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ABSTRACT RELATIONS BETWEEN
FUNCTIONAL CLONES

A. G. Pinus UDC 512.56
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Functional clones on a set A are investigated at an abstract level, i.e., up to isomorphism
of universal algebras 〈A;F 〉, with their signature treated as an unindexed set. Abstract
relations are introduced on a collection FA of all functional clones on A, and the question
of their coincidence is discussed.

Recall that a functional clone on a set A is an arbitrary collection of functions on A which is
closed under superposition and includes all selector functions ei

n(x1, . . . , xn) = xi (1 ≤ i ≤ n) on
the set A. As a rule, a collection FA of all functional clones on A is treated as an ordered set (a
lattice) under set-theoretic inclusion ⊆ (see, e.g., [1]). In [2], we proposed a natural topology τ on
FA, which transforms a lattice 〈FA;∧,∨〉 into a continuous lattice 〈FA;∧,∨, τ〉. For any collection S

of functions on a set A, by 〈S〉 we denote the least functional clone on A including the collection S.
A classical and, in essence, exhaustive example of functional clones on a set A is given by

collections Tr(A) of termal functions of universal algebras A = 〈A;σ〉 with universe A (for any
F ∈ FA, we have F = Tr(〈A;F 〉); here, the collection of signature functions of an algebra 〈A;F 〉
consists of all functions occurring in the clone F ). Therefore, it seems natural to examine functional
clones on a set A at an abstract level—up to isomorphism of universal algebras 〈A;F 〉, with their
signature treated as an unindexed set. In fact, this corresponds to a rational equivalence relation
for universal algebras, which was introduced by Mal’tsev in [3]. On a collection FA of functional
clones on a set A, we introduce an equivalence relation ∼ corresponding to such an approach.
Namely, for F1, F2 ∈ FA, we set

F1 ∼ F2 if there exists a permutation π on A conjugating the collections F1 and F2, i.e.,
F1 = πF2π

−1 = {πf(π−1x1, . . . , π
−1xn) | f ∈ F2}.
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Such an approach suggests introduction of another relation " on FA, i.e., for F1, F2 ∈ FA,
we set F1 " F2 (F1 is poorer than F2; in other words, F1 is not richer than F2) if there exists a
permutation π on A such that πF1π

−1 ⊆ F2.
The relation " is a quasiorder relation, inducing an equivalence relation ≈ on FA corresponding

to a given quasiorder, i.e., for F1, F2 ∈ FA, we set F1 ≈ F2 if F1 " F2 and F2 " F1. The relation
∼ implies the relation ≈, and so it is natural to suppose that ∼ and ≈ coincide, as conjectured in
[4]. However, this is not so. The following holds:

THEOREM 1. The relations ∼ and ≈ coincide on a collection FA of all functional clones on
a set A if and only if A is finite.

Proof. That ∼ and ≈ on FA coincide for finite sets A was proved in [4]. We cite the proof here
to make our discussion self-contained. Recall that an n-fragment F(n) of a clone F (n ∈ ω) is a
collection of all not more than n-ary functions from F .

Let A be a finite set, F ′, F ′′ ∈ FA, and F ′ ≈ F”; i.e., there exist permutations π1 and π2 on
A such that π1F

′π−1
1 ⊆ F” and π2F”π−1

2 ⊆ F ′. Then π1F
′
(n)π

−1
1 ⊆ F”(n) and π2F”(n)π

−1
2 ⊆ F ′

(n)

for any n ∈ ω; i.e., π2π1F
′
(n)π

−1
1 π−1

2 ⊆ π2F
′′
(n)π

−1
2 ⊆ F ′

(n) for any n. For finite sets A, n-fragments
of clones on A are finite, and conjugation by permutations on A acts on the fragments of clones
injectively. Therefore, the following equalities hold:

π2π1F
′
(n)π

−1
1 π−1

2 = π2F
′′
(n)π

−1
2 = F ′

(n).

Since F ′ =
⋃

n∈ω
F ′

(n) and F ′′ =
⋃

n∈ω
F ′′

(n), it is also true that π2F
′′
(n)π

−1
2 = F ′; i.e., F ′ ∼ F ′′ in

this case.
Now we show that for infinite sets A, there exist clones F ′ and F ′′ on A such that F ′ ≈ F ′′ and

F ′
� F ′′. To do this, we make use of a sequence of functions fi (i = 2, 3, . . .) on a set 3 = {0, 1, 2},

which were derived in [5] (see also [6]), in constructing on 3 = {0, 1, 2} a clone with countable
basis.

For any i = 2, 3, . . . , we put

fi(x1, . . . , xi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x1 = . . . = xj−1 = xj+1 = . . . = xi = 2,

xj = 1 for some 1 ≤ j ≤ i;

0 otherwise.

