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COORDINATE GROUPS OF IRREDUCIBLE
ALGEBRAIC SETS OVER DIVISIBLE
METABELIAN r-GROUPS
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We describe coordinate groups of generalized rigid metabelian groups in which, whenever
a group is noncommutative, the second factor of a rigid series is a divisible R-module
over an appropriate integral domain R.

INTRODUCTION

A definition of an r-group, which generalizes the concept of a rigid solvable group, was given
in [1]. We recall the definition.

Let a group G have a normal series of the form

G = G1 > G2 > . . . > Gm > Gm+1 = 1, (1)

whose quotients Gi/Gi+1 are Abelian. The action of G on Gi by conjugations x → xg = g−1xg

defines on Gi/Gi+1 the structure of a (right) module over the group ring Z[G/Gi]. Denote by
Ri the quotient ring of Z[G/Gi] with respect to the annihilator Gi/Gi+1. Then Gi/Gi+1 can be
treated as a right Ri-module. It is required that the module Gi/Gi+1 be Ri-torsion free, and that
a canonical mapping Z[G/Gi] → Ri be injective on the group G/Gi. It was stated that the ring Ri

associated with the quotient Gi/Gi+1 is a two-sided Ore domain, the derived length of G is exactly
m, and series (1), if it exists, is uniquely defined by G. A series such as in (1) is said to be rigid
and its members are denoted Gi = ρi(G). We note from the outset that for the ring R1 associated
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with the first quotient, there are only two possibilities: R1 = Z or R1 = Fp is a field consisting
of p elements. In particular, Abelian r-groups are exhausted by torsion-free groups and groups of
prime period p. An r-group G is divisible if every quotient ρi(G)/ρi+1(G) is a divisible Ri-module
on which, in this case, the structure of a vector space is defined over the division ring of quotients
of Ri. Again, in the Abelian case, the property of being divisible is shared by any Abelian groups
of period p and torsion-free divisible Abelian groups, which, as is known, are isomorphic to direct
sums of copies of the additive group of the field of rational numbers, Q.

The rigid groups mentioned are obtained if rings Ri coincide with group rings Z[G/ρi(G)].
Algebraic geometry and model theory for rigid groups were thoroughly studied in a series of papers
due to the author and A. G. Myasnikov. In particular, [2] contains a description of coordinate
groups of irreducible algebraic sets over divisible rigid groups. In the present paper, we describe
coordinate groups of irreducible algebraic sets over metabelian r-groups, in which the subgroup
ρ2(G) is a divisible R2-module whenever G is a noncommutative group. The class of such groups
contains divisible metabelian r-groups, for which it is also required that the module ρ1(G)/ρ2(G)
be divisible.

1. ALGEBRAIC GEOMETRY OVER GROUPS

Algebraic geometry over groups was developed in [3, 4]. We recall some definitions and facts.
For a given group G, a G-group is any group containing G as a fixed subgroup. A category of

G-groups arises, in which morphisms are homomorphisms that act identically on G.
Denote by F = G ∗ 〈x1, . . . , xn〉 the free product of a group G and a free group with basis

{x1, . . . , xn}. An expression of the form v(x) = 1, where x = (x1, . . . , xn) and v(x) ∈ F , is
called an equation over G. Sometimes, by an equation we mean the element v(x) itself. It is
supposed that the variables x1, . . . , xn assume values in G. The set S ⊆ Gn of all solutions for
some system {vi(x) = 1 | i ∈ I} of equations is called an algebraic subset in an affine space Gn.
Let Θ(S) = {v(x) ∈ F | v(s) = 1, s ∈ S} be the annihilator of a nonempty algebraic set S. The
coordinate group of this set is the quotient group F/Θ(S) = Γ(S). A group G is embedded in that
quotient group and Γ(S), being a G-group, is generated by the images of the elements x1, . . . , xn.

