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The Lambek calculus with the unit can be defined as the atomic theory (algebraic logic)
of the class of residuated monoids. This calculus, being a theory of a broader class
of algebras than Heyting ones, is weaker than intuitionistic logic. Namely, it lacks
structural rules: permutation, contraction, and weakening. We consider two extensions
of the Lambek calculus with modalities—the exponential, under which all structural rules
are permitted, and the relevant modality, under which only permutation and contraction
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INTRODUCTION

A residuated monoid is a partially ordered monoid (A, ·,1,�) with additionally defined left (\)
and right (/) division operations, such that b � a\c ⇐⇒ a · b � c ⇐⇒ a � c/b. Note that this
condition is bound not to the equality (as, e.g., for division in groups), but rather to the partial
order; the idea of partially ordered residuated algebraic structures goes back to Krull [1].

The Lambek calculus with the unit, L1, can be defined as the atomic theory (algebraic logic) of
the class of residuated monoids (see [2]). We will consider the set of formulas built from variables
and a constant 1 using operations ·, \, and /. Theorems of L1 are exactly all statements of the
form A � B (where A and B are formulas) which are generally true in all residuated monoids.

We describe a sequent calculus for L1. Formulas are denoted by capital Latin letters; capital
Greek letters denote sequences of formulas; Λ stands for the empty sequence. Sequents of the L1

calculus are expressions of the form Γ � A, where Γ is a sequence of formulas (possibly empty) and
A is a formula. Axioms of our calculus are A � A and Λ � 1. Inference rules are defined as follows:

Π � A Γ, B,Δ � C

Γ,Π, A\B,Δ � C
(\ �),

A,Π � B

Π � A\B (� \), Γ, A,B,Δ � C

Γ, A · B,Δ � C
(· �),

Π � A Γ, B,Δ � C

Γ, B/A,Π,Δ � C
(/ �),

Π, A � B

Π � B/A
(� /), Π � A Δ � B

Π,Δ � A · B (� ·),

Γ,Δ � C

Γ,1,Δ � C
(1 �),

Π � A Γ, A,Δ � C

Γ,Π,Δ � C
(cut).

A natural example of a residuated monoid is an algebra of formal languages over an alphabet.
An interpretation on the algebra of formal languages corresponds to the linguistic understanding
of the Lambek calculus.

A particular case of residuated monoids are Heyting algebras—more precisely, their reducts in
the language of ∧, ⇒, �, up to change of notation: a ∧ b = a · b, � = 1, a ⇒ b = a\b. The L1

calculus, being the theory of a broader class of algebras, is itself weaker than intuitionistic logic.
Namely, it lacks structural rules of permutation, contraction, and weakening. We will consider an
extension of the L1 calculus with a modality under which structural rules are allowed. The idea of
such a modality, which is called the exponential and is denoted by !, goes back to Girard [3] who
introduced it in linear logic. For the exponential, we have the following inference rules:
introduction rules

Γ, A,Δ � C

Γ, !A,Δ � C
(! �),

!A1, . . . , !An � B

!A1, . . . , !An � !B
(� !),

and structural rules

Γ, B, !A,Δ � C

Γ, !A,B,Δ � C
(!perm1),

Γ, !A,B,Δ � C

Γ, B, !A,Δ � C
(!perm2),
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Γ, !A, !A,Δ � C

Γ, !A,Δ � C
(!contr),

Γ,Δ � C

Γ, !A,Δ � C
(!weak).

The extension of L1 with the exponential will be denoted by !L1.
Let us consider one more calculus, !rL1, which is obtained from !L1 by removing the weakening

rule (!weak). Such ! modality is said to be relevant since the behavior of formulas under this
modality corresponds to a relevant logic [4]. A relevant modality is meaningful from a linguistic
point of view [5].

Cut-eliminability in the !L1 and !rL1 calculi follows from a more general result [6]. The
derivability problem for L1 belongs to the NP complexity class. On the other hand, systems !L1

and !rL1 have undecidable derivability problems [5, 7]. However, if we allow applying the ! modality
only to variables, both problems (for !L1 and for !rL1) become decidable and belong to the NP
class [5].

We study the frontier between decidable and undecidable fragments of !L1 and !rL1 in more
detail. For formulas which are built from variables using only \ and / operations, we define the
notion of depth: d(pi) = 0, where pi is a variable, and d(A\B) = d(B/A) = max{d(A) + 1, d(B)}.
We say that a sequent is 1-bounded if in this sequent ! is applied only to formulas of depth not
greater than 1. Due to the permutation rule, each formula of the form !A, where d(A) � 1, is
equivalent to a formula of the form !(. . . (p/qn)/ . . . /q1), which we will write as !(p/(q1 . . . qn)).

THEOREM 1. Derivability problems in the !L1 and !rL1 calculi for 1-bounded sequents are
algorithmically decidable and belong to NP.

This strengthening of the result from [5] is in a sense sharp: if one allows formulas of depth 2
under !, then the derivation problem becomes undecidable [5]. For a relevant modality, we also
obtain a new upper bound. Namely, the following holds:

THEOREM 2. The derivability problem in the !rL1 calculus for 1-bounded sequents built
using only \ and ! is NP-hard.

This result does not follow from NP-completeness of L1 (see [8]) because its fragment with only
one operation \ is polynomially decidable [9].

In order to prove the above results, we introduce a new notion of R-total derivability in context-
free grammars (meaning that there exists a derivation which uses each rule at least a given
number of times) and establish NP-completeness of the corresponding algorithmic problem. We
also pinpoint algorithmic complexity of R-total derivability for more general classes of generative
grammars.

1. AUXILIARY CALCULI !�1L1 AND !r�1L1

In order to construct NP-algorithms for checking derivability in the given fragments of the !L1

and !rL1 calculi, we introduce equivalent auxiliary calculi denoted by !�1L1 and !r�1L1.
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We will need the notion of a multiset, an analog of a set in which elements may have
multiplicities. Formally, a multiset is a pair X = (X,μ), where X is a set (support) and μ : X → N

is the multiplicity function. A multiset is finite if μ(x) 
= 0 only for a finite number of values of
x ∈ X (while the X itself could be infinite). For two multisets X = (X,μ) and Y = (X, ν) with
the same support, we define their sum: X�Y = (X, ζ), where ζ(x) = μ(x) + ν(x) for each x ∈ X,
and the “submultiset” relation: X ⊆ Y if μ(x) � ν(x) for each x ∈ X. We say that an element
x ∈ X belongs to the multiset X = (X,μ) if μ(x) > 0.

