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(2, 3)-GENERATED GROUPS WITH
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A periodic group is called an OCn-group if the set of its element orders consists of all
natural numbers from 1 to some natural n. W. Shi posed the question whether every
OCn-group is locally finite. Until now, the case n = 8 remains open. Here we prove
that if a group is generated by an involution and an element of order 3, and its element
orders do not exceed 8, then it is finite. Thereby we obtain an affirmative answer to
Shi’s question for n = 8 for (2, 3)-generated groups.

A periodic group is called an OCn-group if the set of its element orders consists of all natural
numbers from 1 to some natural n. All finite OCn-groups were classified by R. Brandl and W. Shi
in [1]. In particular, it was proved that finite OCn-groups do not exist for n > 8. In 1995, Shi posed
the following question:

Is every OCn-group locally finite? (See 2, Quest. 13.64.)
In [3-8], this question was answered in the affirmative for n ≤ 7. The case n = 8 remains open.

In the present paper, we prove that if a group is generated by an involution and an element of
order 3, and its element orders do not exceed 8, then it is finite. Thereby we obtain an affirmative
answer to Shi’s question for n = 8 for (2, 3)-generated groups. This result can be used for studying
subgroups of OC8-groups generated by involutions (see [5-8]). New obstacles pose the following
questions:
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Let i be an involution of an OC8-group G, which does not invert elements of odd order. Will
then H = 〈iG〉 be a 2-group? Is H locally finite?

THEOREM. Let K be a group generated by an involution t and an element x of order 3,
and let K not contain elements of order more than 8. Then K is finite and one of the following
statements holds:

(a) (xt)3 = 1, and K is isomorphic to A4;
(b) (xt)4 = 1, and K is isomorphic to S3 or S4;
(c) (xt)5 = 1, and K is isomorphic to A5;
(d) (xt)6 = 1, and K is a homomorphic image of an extension of a direct product of two cyclic

groups of order k by a cyclic group of order 6, where k is the order of [x, t];
(e) (xt)7 = [x, t]8 = 1, and K is a homomorphic image of 26.PSL2(7), and if in addition

[x, t]4 = 1, then K � PSL2(7);
(f) (xt)8 = 1, and K either is isomorphic to PGL2(7) or is a solvable {2, 3}-group.
In proving, we apply computer calculations in GAP [9] using the enumeration coset algorithm.

The first several cases of the theorem are well known. Their proof is given in full, does not rely on
computer calculations, and demonstrates the idea of selecting suitable relations.

By Γn we denote the set of elements of order n in the group K. By writing a ∼ b we mean that
the orders of elements a and b in K are equal. The proof of the theorem reduces to examining the
respective cases.

Proof. (a) Let (xt)3 = 1. Then

ttx = tx · xtx ∼ xtx · tx = (xt)3t = t.

Thus, the order of the product of two involutions ttx equals 2, and so [t, tx] = 1. Consequently, K

is an extension of a nontrivial normal elementary Abelian 2-subgroup 〈tK〉 by a cyclic subgroup
〈x〉. Note that ttxtx

2
= (tx−1)3 = 1, and so the group 〈tK〉 is generated by two elements and has

order 4, while the element x acts fixed-point-freely on 〈tK〉. Hence K is isomorphic to A4, and we
can construct an isomorphism as follows: x �→ (1, 2, 3) and t �→ (1, 2)(3, 4).

(b) Let (xt)4 = 1. Put a = (tx)2. If a = 1, then xxt = (xt)2 = 1. In other words, an involution
t inverts an element x, and K is isomorphic to S3.

Now let a be an involution. Note that

at ∼ ta = t · (tx)2 = xtx ∼ tx−1 ∼ xt ∈ Γ4.

Therefore, aat = (at)2 has order 2 and [a, at] = 1. Similarly, aax = (tx−1)2 has order 2 and
[a, ax] = 1. Thus, K is an extension of a nontrivial normal elementary Abelian 2-group 〈aK〉 by a
group isomorphic to S3. Finally,

aaxax2
= (ax−1)3 = (xt)3 = 1,
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and so the group 〈aK〉 is generated by two elements and has order 4. Hence K is isomorphic to S4,
and we can construct an isomorphism as follows: x �→ (2, 3, 4) and t �→ (1, 2).