A group F can be treated as a group of equations in x with coefficients from G. More generally,
a group of equations over G is any group D which is generated by its subgroup G and by a set
of elements {x1, . . . , xn} if it satisfies the condition that every mapping x → (a1, . . . , an) ∈ Gn

defines a G-epimorphism D → G. Figuratively speaking, the variables x1, . . . , xn in this group can
be assigned any values from G. A group D can be represented as the quotient group F/H. Among
such D is a group with maximal H equal to Θ(Gn). This is Γ(Gn), and so D covers Γ(Gn). The
meaning of this notion is as follows. It is often convenient to consider as equations not elements of
the group F and not elements of the group Γ(Gn), which it is sometimes difficult to represent, but
elements of some intermediate group D.
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Let S be a nonempty algebraic subset of Gn. If, in the above definition of a group D of equations,
we confine ourselves to mappings x → (a1, . . . , an) ∈ S, then we arrive at a definition of a group
of equations on S, or, in other words, a group of equations over G given that x ∈ S. Such a group
covers Γ(S). Let D be a group of equations over G provided that x ∈ S. Every G-epimorphism
D → G defined by a mapping x → (a1, . . . , an) ∈ S is called a specialization, and the image of an
element v(x1, . . . , xn) in D is denoted by v(a1, . . . , an).

On a set Gn, the Zariski topology can be defined by taking all algebraic sets to be a subbasis for
a family of closed sets. If this topology is Noetherian, then every nonempty closed set is uniquely
representable as a noncancellable union of finitely many irreducible components. A group G is
said to be equationally Noetherian if, for every n, any system of equations in n variables over G is
equivalent to some of its finite subsystems. Being equationally Noetherian for a group is equivalent
to being Noetherian for the Zariski topology on Gn with all n [3].

We say that a G-group H1 is separated by a G-group H2 if for any nontrivial element h ∈ H1

there exists a G-homomorphism ϕ : H1 → H2 such that hϕ �= 1.
We say that a G-group H1 is discriminated by a G-group H2 if for any finite set of distinct

elements in H1 there exists a G-homomorphism ϕ : H1 → H2 which is injective on the set under
consideration. This is equivalent to the condition that for any finite set of nontrivial elements in
H1 there exists a G-homomorphism ϕ : H1 → H2 under which the images of the elements of a
given set remain to be nontrivial.

PROPOSITION 1 [3]. Suppose that H is generated as a G-group by a finite set of elements
x = (x1, . . . , xn). H is separated by a group G if and only if it is the coordinate group of some
nonempty algebraic set of Gn in the variables x.

Remark. If we add the premise that H is G-separated by G to the conditions of Proposition 1,
then the appropriate algebraic set will consist of exactly those points (g1, . . . , gn) of an affine space
Gn for which a mapping x → (g1, . . . , gn) defines a G-epimorphism H → G.

PROPOSITION 2 [3]. Suppose that a group G is equationally Noetherian and H, being a
G-group, is generated by a finite set of elements x = (x1, . . . , xn). Then the following conditions
are equivalent:

(1) H is G-discriminated by G;
(2) H is the coordinate group of some irreducible algebraic set of Gn in the variables x;
(3) the universal theories of G and H with constants in G coincide.
From [5, 6], we derive the following:

PROPOSITION 3. (1) Every metabelian r-group is equationally Noetherian.
(2) Every group whose universal theory coincides with the universal theory of an m-step solvable

r-group is itself an m-step solvable r-group.
(3) Every Abelian group whose universal theory coincides with the universal theory of some

group in the class of 2-step solvable r-groups the first factor of a rigid series of which is torsion-free
belongs to the same class.
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2. ABELIAN GROUPS

Consider the case of Abelian r-groups. Recall that every Abelian group is equationally Noethe-
rian [3].

Let A be an Abelian group, S be a nonempty algebraic set over A in an affine space An, and
H = Γ(S) be its coordinate group (which is of course Abelian). Since there exist A-epimorphisms
H → A (specializations), the subgroup A is distinguished in H by a direct factor, i.e., H = A×B.
Obviously, B is a finitely generated subgroup.