Recall that a context-free grammar (cf-grammar for short) is a quadruple G = (N,Σ,P, s),
where N and Σ are two disjoint alphabets whose letters are called nonterminals and terminals,
respectively, s ∈ N , and P is a finite set of rules of the form A → α, where A ∈ N and α ∈ (N∪Σ)∗.
We write β ⇒ γ if β = ηAθ, γ = ηαθ, and A → α ∈ P for some η, θ ∈ (N ∪ Σ)∗.

A derivation in a cf-grammar G is a chain β0 ⇒ . . . ⇒ βk, denoted β0 ⇒k βk, or β0 ⇒∗ βk if
the number of steps does not matter. If k > 0, we also write β0 ⇒+ βk. If w ∈ Σ∗ (i.e., does not
contain nonterminals) and s ⇒∗ w, then w is derivable in a cf-grammar G.

Now let R be a multiset of rules in G, i.e., R = (P, ρ). We say that a derivation is R-total if, for
each rule, the number of times it is used in the derivation is not less than the multiplicity of that
rule in R. And we write β0 ⇒∗

R βk. In particular, if, for R, we take the whole P with multiplicity
1 for each rule, we obtain the notion of a total derivation.

Now we are ready to formulate the calculi !�1L1 and !r�1L1. Sequents of these calculi are
expressions of the form !Φ;Π � B, where !Φ is a multiset of formulas of the form !(p/(q1 . . . qn)),
Π is a sequence of formulas, B is a formula, and Π � B is 1-bounded.

Sets of axioms of the !�1L1 and !r�1L1 calculi are defined as follows. Given a multiset !Φ and
a variable s, we define a cf-grammar G!Φ,s = (N,Σ,P, s), where N is the set of variables occurring
in !Φ, with s added, and Σ = {r̂ | r ∈ N}. The rules in P are as follows: p → q1 . . . qm for each
formula !(p/(q1 . . . qm)) from !Φ and r → r̂ for each r ∈ N .

As axioms of the !�1L1 calculus, we take all sequents of the form !Φ; r1, . . . , rn � s, where the
word r̂1 . . . r̂n is derivable in the cf-grammar G!Φ,s, and sequents !Φ;Λ � 1 for arbitrary !Φ.

The multiset R!Φ of rules of the cf-grammar G!Φ,s is defined in the following way. Each rule
of the form p → q1 . . . qm has the same multiplicity as the corresponding formula !(p/(q1 . . . qm))
has in the multiset !Φ. Rules of the form r → r̂ have multiplicity 0. As axioms of the !r�1L1

calculus, we take all sequents of the form !Φ; r1, . . . , rn � s, where the word r̂1 . . . r̂n has an R!Φ-
total derivation in the cf-grammar G!Φ,s, and the sequent ∅; Λ � 1. This class of axioms reflects
the idea of relevance: each rule, which corresponds to a formula from !Φ, should be used.

Inference rules in both calculi, !�1L1 and !r�1L1, are the same:

!Ψ;Π � A !Φ; Γ, B,Δ � C

!Θ; Γ,Π, A\B,Δ � C
(\ �),

!Ψ;Π � A !Φ; Γ, B,Δ � C

!Θ; Γ, B/A,Π,Δ � C
(/ �),
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!Φ;A,Π � B

!Φ;Π � A\B (� \), !Φ;Π, A � B

!Φ;Π � B/A
(� /),

!Φ; Γ,Δ � C

!Φ; Γ,1,Δ � C
(1 �),

!Φ; Γ, A,B,Δ � C

!Φ; Γ, A · B,Δ � C
(· �),

!Φ;Π � A !Ψ;Δ � B

!Θ;Π,Δ � A · B (� ·),

!Φ � {!A}; Γ,Δ � C

!Φ; Γ, !A,Δ � C
(! �),

!Φ;Λ � B

!Φ;Λ � !B
(� !),

!Ψ;Π � A !Φ; Γ, A,Δ � C

!Θ; Γ,Π,Δ � C
(cut),

!Ψ;Λ � !A !Φ � {!A}; Π � C

!Θ;Π � C
(!cut).

Each two-premise rule should obey the following correctness conditions: !Φ ⊆ !Θ, !Ψ ⊆ !Θ, !Θ ⊆
!Φ � !Ψ.

THEOREM 3. A 1-bounded sequent Π � B is derivable in !L1 if and only if a sequent
∅; Π � B is derivable in !�1L1. The same holds for calculi !rL1 and !r�1L1 respectively.

Proof. All rules of the original calculi !L1 and !rL1, which do not relate to ! (but including
(cut)), are translated into !�1L1 and !r�1L1 by adding empty !-parts. Rules (! �), (� !), (!perm1),
(!contr), and (!weak) in the case of !L1 are simulated using a cut with appropriate sequents:

{!A}; Λ � A, {!A}; Λ � !A, {!A}; Λ � !A · !A, {!A}; Λ � 1.

For the opposite direction, we suppose that the sequent {!A1, . . . , !An}; Π � C is derivable in the
new calculus and construct a derivation of !A1, . . . , !An,Π � C in the old one by induction on the
derivation. In the base (axiom) case, we add an extra induction on a derivation in a cf-grammar. �

2. CUT ELIMINATION IN !�1L1 AND !r�1L1

In order to prove cut-elimination theorems in !�1L1 and !r�1L1, we will need the following
abstract lemma on multisets.

LEMMA 4. Let A, B, C, and D be four multisets, and let D ⊆ A�B�C, A ⊆ D, B ⊆ D,
and C ⊆ D. Then there exists a multiset E such that E ⊆ A � C, A ⊆ E, C ⊆ E, E ⊆ D, and
D ⊆ E � B.

Proof. Let some element belong to A, B, C, D with multiplicities a, b, c, d respectively. If
a + c � d, then we add this element to E with multiplicity e = a + c. Conditions e � a + c, a � e,
and c � e are obviously satisfied, e � d by our presupposition, and d � a + b + c = e + b because
D ⊆ A�B�C. If, however, a+ c > d, then we put e = max{a, c, d− b}. Clearly, a � e, c � e, and
d � e + b. Next, a � d and c � d by hypothesis, and d − b � d, whence e � d. Finally, e � a + c

since d < a + c. �

First we eliminate the (!cut) rule.

LEMMA 5. If sequents !Ψ;Λ � !A and !Φ � {!A}; Π � C are derivable without using (cut)
and (!cut), and !Θ obeys !Φ ⊆ !Θ, !Ψ ⊆ !Θ, and !Θ ⊆ !Φ � !Ψ, then the sequent !Θ;Π � C is also
derivable without using (cut) and (!cut). This statement holds both for !�1L1 and for !r�1L1.
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Proof. Notice that the first sequent, !Ψ;Λ � !A, where A = p/(q1 . . . qn), can be derived without
using a cut in a unique way, by applying rules (� /) and (� !) to the !Ψ; q1, . . . , qn � p axiom.