(c) Let (xt)5 = 1. Put a = tx−1; then a5 = 1. Note that

t · xa = t · xtxtx · x = x−1tx−1t · x = (x−1)tx ∈ Γ3.

By item (a), H = 〈t, xa〉 � A4. Moreover, atH = aH and axH = H. Consequently, |K : H| = 5
and |K| = |A5|. Thus, a permutation representation of K with respect to H defines an isomorphism
between K and A5, in which case x �→ (1, 2, 3) and t �→ (2, 4)(3, 5).

(d) Let (xt)6 = 1. Denote by a the commutator [x, t] = x−1txt, and by k the order of the
element a. Note that

at = t · x−1txt · t = tx−1tx = a−1.

Moreover,

aaxax2
= (ax−1)3 = x−1(tx)6x = 1,

axt = atx[x,t] = (a−1)xa.

Thus, the subgroup H = 〈a, ax〉 is normal in K = 〈x, t〉. Direct computations show that [a, ax] =
(tx)6 = 1 and H is Abelian. The images of the elements t and x in the factor group G/H commute,
so G/H is a cyclic group of order 6.

(e) Let (xt)7 = 1.
First suppose that ttx ∈ Γ5 and define a = t and b = tx. Then ab ∈ Γ5. We point out the

following chain of equalities:
ax = b = a(ba)2 .

Consequently, c = (ba)2x−1 centralizes the involution a. We prove that the element c has order 7,
thus obtaining a contradiction. In fact,

c = (x−1txt)2x−1 ∼ (xt)3x−1t = (tx−1)4x−1t ∼ tx−1t · x−1tx−1 · txt ∼ xt.

Therefore, |c| = |xt| = 7.
Next,

x · txt ∼ (tx)3 · x = (x−1t)4 · x ∼ (x−1t)2x−1 ∼ tx−1tx = ttx.

If the order of ttx equals 6, then H = 〈x, txt〉 is a finite group such as in item (d). Enumerating the
cosets of G with respect to H, we arrive at a permutation representation of the group PSL2(13)
on 14 elements:

t �→ (1, 2)(3, 8)(4, 5)(9, 11)(10, 14)(12, 13);

x �→ (2, 3, 6)(4, 9, 8)(5, 11, 13)(7, 12, 10).

The group PSL2(13) has elements of order 13, so it does not satisfy the hypotheses of the theorem.
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The case ttx ∈ Γ7 is also impossible since the group

〈x, t | x3, t2, (xt)7, [x, t]7〉

is isomorphic to PSL2(13) [10. p. 96].
Consider the case where the order of ttx is equal to 8. Let a = t, b = tx, c = tx

2 , and i = (ab)4

be a central involution in the dihedral group 〈a, b〉. Since x permutes a, b, and c, we conclude that
ix is a central involution in 〈b, c〉. In particular, the subgroup 〈i, ix〉 centralizes b, and hence the
order of iix is not equal to 5 and 7. Suppose first that (x−1t)2(xt)2 ∈ Γ6. Notice that

iix = (x−1txt)4x−1(tx−1tx)4x ∼ (txtx−1)4(tx−1tx)4 = (txtx−1)4(x−1txt)4

∼ (x−1t)3(xtx−1t)2(xt)3(x−1txt)2

∼ [(x−1t)2(xt)2]3.

The order of iix is equal to 2, and [i, ix] = 1. Consequently, 〈i, x〉 is a homomorphic image of 2×A4.
In particular, iix = itix ∼ iixt and [i, ixt] = 1. Since ix

2 is a central involution in 〈a, c〉, it follows
that ii(xt)2 = i(tx−1)2i(xt)2 ∼ (xt)2i(tx−1)2i = xtix

−1
tx−1i = ixi is an involution. Thus, the group

H = 〈i, xt〉 is an extension of an elementary Abelian 2-group by a cyclic group of order 7.
Calculations in GAP show that H has index 24, and the elements x and t act on the cosets as

the following permutations:

x1 = (1, 3)(2, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24);

t1 = (1, 3, 2)(4, 6, 10)(5, 8, 14)(7, 12, 18)(9, 16, 11)(13, 15, 20)(17, 22, 21)(19, 24, 23).