Note that if A is a finite group then the Zariski topology on An is discrete, irreducible sets are
points, and Γ(S) = A for these.

PROPOSITION 4. Suppose that A is an infinite Abelian group, and that either (1) A is
torsion-free or (2) A is a group of prime period p. Then all nonempty algebraic sets over A are
irreducible, and their coordinated groups are exhausted by groups of the form A × B, where in
case (1) B is a free Abelian group of finite rank, and in case (2) B is a finite Abelian group of
period p.

Proof. As mentioned, the coordinate group H = Γ(S) of a nonempty algebraic set S ⊆ An

has the form A × B, where B is a finitely generated Abelian group. The group H is A-separated
by A, and so in case (1) B is torsion-free and is a free Abelian group of finite rank, and in case (2)
B should be a finite Abelian group of period p. It is easy to verify that in both of these cases the
group H of the form A×B is not only A-separated by A but it is also A-discriminated by A. This
fact, combined with the equational Noetherianess of A and Proposition 2, implies that H is the
coordinate group of an irreducible algebraic set over A. The proposition is proved.

Remark. For an infinite Abelian group A of period p2, it is no longer necessary that algebraic
sets over A are irreducible. As an example we take a group which in the variety of Abelian groups is
generated by elements a, a1, . . . , an, . . . and is defined by relations ap = 1, ap

1 = a, . . . , ap
n = a, . . . .

Then the group is itself representable as the union of p algebraic sets which are defined by the
respective equations xp = 1, xp = a, . . . , xp = ap−1.

3. 2-STEP SOLVABLE GROUPS, PROBLEM SETTING

Below we consider an infinite 2-step solvable r-group G in which ρ2(G) is a divisible R2-module.
We fix the notation A = ρ1(G)/ρ2(G), and use R in place of R2. Thus, with G we uniquely associate
a pair (A,R), where R is a commutative integral domain and A is a subgroup of the group R∗ of
invertible elements which generates R as a ring. Let K be the ring of quotients of R. By [5, Thm. 2],
the subgroup ρ2(G) splits off in G, and then the group G has the following matrix representation:

(
A 0
T 1

)

=

(
A 0
0 1

)(
1 0
T 1

)

,
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where T is a vector space over the field K. Let {ti | i ∈ I} be its basis. In the above representation,

ρ2(G) =

(
1 0
T 1

)

, while the matrix group

(
A 0
0 1

)

can be identified with A.

By analogy with rigid groups, we will describe coordinate groups of irreducible algebraic sets
over G in special variables x1, . . . , xn, y1, . . . , yn. This implies that xi assume values in A, and yi

assume values in ρ2(G), or, in essence, in T . Ordinary variables can be represented as products of
the special, i.e., xiyi. Conversely, special variables can be conceived of as the ordinary, satisfying
extra equations [xi, a] = 1 and [yi, g] = 1 for two fixed elements 1 �= a ∈ A and 1 �= g ∈ ρ2(G). Of
course, this definition of special variables is associated with a fixed decomposition of a group G.

For brevity, let x = (x1, . . . , xn) and y = (y1, . . . , yn). We construct a group of equations over G

in the above special variables, i.e., a group that contains G as a subgroup, has tuples x and y which
generate the group over G, and is such that every mapping x → An, y → (ρ2(G))n extends to a
G-epimorphism of this group on G. First, we assume that a group A[x] is equal to A×〈x1, . . . , xn〉,
the direct product of a group A and a free Abelian group with basis {x1, . . . , xn}. Denote by R(x)
the ring of Laurent polynomials in x with coefficients in the ring R, and by K(x) the ring of
Laurent polynomials in x with coefficients in the field K. Consider an R(x)-module

∑
tiK(x) + y1R(x) + . . . + ynR(x),

which is the direct sum of a free K(x)-module with basis {ti | i ∈ I} and a free R(x)-module with
basis {y1, . . . , yn}. The desired group of equations is

G[x, y] =

(
A[x] 0

∑
tiK(x) + y1R(x) + . . . + ynR(x) 1

)

.