Now we proceed by induction on the complexity of the derivation of !Φ�{!A}; Π � C. The most
interesting case is the base case, where this sequent is an axiom of the form !Φ�{!A}; r1, . . . , rm � s.
For the !r�1L1 calculus, this means that the word r̂1 . . . r̂m has an R!Φ�{!A}-total derivation π1 in
the cf-grammar G!Φ�{!A},s. Let A = p/(q1 . . . qn). The !Ψ; q1, . . . , qn � p axiom gives an R!Ψ-total
derivation of the word q̂1 . . . q̂n in the cf-grammar G!Ψ,p. Thus, we also obtain such a derivation for
a nonterminal word q1 . . . qn. Denote this derivation by π2. Consider two cases.

Case 1. Let !A not occur in !Φ. In the π1 derivation, we replace each application of the p →
q1 . . . qn rule with a copy of the π2 derivation. Since !Φ ⊆ !Θ and !Ψ ⊆ !Θ, the new derivation π is
a correct derivation in G!Θ,s (the rule corresponding to the !A formula was removed from π1). On
the other hand, a calculation of rule applications shows that this derivation is R!Φ�!Ψ-total, and
therefore it is R!Θ-total.

Case 2. Now let !A occur (with some multiplicity) in !Φ. In the π1 derivation, we replace only
one (e.g., the first) application of the p → q1 . . . qn rule with a copy of the π2 derivation. The
derivation π constructed in this way would be a correct derivation in G!Θ,s: now !A belongs to !Θ.
On the other hand, π is R!Θ-total.

In both cases the target sequent happens to be an axiom. For !�1L1, we use the same argument,
but without counting rule applications.

There is one more induction base case, where the right premise is an axiom of the form !Φ �
{!A}; Λ � 1. This case is possible only for the !�1L1 calculus, and here the target sequent !Θ;Λ � 1

is also an axiom.
In order to prove the induction step, we consider the lowermost rule in the derivation of !Φ �

{!A}; Π � C.
Case 1. Consider (! �). The derivation is rebuilt by interchanging (!cut) and (! �). Under this

transformation, the correctness conditions for (!cut) remain valid: both parts of the inclusions are
extended by the !B formula introduced by the (! �) rule. The new application of (!cut) is eliminable
by the induction hypothesis.

Case 2. Consider any other one-premise rule, i.e., (� \), (� /), (· �), (1 �), or (� !). Denote
this rule by P . The derivation is rebuilt by interchanging (!cut) and P . The P rule is kept valid
because P and (!cut) operate on different sides of “ ; .” Conditions on !Θ are also respected.

Case 3. Consider a two-premise rule, i.e., (\ �), (/ �), or (� ·). We will focus on the (� ·) rule;
the others can be treated similarly. A derivation has the form

!Ψ;Λ � !A
!Υ1; Π1 � C1 !Υ2; Π2 � C2

!Φ � {!A}; Π1,Π2 � C1 · C2
(� ·)

!Θ;Π1,Π2 � C1 · C2
(!cut)

Since !Φ � {!A} ⊆ !Υ1 � !Υ2, one of the multisets !Υi contains !A. Let it be !Υ2. Then !Υ2 =
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!Υ′
2 �{!A}. We have !Υ′

2 ⊆ !Φ since !Υ′
2 �{!A} ⊆ !Φ�{!A}, whence !Υ′

2 ⊆ !Θ. There are two cases
to consider.

Case 3.1. Let !Υ1 ⊆ !Θ. Since !Θ ⊆ !Φ � !Υ1 � !Υ′
2 (because !Θ � {!A} ⊆ !Ψ � !Φ � {!A} ⊆

!Ψ � !Υ1 � !Υ′
2 � {!A}), the conditions of Lemma 4 hold. By this lemma, there exists !Ξ such that

!Ψ ⊆ !Ξ, !Υ′
2 ⊆ !Ξ, !Ξ ⊆ !Ψ � !Υ′

2, !Ξ ⊆ !Θ, and !Θ ⊆ !Ξ � !Υ1. Now we have

!Υ1; Π1 � C1

!Ψ;Λ � !A !Υ′
2 � {!A}; Π2 � C2

!Ξ;Π2 � C2
(!cut)

!Θ;Π1,Π2 � C1 · C2
(� ·)

The new application of (!cut) is eliminable by the induction hypothesis.
Case 3.2. Let !Υ1 
⊆ !Θ. On the other hand, !Υ1 ⊆ !Φ � {!A} ⊆ !Θ � {!A}. This means that

!Υ1 outsteps !Θ using an extra copy of !A. In other words, !Υ1 = !Υ′
1 � {!A}, and multiplicities

of !A in !Υ′
1 and in !Θ coincide. We prove that !Θ ⊆ !Φ � !Υ′

1 � !Υ′
2. As in Case 3.1, we have

!Θ ⊆ !Φ� !Υ1� !Υ′
2 = !Φ� !Υ′

1� !Υ′
2�{!A}. In addition, the multiplicity of !A in !Θ is the same the

one in !Υ′
1 and is therefore not greater than the one in !Φ � !Υ′

1 � !Υ′
2. Thus, !Θ ⊆ !Φ � !Υ′

1 � !Υ′
2,

!Ψ ⊆ !Θ, !Υ′
1 ⊆ !Θ, !Υ′

2 ⊆ !Θ (because !Υ′
i � {!A} ⊆ !Θ � {!A}). Let us apply Lemma 4 twice,

with B ⊆ !Υ2 and with B ⊆ !Υ1. This yields two multisets !Ξ1 and !Ξ2, where !Ξ1 satisfies the
following conditions: !Ψ ⊆ !Ξ1, !Υ′

1 ⊆ !Ξ1, !Ξ1 ⊆ !Ψ � !Υ′
1, !Ξ1 ⊆ !Θ, and !Θ ⊆ !Ξ1 � !Υ′

2, and
similar properties of !Ξ2 are obtained by swapping !Υ′

1 and !Υ′
2. We rebuild the derivation in the

following way:

!Ψ;Λ � !A !Υ′
1 � {!A}; Π1 � C1

!Ξ1; Π1 � C1

!Ψ;Λ � !A !Υ′
2 � {!A}; Π1 � C2

!Ξ2; Π2 � C1
(!cut)

!Θ;Π1,Π2 � C1 · C2
(� ·)

All correctness conditions for rules (!cut) and (� ·), except for !Θ ⊆ !Ξ1 � !Ξ2, have been already
obtained using Lemma 4. The latter condition follows from !Θ ⊆ !Ξ1� and !Υ′

2 ⊆ !Ξ2. Both
applications of (!cut) here have simpler derivations of their right premises and are therefore
eliminable by the induction hypothesis. �

LEMMA 6. If sequents !Ψ;Π � A and !Φ; Γ, A,Δ � C are derivable without using (cut) and
(!cut), and if !Θ obeys !Φ ⊆ !Θ, !Ψ ⊆ !Θ, and !Θ ⊆ !Φ � !Ψ, then the sequent !Θ;Π � C is also
derivable without using (cut) and (!cut). This statement holds both for !�1L1 and for !r�1L1.

