma is proved.

LEMMA 3. CG(O2(D1))/C � L2(F ∗) for a locally finite field F ∗ of odd characteristic.
Proof. By Lemma 2, C � CG(i). In virtue of the fact that C ≤ CG(O2(D1)) ≤ CG(i), we have

C � CG(O2(D1)). Let X be a finite subgroup in CG(O2(D1))/C containing O2(D1)C/C and let
U be its finite preimage in CG(O2(D1)) containing O2(D1). By hypothesis, U ≤ L∗ � L4(q∗) for
some q∗, and hence U ≤ L∗ ∩CG(D1) � SL2(q∗). In view of (L∗ ∩CG(D1))C/C � L2(q∗) and [6],
we conclude that CG(O2(D1))/C � L2(F ∗) for some locally finite field F ∗ of odd characteristic.
The lemma is proved.

LEMMA 4. The subgroup CG(i) is countable.
Proof. Since O2(D2) = O2(D1)t and C is invariant with respect to t, Lemma 3 implies that

CG(O2(D2))/C � L2(F ∗).
We want to show that [CG(O2(D1)), CG(O2(D2))] = 1. Let x ∈ CG(O2(D1)), y ∈ CG(O2(D2)),

and U = 〈x, y,D1,D2〉. Because U ≤ CG(i), U is a finite group by assumption. It lies in a subgroup
L∗ ∩ CG(i), where L∗ � L4(q∗) for some q∗, and contains D1D2.

In view of Lemma 2, [x, y] = 1.
We show that N = CG(O2(D1))CG(O2(D2)) is a subgroup of finite index in CG(i).
First, N � CG(i). Indeed, suppose that g ∈ CG(i). Then O2(D1)g ≤ CG(O2(D1))

or O2(D1)g ≤ CG(O2(D2)), and O2(D1)g ≤ N . Similarly, O2(D2)g ≤ N . This implies
〈O2(D1)CG(i), O2(D2)CG(i), C〉 = N .
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If g ∈ CG(i), then CG(O2(D1))g = CG(O2(Dj)), where j ∈ {1, 2}, and

|CG(i) : NCG(i)(CG(O2(D1))| = 2.

In L2(F ∗), there are at most two classes of nonconjugate noncyclic subgroups of order 4, hence
N is a subgroup of finite index in CG(i). Since C is a countable group and N/C too is countable,
CG(i) is a countable group. The lemma is proved.

LEMMA 5. The subgroup CG(i) lies in a subgroup R of the group G isomorphic to L4(F )
for a locally finite field F of odd characteristic.

Proof. By Lemma 4, CG(i) is countable, and CG(i) = {xj | xj ∈ CG(i), j = 1, 2, . . . }. Let
H1 = CL(i), where L is a subgroup which we fixed at the beginning of the section. Suppose that
for k ∈ N, the subgroup Hk is already defined, and take the first of the elements xj not in Hk to be
yk. The subgroup 〈Hk, yk〉 is finite and is therefore contained in some subgroup Lk+1 � L4(qk+1) of
G. Set Hk+1 = CLk+1

(i). In view of Lemma 1(3), Lk+1 = 〈Hk+1,K〉, where K is as in Lemma 1(3).
Then Lk ≤ Lk+1. The union R =

⋃

k

Lk is a locally finite group and it contains CG(i). By [6],

R � L4(F ) for some locally finite field F of odd characteristic. The lemma is proved.

LEMMA 6. R contains every involution of G that is conjugate to i, and such an involution is
conjugate to i in R.

Proof. Let g ∈ G and X = 〈i, ig〉. The subgroup X is finite, and by hypothesis, lies in a
subgroup L∗ � L4(q∗) for some q∗. We define a graph Γ whose vertices are the involutions of L∗

conjugate in G to i, and we connect two involutions in Γ by an edge if they commute.
We claim that Γ is connected. First, we check that L∗ acts transitively on the set of vertices of

Γ, i.e., two involutions of L∗ that are conjugate to i in G will be conjugate to i in L∗. Suppose that
this is not true. Let u be a vertex of Γ not conjugate to i in L∗. By [4, 6(5.2)], CL∗(u) contains a
subgroup E〈r〉, where E/Z(E) � L2(q2

∗), r is an involution normalizing E, and r induces under
conjugation in E/Z(E) an automorphism mapping every element of E/Z(E) into its image under
the action of a nontrivial element of the Galois group of the extension of GF (q2)/GF (q).

On the other hand, u is conjugate in G to i, therefore CL∗(u) lies in some finite subgroup H∗ of
CG(u) isomorphic to SL2(q∗)◦SL2(q∗) : (q∗−1) : 2 (cf. Lemma 1), which does not have subgroups
isomorphic to E〈r〉. The contradiction obtained shows that every vertex of Γ is conjugate in L∗ to i

and L∗ acts under conjugation transitively on the vertices of Γ. If q∗ > 3, then CL∗(i) is a maximal
subgroup in L∗ (cf. Lemma 1) and it contains at least one involution t∗ which is a conjugate of i

and commutes with it. Then a connected component of Γ that contains i coincides with the whole
set of vertices in Γ. And if q∗ = 3, then straightforward calculations in GAP [7] show that Γ is
connected.

Let i = i0, i1, . . . , is = ig, where (ik, ik+1) is an edge in Γ for all k = 0, 1, . . . , s − 1. We use
induction on s to show that the involution is lies in R and is conjugate in R to i. If s = 1, then
i1 ∈ R by Lemma 5, and in this case L∗ can be chosen in R. In view of the above, i = ir1 for some
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r ∈ R and {i = ir1, i
r
2, . . . , i

r
s} is a chain of length s − 1 in Γ. By induction, igr lies in R and is

conjugate in R to i. The lemma is proved.

LEMMA 7. We have R = G.
Proof. By virtue of Lemma 6, 〈iG〉 ≤ R, and since R is simple, R = 〈iG〉 � G. If g ∈ G, then

ig ∈ R and there is x ∈ R such that igx = i. Since CG(i) ≤ R, we have gx ∈ R and g ∈ R. The
lemma, together with the theorem, is proved.
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