It contains G, and its variables xj are identified with matrices

(
xj 0
0 1

)

, while yj are identified

with

(
1 0
yj 1

)

. Clearly, G[x, y] is generated as a G-group by the tuples x and y, and every mapping

x → An, y → T n extends to a G-epimorphism G[x, y] → G, as desired.

If we take an arbitrary equation

(
f(x) 0

w(x, y) 1

)

= 1, where the left part is in G[x, y], then it

splits, i.e., is equivalent to a system of two equations f(x) = 1 and w(x, y) = 0. The coordinate
groups of irreducible algebraic sets S ⊆ An × T n will be some quotient groups G[x, y], which we
will describe below.

Recall that for A, there are two possibilities: either |A| = p or A is torsion-free. We consider
them separately.

4. 2-STEP SOLVABLE GROUPS, THE CASE WHERE |A| = p

In this section, A = 〈a〉 is a cyclic group of prime order p. Then R will be the quotient ring
of a group ring ZA. Since (a − 1)(1 + a + . . . + ap−1) = 0 and a �= 1 in R, it follows that R is in
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fact the quotient ring of a ring Z[ξ], where ξ is a primitive pth root of unity in the field of complex
numbers.

LEMMA 1. Every nonzero prime ideal J of the ring Z[ξ] has a nonzero intersection with Z,
and so the quotient ring Z[ξ]/J is a finite field.

Proof. Let 0 �= α ∈ J . We will consider α as an element of the cyclotomic extension Q(ξ)/Q

and take its norm N(α) = αβ ∈ Q. There is a natural number m such that mN(α) ∈ Z and
mβ ∈ Z[ξ]. Then 0 �= mαβ ∈ J ∩ Z. The lemma is proved.

With due regard for the lemma, we have two versions. In the first version R = Z[ξ] and
K = Q(ξ). In the second version R = K = Fq(a) = Fql is a finite field, where q is a prime and
p divides ql − 1 with l minimal with this condition, and since G is an infinite group, the space T

should have an infinite basis {ti | i ∈ I}.
Let Γ(S) be the coordinate group of an irreducible algebraic set S in an affine space An × T n.

The space itself is representable as the union of finitely many algebraic sets {(a1, . . . , an)} × T n

over all tuples (a1, . . . , an) ∈ An, and so S is in one of these sets, i.e., all elements of S satisfy the
equations x1 = a1, . . . , xn = an corresponding to some tuple (a1, . . . , an). Therefore, Γ(S) is the
quotient group of a group

G[y] =

(
A 0

T + y1R + . . . + ynR 1

)

,

which will the image of G[x, y] after we substitute x1 = a1, . . . , xn = an.
The theorem below describes coordinate groups of irreducible algebraic sets in special variables

for the case of an infinite 2-step solvable r-group G treated in this section, with ρ2(G) a divisible
R-module and |A| = p.

THEOREM 1. (1) Let p and q be primes, K a finite field of characteristic q, A = 〈a〉 a cyclic
subgroup of K∗ of order p, K = Fq(a), T a vector space over K with infinite basis {ti | i ∈ I},
Ty = T + y1K + . . . + ynK a vector space over K with basis {ti | i ∈ I} ∪ {y1, . . . , yn}, and

G =

(
A 0
T 1

)

=

(
A 0
0 1

)(
1 0
T 1

)

.