Proof. We proceed by nested induction. The outer induction parameter is the complexity of a
formula A, and the inner induction parameter is the sum of sizes of derivations of !Ψ;Π � A and
!Φ; Γ, A,Δ � C.

In the induction base case, the above sequents are axioms. Moreover, they are axioms of the
form !Ψ; p1, . . . , pn � q and !Φ; r1, . . . , ri, q, ri+1, . . . , rm � s. Hence, there exist two derivations:
a derivation π1 of the word p̂1 . . . p̂n in the cf-grammar G!Ψ,q and a derivation π2 of the word
r̂1 . . . r̂iqr̂i+1 . . . r̂m in the cf-grammar G!Φ,s (in the second derivation, we have removed the
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application of the rule q → q̂). By placing π1 after π2, we obtain a derivation π of the word
r̂1 . . . r̂ip̂1 . . . p̂nr̂i+1 . . . r̂m in the united cf-grammar G!Θ,s (since !Φ ⊆ !Θ and !Ψ ⊆ !Θ, this
cf-grammar contains all rules from both G!Φ,s and G!Ψ,q). Moreover, in the case of !r�1L1, the
derivation π1 is R!Ψ-total and the derivation π2 is R!Φ-total. Since !Θ ⊆ !Φ � !Ψ, π is an R!Θ-total
derivation. Thus, the target sequent !Θ; r1, . . . , ri, p1, . . . , pn, ri+1, . . . , rm � s is an axiom of the
given calculus.

In order to prove the induction step, we consider the lowermost rules applied in the derivations
of the given sequents. Such an application will be referred to as principal if it introduces the formula
A which is removed by the cut rule. Below are three possible (and interleaving) cases.

Case 1. Suppose that the derivation of the left premise is concluded by a nonprincipal application
of some rule. This rule should introduce a connective to the left-hand side of the sequent.

Case 1.1. Consider a rule (\ �) or (/ �).

!Υ1; Π2 � E !Υ2; Π1, F,Π3 � A

!Ψ;Π1,Π2, E\F,Π3 � A
(\ �)

!Φ; Γ, A,Δ � C

!Θ; Γ,Π1,Π2, E\F,Π3,Δ � C
(cut)

We have !Υ1 ⊆ !Θ, !Υ2 ⊆ !Θ, !Φ ⊆ !Θ, and !Θ ⊆ !Υ1 � !Υ2 � !Φ. By Lemma 4, there exists !Ξ such
that !Φ ⊆ !Ξ, !Υ2 ⊆ !Ξ, !Ξ ⊆ !Φ � !Υ2 ⊆ !Ξ, !Ξ ⊆ !Θ, and !Θ ⊆ !Υ1 � !Ξ. The following derivation
is correct:

!Υ1; Π2 � E

!Υ2; Π1, F,Π3 � A !Φ; Γ, A,Δ � C

!Ξ; Γ,Π1, F,Π3,Δ � C
(cut)

!Θ; Γ,Π1,Π2, E\F,Π3,Δ � C
(\ �)

The new application of (cut) has a smaller summary depth of derivations of premises and is therefore
eliminable by the induction hypothesis.

Case 1.2. Consider a rule (· �). The derivation is rebuilt (decreasing the summary depth of
derivations of premises of (cut)) by interchanging (cut) and (· �). The correctness conditions for
(cut) remain valid.

Case 1.3. Consider (! �). The derivation is rebuilt similarly to Case 1.2, by interchanging (cut)
and (! �). The new (cut) is correct because adding {!B} keeps multiset inclusions true.

Case 2. The derivation of the right premise is concluded by a nonprincipal application of some
rule. This rule cannot be (� !) because the right premise should contain a formula A to the right
of the “ ; ” symbol.

Case 2.1. Consider a one-premise rule P . As in Cases 1.2 and 1.3, we interchange P and (cut),
decreasing the depth. The correctness of (cut) is preserved.

Case 2.2. Consider a two-premise rule (i.e., (� ·), (\ �), or (/ �)). The derivation is rebuilt
similarly to Case 1.1.

Case 3. Finally, each of !Ψ;Π � A and !Φ; Γ, A,Δ � C either is an axiom or is derived by a
principal application of a rule. The case where A is a variable and both sequents are axioms has
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already been considered (induction base). Let us consider other possibilities for A.
Case 3.1. Let A = 1. In the !r�1L1 calculus, we see that the target sequent coincides with the

premise of the (1 �) rule, i.e., it has already been derived, and the cut is unnecessary. For !�1L1,
the argument is a bit more complicated. The premise of (1 �) is of the form !Φ; Γ,Δ � C, and
correctness conditions yield only the inclusion !Φ ⊆ !Θ, i.e., !Θ = !Φ � !Ψ for some !Ψ. However,
adding !Ψ to all sequents in the derivation of !Φ; Γ,Δ � C does not spoil the rules and, in the case
of !�1L1, also keeps the axioms valid. (In other words, the weakening rule is admissible in !�1L1

with no cut.) This gives cut-free derivability of !Θ; Γ,Δ � C.
Case 3.2. Let A = E\F or A = F/E. We have the following:

!Ψ;E,Π � F

!Ψ;Π � E\F (� \) !Υ1; Γ2 � E !Υ2; Γ1, F,Δ � C

!Φ; Γ1,Γ2, E\F,Δ � C
(\ �)

!Θ; Γ1,Γ2,Π,Δ � C
(cut)

Moreover, !Ψ ⊆ !Θ, !Υ1 ⊆ !Θ, !Υ2 ⊆ !Θ, and !Θ ⊆ !Ψ � !Υ1 � !Υ2. Let us apply Lemma 4 and
construct !Ξ such that !Ψ ⊆ !Ξ, !Υ2 ⊆ !Ξ, !Ξ ⊆ !Ψ � !Υ2, !Ξ ⊆ !Θ, and !Θ ⊆ !Ξ � !Υ1. Now we
rebuild the derivation, splitting the cut into two cuts with smaller complexity of the formula being
removed (outer induction hypothesis):

!Υ1; Γ2 � E

!Ψ;E,Π � F !Υ2; Γ1, F,Δ � C

!Ξ; Γ1, E,Π,Δ � C
(cut)

!Θ; Γ1,Γ2,Π,Δ � C
(cut)

Case 3.3. Let A = E · F . Similar to Case 3.2.
Case 3.4. Let A = !B. The (cut) rule can be replaced by (!cut) with the same correctness

condition. The latter is eliminable by Lemma 5. �

3. R-TOTAL DERIVABILITY IN CF-GRAMMARS

The !�1L1 and !r�1L1 calculi have nontrivial sets of axioms: checking whether a given sequent
is an axiom involves solving derivability problems in cf-grammars. For !�1L1, this is the usual
problem of derivability of a word in a cf-grammar. It is well-known that it is solvable in polynomial
time. For !r�1L1, we need to construct an algorithm for checking R-total derivability.