Let Gn = 〈{f2, f3, . . . , fn+1}〉. We show that a chain of clones G1 ⊆ G2 ⊆ . . . ⊆ Gn ⊆ Gn+1 ⊆
. . . is strictly increasing, and that no permutation π on 3 = {0, 1, 2} conjugates the clones Gn and
Gm for n �= m. Assume to the contrary that there exists a permutation π on {0, 1, 2} such that
πGmπ−1 = {πg(π−1x1, . . . , π

−1xn) | g(x1, . . . , xn) ∈ Gm} = Gn, where n < m. The ranges of
functions fi generating clones Gj coincide with a set {0, 1}, and so the permutation π conjugating
the clones Gm and Gn either is identical or is the transpose (0, 1). In any case, for i = 2, 3, . . . ,
the function πfi(π−1x1, . . . , π

−1xi) will not be identically equal to zero on {0, 1, 2}. The equality
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πGmπ−1 = Gn, as well as the inclusion π{fm}π−1 ∈ Gn, ensures that

πfm(π−1x1, . . . , π
−1xm) = t(x1, . . . , xm), (∗)

where t(x1, . . . , xm) is a term of a signature 〈f2, . . . , fn+1〉, i.e., t(x1, . . . , xm) = fr(t1, . . . , tr), where
r < m and ti are terms of the same signature. The function fm essentially depends on its arguments
x1, . . . , xm, and so the situation where all terms t1, . . . , tr are variables is excluded. Also impossible
is the situation in which some pair of the terms t1, . . . , tr is distinct from variables; otherwise
(values for that pair will be just 0 or 1) the right-hand side of equality (∗) is identically equal to
zero, whereas the function πfm(π−1x1, . . . , π

−1xm) is not. Thus, exactly one of the terms t1, . . . , tr

is distinct from variables. Since r ≥ 2, a term t has the form fr(t1, xj , . . .), where 1 ≤ j ≤ m. If
xj = 1 or xj = 0, then the right-hand side of (∗) assumes value 0. On the other hand, if π is an
identical permutation on {0, 1, 2}, then the left-hand side assumes value 1, provided that xj = 1
and xi = 2 for i �= j. For the case where π = (0, 1), the same fact holds with xj = 0 and xi = 2 for
i �= j.

Therefore, the chain of clones G1 ⊂ G2 ⊂ . . . ⊂ Gn ⊂ Gn+1 ⊂ . . . on the set {0, 1, 2} is strictly
increasing, and its constituent clones are pairwise not conjugate via permutations on {0, 1, 2}.

Now we consider a partition of an infinite set A into subsets Ai (i ∈ ω + 1) such that A0 =
{a, b, c, d}, An = {0n, 1n, 2n} for n ∈ ω\{0}, and |Aω| = |A|. Here the elements a, b, c, d, 0n, 1n, 2n

are pairwise disjoint.
For any function g(x1, . . . , xn) on {0, 1, 2} and any m ∈ ω\{0}, on the set A we define a function

gm(x1, . . . , xn) such that for b1, . . . , bn ∈ A,

gm(b1, . . . , bn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

km if {b1, . . . , bn} ⊆ Am, 〈b1, . . . , bn〉 = 〈em
1 , . . . , em

n 〉,

and g(e1, . . . , en) = k;

a otherwise, if in addition {b1, . . . , bn} �= {a}, {b}, {c}, {d},

b if {b1, . . . , bn} = {a},
c if {b1, . . . , bn} = {b},

d if {b1, . . . , bn} = {c},

a if {b1, . . . , bn} = {d}.

Let I ′ and I ′′ be infinite subsets of the set ω\{0} such that I ′ = {i1 < i2 < . . . < in < in+1 <

. . .}, I ′′ = {j1 < j2 < . . . < jn < jn+1 < . . .}, and I ′ � I ′′.
We denote by F ′ a functional clone on a set A generated by the following collection of functions:

∞⋃

m=1

{gm(x1, . . . , xn) | g(x1, . . . , xn) ∈ Gim ,m ∈ ω\{0}}

∪ {ei
n(x1, . . . , xn) | 1 ≤ i ≤ n, n ∈ ω}.

In a similar way, we define a clone F ′′ using the set I ′′ instead of I ′.
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For any sets B ⊆ C and any functional clone F on C, if the set B is closed with respect
to functions in F , then we write F � B to denote a functional clone on B which consists of
restrictions of the functions in F to the set B. Thus, a bijection ϕm : {0, 1, 2} → {0m, 1m, 2m} such
that ϕm(i) = im will conjugate Gim with F ′ � Am and Gjm with F ′′ � Am.