In this case x1 and t1 generate a subgroup of PSL2(7) of order 168 = 24·7; so elements iK generate
the kernel of a permutation representation of order 26 and the conclusion of the theorem holds.

Finally, let (x−1t)2(xt)2 ∈ Γ8. Then 〈x, t〉 is a homomorphic image of

G = 〈x, t | x3, t2, (xt)7, (txt)8, ((x−1t)2(xt)2)8〉.

Calculations in GAP show that the group G is trivial.
(f) Below we assume that (xt)8 = 1.
First let the order of txt divide 6. Then i = (txt)3 is an element of order dividing 2. Moreover,

xi = txt(x−1txt)2 ∼ (x−1t)3(xt) = (tx)5(xt) ∼ x−1txt is of order dividing 6. According to item
(d), H = 〈x, i〉 is finite and is a homomorphic image of an extension of an elementary Abelian
group of order k by a cyclic group of order 6, where k is the order of an element ixi. Next,

ixi ∼ (xt)3x−1txt(x−1t)3xtx−1t ∼ (xt)3x−1txt(tx)5xtx−1t = [(xt)3(x−1t)2]2,

and hence iix cannot be of order 8 or 6. Therefore, it seems convenient to assume that the group
K is a homomorphic image of the group

G(k) = 〈x, t | x3, t2, (xt)8, [x, t]6, ((xt)3(x−1t)2)k〉,
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where k ≤ 8. Our computations show that the index |G(k) : 〈x, i〉| is always a finite {2, 3}-number
and that it is greater than 1 if k is a {2, 3}-number. Thus, in this case K is a finite solvable
{2, 3}-group.

If ttx ∈ Γ5, then, reasoning as in the respective case in item (e), we see that the element c

centralizes the involution t, and

c = (x−1txt)2x−1 ∼ (xt)3x−1t ∼ (tx−1)5x−1t ∼ ttx

has order 5, a contradiction.
Let the order of [x, t] be equal to 7. Then 〈x, t〉 is a homomorphic image of

K(i1, i2, i3) = 〈x, t | x3, t2, (xt)8, [x, t]7, ((xt)2x2t)i1 ,

((xt)2(x2t)2)i2 , (xtx−1t(xt)2(x−1t)3)i3〉,

for some i1, i2, i3 ∈ {5, 6, 7, 8}. Computations in GAP show that K(8, 6, 8) � PGL(2, 7) and the
order of K(i1, i2, i3) divides 2 for other values of the parameters.

Now let [x, t]8 = 1. Put z = xt. Note that

1 = (tx)8 = (xtx)4 = (zx)4 and (xz−1)8 = 1.

Therefore, 〈x, z〉 is a homomorphic image of

K(k, l,m, n) = 〈a, b | a3, b3, (ab)4, (ab−1)8, (abab−1)k,

(baba−1)l, (bab−1a−1)m, (aba−1b−1ab−1)n〉,

where k, l,m, n ∈ {5, 6, 7, 8}. Computations in GAP show that nontrivial groups are obtained only
for the following two sets of parameters: K(8, 8, 8, 6) � PSL3(3), which is impossible since K does
not contain elements of order 13, and K(8, 8, 7, 7) � PSL2(7). Hence xz−1 has order 4. In other
words, [x, t]4 = 1, and 〈x, t〉 is a homomorphic image of the group

〈x, t | x3, t2, (xt)8, [x, t]4〉 � PGL2(7). �

The theorem implies the following:

COROLLARY. Let a, b, c ∈ Γ2, ab ∈ Γ3, [a, c] = 1, and H = 〈a, b, c〉 have no elements of
order greater than 8. Then H is finite, and if H does not contain elements of order 8, then H has
no elements of order 7.

Proof. Let x = ab and t = c. Then tb = tx. Thus, K = 〈x, t〉 satisfies the hypotheses of the
theorem and is a normal subgroup of H of index dividing 2. Hence H is finite. Moreover,

[x, t] = [ab, c] = bacabc = (bc)2,

and so item (e) of the theorem is possible for K only if bc has order 8 and H = PGL2(7). �
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