THEOREM 7. The problem of R-total derivability of a given word w in a given cf-grammar
G for a given multiset R of rules belongs to the NP class.

We will consider a cf-grammar G = (N,Σ,P, S), where N = {A1, . . . , Am} and P = {p1, . . . , pr }
(i.e., m = |N | and r = |P|). In this section we denote terminals by lowercase letters and
nonterminals by uppercase ones (in particular, we will use S instead of s). Let l be the length
of the longest right-hand side of a rule from P. Rules of the form A → α will be called A-rules.
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By |w| we denote the length of a word w; |w|a stands for the number of symbols a in this word.
The projection PrΣ(α) of a word α onto an alphabet Σ is the word which is obtained by removing
all symbols not belonging to Σ from α.

It is convenient to represent derivations in a cf-grammar (starting from the initial nonterminal
S) as trees: inner vertices correspond to applications of rules and the yield is the word derived.
Vertices located at a distance k from the root form the kth level of the tree.

If the cf-grammar has no rules of the form A → B (chain rules) or A → ε (empty rules),
then the length of any derivation S ⇒∗ w, where |w| = n, is not greater than 2n − 1. Therefore,
the problem of R-total derivability is solved by the following simple algorithm: one has to guess a
derivation of length not more than 2n−1 and check it for correctness. For an arbitrary cf-grammar,
there are two difficulties.

The first challenge is that there could be cycles in the grammar, that is, derivations of the form
A ⇒+ A. In the presence of cycles, an algorithm which just guesses the sequence of rules might
enter a dead loop. Removing cycles keeps derivability but could violate totality. For example, in a cf-
grammar with rules S → T , T → S, and S → a, the word a has a total derivation S ⇒ T ⇒ S ⇒ a,
but each total derivation includes the S ⇒+ S cycle.

The second challenge is that even if cycles are missing, some derivations could have exponential
length. For example, let a grammar have m nonterminals, A1 = S, A2, . . . , Am, and the following
rules: A1 → A2A2, A2 → A3A3, . . . , Am−1 → AmAm, Am → ε. Then A1 ⇒∗ ε, but the length
of this derivation is equal to 1 + 2 + 4 + · · · + 2m−1 = 2m − 1, since each application of an
Ai → Ai+1Ai+1 rule doubles the number of nonterminals. Therefore, an algorithm which attempts
to guess the derivation directly will have at least exponential complexity.

The examples given above show that a polynomial algorithm should somehow take into account
empty rules and cycles.

For a nonterminal A ∈ N , let E(A) denote the set of rules which can be used in some derivation
A ⇒∗ ε. Notice that we do not require all rules from E(A) to be used in one derivation. It is sufficient
that each rule has its own derivation. In order to compute E(A), we define the following auxiliary
sets:

E0(A) = ∅,

Ei+1(A) = Ei(A) ∪
⋃{

Ei(B1) ∪ · · · ∪ Ei(Bk) ∪ { pj } :

pj = A → B1 . . . Bk, Ei(Bt) 
= ∅ for t = 1, . . . , k
}
.

(1)

In the set Ei(A), we record all rules which can be used in a derivation A ⇒∗ ε of length not

greater than i, and E(A) =
∞⋃

i=1
Ei(A). Clearly, E(A) 
= ∅ if and only if A ⇒∗ ε.

Algorithm E computation of sets E(A)
Input: G = (N,Σ, P, S) is a cf-grammar
Output: E(A) for all A ∈ N
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1: Let E0(A) = ∅ for each A ∈ N ; let i = 0
2: do
3: Compute Ei+1(A) for each A ∈ N by formula (1); i = i + 1
4: while Ei(A) 
= Ei−1(A) for some A ∈ N
5: Let E(A) = Ei(A) for each A ∈ N

LEMMA 8. Algorithm E computes all sets E(A) in polynomial time.
Proof. That the above-given algorithm is correct follows from the two statements below, which

are proved by induction on i.
—If pj ∈ Ei(A), then there exists a derivation A ⇒∗ ε, in which the rule pj is used.
—If there exists a derivation A ⇒i ε, in which the rule pj is used, then pj ∈ E(A).
These statements guarantee that when the algorithm stops, exactly the required sets E(A) have

been computed. Polynomiality of the running time is checked directly: in the loop in lines 2-4, the
sets Ei(A) could only increase, and so the number of iterations does not exceed mr. �

Next, we are going to show how to find rules which can be used in derivations of the form
A ⇒+ B, e.g., in cycles A ⇒+ A. For nonterminals A,B ∈ N , let C (A,B) denote the set of rules
which may be used in some derivation A ⇒+ B. As in the case of sets E(A), we do not require all
rules from the set C (A,B) to be used in the same derivation. In order to compute C (A,B), we
define the following auxiliary sets:

C0(A,B) = ∅,

Ci+1(A,B) = Ci(A,B)

∪
⋃{

E(B1) ∪ · · · ∪ E(Bq−1) ∪ Ci(Bq, B) ∪ E(Bq+1) ∪ . . .

∪ E(Bk) ∪ { pj } : pj = A → B1 . . . Bk, 1 � q � k,

Ci(Bq, B) 
= ∅ or Bq = B,

E(Bt) 
= ∅ for t = 1, . . . , q − 1, q + 1, . . . , k
}
.

(2)

At each step, the set Ci(A,B) is extended by rules from longer derivations A ⇒+ B. Such
derivations, up to the order of rules, are of the form A ⇒ B1 . . . Bq−1BqBq+1 . . . Bk ⇒∗ Bq ⇒∗ B.
This derivation uses the rule pj = A → B1 . . . Bq−1BqBq+1 . . . Bk, all rules from derivations Bt ⇒∗

ε, i.e., from E(Bt) (t 
= q), and also rules from Bq ⇒∗ B if the latter derivation is nontrivial. Since
that derivation is shorter, the rules used in it have already been registered in Ci(Bq, B). As the set

of all rules is finite, the extension of sets Ci(A,B) stabilizes. Let C (A,B) =
∞⋃

i=1
Ci(A,B).