By the definition of clones F ′ and F ′′, the remark on restrictions of F ′ and F ′′ to sets An

(n ∈ ω\{0}), and the condition that for any m there are m′ ∈ I ′ and m′′ ∈ I ′′ for which Gim ⊆ Gjm′

and Gjm ⊆ Gim′′ , the relations F ′ " F ′′ and F ′′ " F ′ hold.
It remains to observe that F ′

� F ′′. Assume the contrary, letting π be some permutation on
A such that πF ′π−1 = F ′′. The only three-element subsets of A closed with respect to functions
in F ′ (in F ′′) are the sets An (n ∈ ω\{0}). Thus, for any k ∈ ω\{0} there exists s ∈ ω\{0}
such that π({0k, 1k, 2k}) = {0s, 1s, 2s}. By the choice of sets I ′ and I ′′, there is in for which
in ∈ I ′ and in /∈ I ′′. In view of our remark on three-element subsets of A, there is s such that
πF ′ � Ainπ−1 = F ′′ � Ajs , and π � Ain will be a bijection of the set {0in , 1in , 2in} onto the set
{0js , 1js , 2js}. In this case F ′ � Ain is conjugate to a clone Gin via a map ϕ−1

in
. The same holds for

F ′′ � Ajs and Gjs . As a result, we conclude that the clones Gin and Gjs are conjugate for in �= js,
which is a contradiction with the initial choice of clones Gj (j ∈ ω). Hence F ′

� F ′′. The theorem
is proved.

The proof of Theorem 1 (due to the proper choice of sets I ′ and I ′′) implies the following:

COROLLARY. For infinite sets A, there exist clones F on A such that the class F/ ≈ contains
at least continuum many pairwise non ∼-equivalent clones on A.

Let us dwell on one more question concerning the relation ∼ on the collection FA, the answer
to which will separate situations with finite and infinite A.

THEOREM 2. The relations F ′ ⊆ F ′′ and F ′ ∼ F ′′ for functional clones on a set A imply
that the clones F ′ and F ′′ will be equal if and only if A is finite.

Proof. For the case of a finite A, the relations F ′ ⊆ F ′′ and F ′ ∼ F ′′ for F ′, F ′′ ∈ FA imply
the same relations for n-fragments of clones F ′ and F ′′ with any n ∈ ω. However, the relations
F ′

(n) ⊆ F ′′
(n) and F ′

(n) ∼ F ′′
(n), in view of the fact that the collections F ′

(n) and F ′′
(n) are finite, imply

the equality F ′
(n) = F ′′

(n) and hence also F ′ = F ′′.
Now we give an example of clones F ′ and F ′′ on an infinite set A such that F ′ ⊆ F ′′, F ′ ∼ F ′′,

and F ′ �= F ′′. Consider a partition of A into subsets An (n ∈ ω + 1) such that A0 = {a},
An = {0n, 1n, 2n} (n ∈ ω\{0}), |An| = 3 (n ∈ ω\{0}), and |Aω| = |A|. Let ϕn be a bijection of the
set {0, 1, 2} onto the set An as defined in the proof of Theorem 1.

Let G1 ⊂ G2 ⊂ . . . ⊂ Gn ⊂ Gn+1 ⊂ . . . be a sequence of functional clones on A as specified in
the proof of Theorem 1.

For any function g(x1, . . . , xn) on a set {0, 1, 2} and any m ∈ ω\{0}, on A we define a function
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gm(x1, . . . , xn) such that for b1, . . . , bn ∈ A,

gm(b1, . . . , bn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

km if {b1, . . . , bn} ⊆ Am, 〈b1, . . . , bn〉 = 〈em
1 , . . . , em

n 〉,
and g(e1, . . . , en) = k;

a otherwise.

Let F ′ be a clone on A generated by a collection of functions
∞⋃

m=2
{gm(x1, . . . , xn) | g(x1, . . . ,

xn) ∈ Gim−1 , m ∈ ω\{0}} ∪ {ei
n(x1, . . . , xn) | 1 ≤ i ≤ n, n ∈ ω}, and let F ′′ be a clone generated

by the functions in
∞⋃

m=1
{gm(x1, . . . , xn) | g(x1, . . . , xn) ∈ Gim , m ∈ ω\{0}} ∪ {ei

n(x1, . . . , xn) | 1 ≤

i ≤ n, n ∈ ω}.
The inclusion F ′ ⊆ F ′′ is obvious, as is the inequality F ′ �= F ′′. Now we let π be a permutation

on a set A, which is a bijection of Aω onto Aω ∪ A1, and let π(0n) = 0n+1, π(1n) = 1n+1, and
π(2n) = 2n+1 for n ∈ ω\{0}. Clearly, π conjugates the clones F ′ and F ′′. The theorem is proved.

To sum up, we will collect together the known properties of collections FA of functional clones
on sets A, which distinguish between the cases of finite A and infinite A.

Claim. (1) The relations ∼ and ≈ coincide on FA if and only if A is finite.
(2) The conjunction of ∼ and ⊆ on FA coincides with the equality relation = if and only if A

is finite.
(3) The topological space 〈FA; τ〉 is compact if and only if A is finite.
Recall that a topology τ on FA, which was introduced in [2], is induced by a metric on FA

based on the minimal arity of functions distinguishing one clone from another.
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Adv. Stud. Inst., 99, Dép. Math. Stat., Univ. Montréal, Les Presses de l’Université de
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