Algorithm C computation of sets C (A,B)
Input: G = (N,Σ, P, S) is a cf-grammar
Output: C (A,B) for all A,B ∈ N

1: Compute E(A) for each A ∈ N (Algorithm E)
2: Let C0(A,B) = ∅ for each A,B ∈ N . Let i = 0
3: do
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4: Compute Ci+1(A,B) for each A,B ∈ N by formula (2); i = i + 1
5: while Ci(A,B) 
= Ci−1(A,B) for some A,B ∈ N
6: Let C (A,B) = Ci(A,B) for each A,B ∈ N

LEMMA 9. Algorithm C computes all sets C (A,B) in polynomial time.
Proof. That the above-given algorithm is correct follows from the following two statements.
—If pj ∈ Ci(A,B), then there exists a derivation A ⇒+ B, in which the rule pj is used.
—If there exists a derivation A ⇒i B, i > 0, where the rule pj is used, then pj ∈ C (A,B).
Both statements are verified by induction on i. These statements guarantee that when the

algorithm stops, exactly the required sets C (A,B) have been computed. In the loop in lines 3-5,
the sets Ci(A,B) could only increase, hence the number of iterations of this loop does not exceed
m2r. Applying formula (2) and checking the loop condition also require polynomial time. �

Algorithms E and C are based on standard algorithms for removing empty and chain rules [10].
In what follows, we will use generalized multisets, in which elements may have multiplicity

∞. For ∞, the following holds: ∞ � n and ∞ + n = ∞ for each n ∈ N. In the definition of
R-totality (α ⇒∗

R β), however, R will still be a multiset without elements of multiplicity ∞. When
implemented, ∞ is represented by a Boolean flag. For a set M , by M∞ we denote the multiset
which includes exactly the elements of M , each with multiplicity ∞.

The next lemma explains the meaning of sets C (A,A).

LEMMA 10. If α ⇒∗
R β, and this derivation includes nonterminal A, R′ ⊆ R � C (A,A)∞,

and R′ does not include elements with multiplicity ∞, then α ⇒∗
R′ β.

Proof. Let a derivation π1 be given, and let it be of the form α ⇒∗ γAδ ⇒∗ β. For each rule
pi ∈ C (A,A), there exists a derivation A ⇒+ A, in which pi is used. Adding all these derivations to
π1 as many times as necessary, we obtain the desired derivation π2 : α ⇒∗ γAδ ⇒∗ γAδ ⇒∗ β. �

Let us formulate, without proofs, two simple properties of derivations yielding ε.

LEMMA 11. Let T be a derivation tree with yield ε, which does not contain cycles. Then the
number of vertices on each branch of T does not exceed m + 1, and the number of vertices at each
level of T does not exceed lm.

LEMMA 12. Let a word β ∈ N∗ be obtained from another word α ∈ N∗ by the permutation
of symbols. Then a derivation α ⇒∗

R ε exists if and only if β ⇒∗
R ε.

Now we can describe a nondeterministic polynomial algorithm which solves the R-derivability
problem for the empty word.

Algorithm RE R-total derivability of the empty word
Input: G = (N,Σ, P, S) is a cf-grammar,

Ai0 is a nonterminal,
R is a multiset of rules

Output: “yes,” if A ⇒∗
R ε, and “no” otherwise

1: if R includes a rule which contains a terminal, then return “no” endif
2: Compute sets C (A,A) for all A ∈ N (Algorithm C)
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3: Create counters c1, . . . , cm, c′1, . . . , c
′
m, let ci0 = 1, initialize others with 0

4: Let D be a generalized multiset of rules, D = ∅

5: Let N1 be a set of nonterminals, N1 = {Ai0 }
6: for t = 1 to m do
7: for i = 1 to m do c′i = 0; end for
8: for all ci 
= 0 do
9: Let Ai → β1, . . . , Ai → βq be all Ai-rules

10: Guess numbers n1, . . . , nq � 0 such that n1 + · · · + nq = ci

11: for all nk 
= 0 do D = D � {Ai → βk }nk end for

12: for j = 1 to m do c′j = c′j +
q∑

k=1

nk · |βk|Aj end for

13: end for
14: for i = 1 to m do ci = c′i end for
15: for ci 
= 0 do N1 = N1 ∪ {Ai } end for
16: end for
17: D = D �

(⋃
{C (A,A) : A ∈ N1 }

)∞

18: if R ⊆ D and ci = 0 for i = 1, . . . ,m then
19: return “yes”
20: else
21: return “no”
22: end if

Here {p}nk is a multiset which includes only one rule p, with multiplicity nk.
First, the algorithm builds a derivation tree Ai0 ⇒∗ ε without cycles. During this procedure,

it registers the rules used in D and the nonterminals that occur in N1. The tree is built level by
level. The number of vertices at a level may be exponential, and the algorithm does not keep the
level in an explicit form. Instead, for each nonterminal Ai it keeps, in counter ci, the number of its
occurrences at the current level (due to Lemma 12, the order of nonterminals does not matter),
and at each step, for each Ai-rule the algorithm guesses how much times that rule should be
used. Next, the algorithm adds applications of all rules from sets C (A,A), where A ∈ N1, with
unbounded multiplicity (by Lemma 10). Finally, the algorithm checks that it has guessed a correct
derivation. The condition R ⊆ D guarantees that the derivation is R-total, and ci = 0 ensures that
the resulting word is empty.

LEMMA 13. Algorithm RE accepts its input if and only if there exists a derivation Ai0 ⇒∗
R ε.

Proof. Suppose that there exists a derivation Ai0 ⇒∗
R ε and let T be the corresponding

derivation tree. If there is a branch in T which includes a vertex u and its successor v marked
with the same nonterminal A, then we transform T by replacing the subtree with root u by the
subtree with root v. Repeating this procedure, we obtain a tree T ′ on each branch of which all
nonterminals are different. By Lemma 11, each branch of T ′ contains at most m + 1 vertices, and
each level contains at most lm vertices. The derivation T ′ may no longer be R-total, but the rules
used in the A ⇒+ A subderivations will be taken into account in the C (A,A) sets.

We have to prove that there exists an accepting run of Algorithm RE. Let the tth level of the
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tree T ′ contain a word αt. By induction on t, we show that for each t = 0, 1, . . . ,m there exists a
run of Algorithm RE such that after t iterations of the loop in lines 6-16, the following properties
hold:

—ci = |αt|Ai for each i = 1, . . . ,m;
—D includes rules used in the derivation Ai0 ⇒∗ αt, with correct multiplicities;
—N1 includes exactly the nonterminals which occur in the derivation Ai0 ⇒∗ αt.
When the loop in lines 6-16 terminates, the set N1 contains all nonterminals which occur in

the tree T ′, and the multiset D contains all rules used in T ′, with correct multiplicities. In line
17, the algorithm adds to D, with multiplicity ∞, all rules which could have been used due to
cycles (by Lemma 10). This includes rules from R which were removed when T was replaced by T ′.
Hence, in line 18, the condition R ⊆ D holds. Each counter ci stores the number of occurrences of
a nonterminal Ai in the yield of T ′. Since the yield is empty, ci = 0 for all i. The algorithm accepts
its input.

Now suppose that there exists an accepting run of the algorithm. Then for each t = 0, 1, . . . ,m
there exists a word αt, and we can construct a partial derivation tree with the root Ai0 up to level
t, the concatenation of labels at which is equal to αt. Moreover, after t iterations of the loop in
lines 6-16, the above properties of ci, D, and N1 hold (induction on t). Since N1 includes only
those nonterminals that occur in the derivation, in line 17 we add to D all the rules which could
augment the derivation (by Lemma 10). The algorithm accepts its input, so we have R ⊆ D, and
also ci = 0 for all i. This means that the derivation Ai0 ⇒∗

R ε has been constructed.
The algorithm constructs m levels of the tree (except the root), and by Lemma 11, each level

contains at most lm vertices. Thus, the length of a binary representation for ci is O(m log2 l), and
the loop in line 12 is executed in polynomial time. The loop in lines 6-16 performs m iterations.
Hence the overall running time of the algorithm is also polynomial. �

We formulate yet another property of derivations.

LEMMA 14. Suppose a derivation A ⇒∗ α has no cycles and does not use empty rules. Then
the length of this derivation does not exceed 2mn − m − n, where n = |α|.

In order to prove this property, it is sufficient to obtain an upper bound on the number of vertices
in a derivation tree with more than one child (n−1) and of those with one child ((2n−1)(m−1)).

Now we describe a nondeterministic polynomial algorithm which solves the R-total derivability
problem in the general case.

Algorithm R R-total derivability
Input: G = (N,Σ, P, S) is a cf-grammar,

w is a word in alphabet Σ,
R is a multiset of rules

Output: “yes,” if there exists a derivation S ⇒∗
R w,

“no” otherwise
1: Guess a number k � 2mn − m − n
2: Let α = S
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3: Let D be a generalized multiset of rules, D = ∅

4: Let N1 be a set of nonterminals, N1 = {S }
5: Compute sets C (A,A) for all A ∈ N (Algorithm C)
6: for i = 1 to k do
7: if α ∈ Σ∗ then Break the loop endif
8: Guess a nonterminal A and its occurrence in word α
9: Guess a rule pj = A → β and

10: Replace the guessed occurrence A in α by β
11: D = D � { pj }. Add all non-terminals from β to N1

12: end for
13: Let α = X1X2 . . . Xt, where Xi ∈ Σ ∪ N
14: for i = 1 to t do
15: if Xi ∈ N then
16: Guess a multiset of rules R′ ⊆ R

17: if Xi ⇒∗
R′ ε (Algorithm RE) then

18: Remove Xi from α
19: D = D � R′

20: Add nonterminals occurring in the derivation Xi ⇒∗
R′ ε to N1

21: else
22: return “no”
23: end if
24: end if
25: end for
26: D = D ∪

(⋃
{C (A,A) : A ∈ N1 }

)∞

27: if α = w and R ⊆ D then return “yes” else return “no” endif

First, the algorithm guesses a part of the derivation without empty rules and cycles. Next, it
derives empty words from the remaining nonterminals. The rules used are registered in D, and the
nonterminals that occur are registered in N1. Finally, the algorithm augments the derivation with
cycles for nonterminals from N1. The input is accepted if and only if the word w is derived and
R ⊆ D.

LEMMA 15. Algorithm R accepts its input if and only if S ⇒∗
R w.

Proof. Let S ⇒∗
R w. We prove that there exists an accepting run of the algorithm. The

derivation will be transformed so that all derivations of the empty word are performed at the end.
That is, the derivation is of the form S ⇒∗ γ ⇒∗ w, where PrΣ(γ) = w, and if the empty word is
derived from some nonterminal A, then the A ⇒∗ ε part is entirely inside the γ ⇒∗ w derivation.

If there are cycles in the S ⇒∗ γ derivation, then we remove them. After this operation, the
word γ is still derived from S, but not necessarily with the same multiset of rules. By Lemma 14,
the length of the new derivation is not greater than 2mn − m − n. In line 1, the algorithm will
guess this length and store it in k.

Let a given derivation S ⇒k γ be of the form S ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γk, where γk = γ. By
induction on i, we show that there exists a run of the algorithm such that after i iterations of the
loop in lines 6-12, the following three conditions hold:
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—α = γi;
—D contains exactly the rules from S ⇒∗ γi, with correct multiplicities;
—N1 is the set of nonterminals used in the derivation S ⇒∗ γi.
When the loop terminates, we obtain a word α = γ such that PrΣ(α) = w and the empty

word is derivable from each nonterminal occurring in α. After that, in the loop in lines 14-25, the
algorithm will register the rules used in derivations of empty words. Indeed, the derivation γ ⇒∗ w

can be rebuilt into γ ⇒∗ γ′
1 ⇒∗ γ′

2 ⇒∗ · · · ⇒∗ γ′
t = w, where γ′

i = ηXiθ ⇒∗ ηθ = γ′
i+1 if Xi ∈ N

(otherwise γ′
i+1 = γ′

i). In line 16, the algorithm guesses the multiset R′ necessary to perform the
derivation Xi ⇒∗

R′ ε. There exists a computation such that after the loop in lines 14-25 terminates,
the multiset D contains, as a minimum, all rules from the derivation S ⇒∗ γ ⇒∗ w with required
multiplicities.

Finally, in line 26, the algorithm augments D by using cycles. After that, α = w, R ⊆ D, and
the algorithm accepts its input.

The converse statement (if the algorithm accepts its input, then S ⇒∗
R w) is checked similarly

to Lemma 13. Polynomiality of the running time of the algorithm is checked directly by applying
Lemma 14. �

4. COMPLEXITY OF THE TOTAL DERIVABILITY PROBLEM

It turns out that for cf-grammars the total derivability problem is algorithmically harder then
the usual derivability problem.

THEOREM 16. The total derivability problem for a given cf-grammar G and a given word
w is NP-hard. Therefore, the R-total derivability problem (where R is an input parameter) is also
NP-hard.

Proof. We construct a reduction to the total derivability problem of a well-known NP-complete
problem 3-PARTITION [11]: For a tuple of natural numbers (given in unary notation) a1, . . . , a3n,
whose sum is nb, determine whether there exists a partition of the tuple into triples, the sum in
each of which equals b.

For a given tuple of numbers, we construct a cf-grammar with the following rules:

S → AAAdS, S → ε, A → Ai (for i = 1, . . . , 3n),

Ai → cai (for i = 1, . . . , 3n).

The word (cbd)n has a total derivation in this grammar if and only if there exists the required
partition into triples. �

However, if we pass on to more general classes of generative grammars, then the total derivability
problem and the usual derivability problem will have the same complexity. Recall that in an
arbitrary generative grammar, G = (N,Σ,P, S) rules from P are of the form α → β, where
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α, β ∈ (N ∪ Σ)∗, α 
= ε. A grammar is said to be noncontracting if it is always true that |α| � |β|,
and context-sensitive if α = ηAθ and β = ηγθ, where A ∈ N , η, θ, γ ∈ (N ∪ Σ)∗, γ 
= ε.

THEOREM 17. The total derivability problem is m-complete for arbitrary generative
grammars and is PSACE-complete for noncontracting and context-sensitive grammars.

Proof. Below we present a nondeterministic algorithm which solves the problem of R-total
derivability.

Algorithm RG R-total derivability
Input: G = (N,Σ, P, S) is a generative grammar,

a1a2 . . . an is a word in alphabet Σ,
R is a multiset of rules

Output: “yes,” if there exists a derivation S ⇒∗
R w,

“no” otherwise
1: v = w; let R1 be a multiset of rules, R1 = ∅

2: while v 
= S do
3: Guess a number i ∈ { 1, . . . , r }
4: if v does not contain occurrences of βi then return “no” endif
5: Guess an occurrence of βi in v and replace this occurrence with αi

6: R1 = R1 � {αi → βi }
7: end while
8: if R ⊆ R1 then return “yes” else return “no” endif

It is straightforward to verify that if S ⇒∗
R w then the algorithm returns “yes,” and otherwise

either it returns “no” or does not halt. In the case of noncontracting (in particular, context-sensitive)
grammars, we have |v| � |w|. In addition, we can bound the size of R1 by the size of R, in order to
exclude too big multiplicities in R1. Therefore, the R-totality problem in this case belongs to the
class NPSPACE and, hence, to the class PSPACE.

We prove that the problem of total (and, therefore, R-total) derivability is m-hard in the general
case and is PSPACE-hard for context-sensitive grammars. The appropriate complexity estimations
are known for the usual derivability problem, and we will reduce it to the total derivability one.

Let G = (N,Σ,P, S) be an arbitrary generative grammar, in which Σ = { a1, . . . , ak } and P =
{α1 → β1, . . . , αr → βr }. Given the grammar G, we construct a new grammar G′ = (N ′,Σ′,P′, S′)
in the following way.

First, let N ′ = N∪{Aa : a ∈ Σ }∪{S′ }, where S′ is a new initial nonterminal. For an arbitrary
word α ∈ (N ∪Σ)∗, by α′ we denote the word which is obtained from α by replacing each terminal
a ∈ Σ with a nonterminal Aa. Second, put Σ′ = Σ ∪ { b, c }, where b, c /∈ Σ. Third, we define the
set of rules P′ as follows.

—For each old rule α → β ∈ P, we introduce a new rule α′ → β′.
—For each old rule α → β ∈ P, where β = B1 . . . Bl and l > 0, we introduce rules which

implement the derivation β′ ⇒∗ b|β|: namely,

β′ → bB2 . . . Bl, bB2 . . . Bl → bbB3 . . . Bl, . . . , bl−1Bl → bl.
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—For each terminal a ∈ Σ, we add the rule Aa → a to P′.
—Finally, we add to P′ the rule S′ → Scα′

1cα
′
2c . . . cα′

rcAa1cAa2c . . . cAak
.

We prove that S ⇒∗ w in G if and only if S′ ⇒∗
P′ wcb|β1|cb|β2|c . . . cb|βr|ca1ca2c . . . cak in G′. If

S ⇒∗ w in G, then the desired derivation is the following:

S′ ⇒ Scα′
1 . . . cα′

rcAa1 . . . cAak
⇒∗ w′cα′

1 . . . cα′
rcAa1 . . . cAak

⇒∗ w′cβ′
1 . . . cβ′

rcAa1 . . . cAak
⇒∗ wcb|β1| . . . cb|βr |ca1 . . . cak.

Now let S ⇒∗
P′ wcb|β1|c . . . cb|βr|ca1c . . . cak in G′. Since c /∈ Σ and w ∈ Σ∗, we conclude that

S ⇒∗ w in G′. We have b /∈ Σ, so rules of the third group could not have been applied in this
derivation, and hence S ⇒∗ w in G.

If G is a context-sensitive grammar, then so is G′. Thus, we have proved that the total
derivability problem is m-complete for arbitrary grammars and that it is PSPACE-complete for
context-sensitive and noncontracting grammars. �

5. PROOFS OF THEOREMS 1 AND 2

Now we are ready to prove the announced results on algorithmic complexity of derivability
problems for 1-bounded sequents. Using Theorem 3, we pass from !L1 or !rL1 to !�1L1 or !r�1L1

respectively. In these calculi, there are no structural rules, and each rule introduces exactly one
connective. Hence, the size of a derivation (the number of rule applications) is bounded by the length
of a target sequent. A nondeterministic algorithm for verifying derivability guesses a potential
derivation and then checks its correctness. Obviously, the correctness of rules can be checked in
polynomial time. For checking whether a sequent in a leaf of a derivation tree is an axiom, in
the case of !�1L1 we use the standard algorithm for checking derivability in a cf-grammar, and for
!r�1L1, we apply Algorithm R for checking R-total derivability, as described in Section 3. Theorem 1
is proved.

In order to prove Theorem 2, we note that a sequent of the form !Φ; r1, . . . , rn � s is derivable in
!r�1L1 if and only if it is an axiom, i.e., r̂1 . . . r̂n is derivable in G!Φ,s, and its derivation is R!Φ-total.
Now let an arbitrary cf-grammar G and an arbitrary word a1 . . . an be given. We rename each
terminal a to â and add the a itself as a nonterminal. Also add rules ai → âi for each i = 1, . . . , n.
Let a multiset R include rules of G, each with multiplicity 1. The word a1 . . . an is totally derivable
in the grammar G if and only if â1 . . . ân is R-totally derivable in the new grammar. Indeed, rules
of G are included in R with multiplicity 1, and new rules ai → âi will certainly be used.

Now we construct !Φ such that R!Φ = R. Then R-total derivability of the word â1 . . . ân is
equivalent to derivability of the sequent !Φ; a1, . . . , an � S in !r�1L1. We translate this sequent to
an equivalent sequent of the !rL1 calculus, which contains only \ and ! operations. The reduction
we have constructed establishes NP-hardness of the derivability problem for 1-bounded sequents
built by using \ and ! in the !rL1 calculus. Theorem 2 is proved.
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