Then the coordinate groups of irreducible algebraic sets in the special variables x = (x1, . . . , xn)
and y = (y1, . . . , yn) corresponding to the above decomposition of G are exhausted by groups of

the form

(
A 0

Ty/L 1

)

, where x = (x1, . . . , xn) is set equal to some fixed tuple (a1, . . . , an) ∈ An

and L is an arbitrary subspace of Ty provided that T ∩ L = 0.
(2) Let a be a primitive root of unity of prime power p in the field of complex numbers, R = Z[a],

K = Q(a), A = 〈a〉 be a cyclic subgroup in R∗ generated by an element a, T be a vector space
over K with basis {ti | i ∈ I}, Ty = T + y1R + . . . + ynR be an R-module equal to the direct sum
of T and a free R-module with basis {y1, . . . , yn}, and

G =

(
A 0
T 1

)

=

(
A 0
0 1

)(
1 0
T 1

)

.
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Then the coordinate groups of irreducible algebraic sets in the special variables x = (x1, . . . , xn)
and y = (y1, . . . , yn) corresponding to the above decomposition of G are exhausted by groups of

the form

(
A 0

Ty/L 1

)

, where x = (x1, . . . , xn) is set equal to some fixed tuple (a1, . . . , an) ∈ An

and L is an arbitrary isolated R-submodule in Ty provided that T ∩ L = 0.
Proof. As noted, the coordinate group Γ(S) of an irreducible algebraic set S in an affine space

An × T n is representable as the quotient group of a group

G[y] =

(
A 0

T + y1R + . . . + ynR 1

)

with respect to a normal subgroup, which obviously has the from
(

1 0
L 1

)

,

where L is an R-submodule of T + y1R + . . . + ynR. Intersection of the annihilator of S with G

is equal to the trivial subgroup, and so T ∩ L = 0. We show that L is an isolated R-submodule.
Let 0 �= u ∈ T + y1R + . . . + ynR, 0 �= α ∈ R, and uα ∈ L. Consider an arbitrary specialization
(x, y) → S, which induces an R-module homomorphism ϕ : T + y1R + . . . + ynR → T . We have
(uα)ϕ = 0, with (uα)ϕ = (uϕ)α. Then uϕ = 0 for all specializations, and u ∈ L. In both of the
cases treated in the theorem, therefore, the coordinate group of an irreducible algebraic set has the
desired form.

To prove the converse statement, we need

LEMMA 2. Let K be a field, A a subgroup in K∗, T an infinite vector space over K with
basis {ti | i ∈ I}, T + z1K + . . .+ zmK a vector space over K with basis {ti | i ∈ I}∪{z1, . . . , zm},

and G =

(
A 0
T 1

)

. Then

H =

(
A 0

T + z1K + . . . + zmK 1

)

is G-discriminated by G.
Proof. The identity mapping A → A and every T -epimorphism of vector spaces T + z1K +

. . .+zmK → T define a group G-epimorphism H → G. Therefore, it suffices to show that the space
T + z1K + . . . + zmK is T -discriminated by the space T . By induction on m, the problem reduces
to the case m = 1. In this case we assume that there exists a finite set {u1 + z1α1, . . . , ur + z1αr},
where αj ∈ K and uj ∈ T , of nonzero elements of the space T + z1K. Since T is infinite, there is
an element t ∈ T for which all u1 + tα1, . . . , ur + tαr are other than zero. Hence a specialization
z1 → t discriminates the set mentioned. The lemma is proved.

We come back to the proof of Theorem 1. First we show that H =

(
A 0

Ty/L 1

)

, where Ty and

L satisfy the conditions formulated in items (1) or (2) of the theorem, is G-discriminated by G. In
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the conditions of item (1), the claim follows from Lemma 2 since the space Ty/L is representable as
T + z1K + . . . + zmK, where m ≤ n and elements z1, . . . , zm complement the basis of T to a basis
for Ty/L; these, for instance, can be chosen among y1, . . . , yn. Now let L satisfy the conditions
formulated in item (2). We embed an R-module Ty in a vector space V = T +y1K + . . .+ynK over
a field K, and denote by L the subspace generated by L. Since the submodule L is isolated in Ty, it

follows that Ty ∩L = L and T ∩L = 0. Hence the group G embeds in a matrix group

(
A 0

V/L 1

)

,

which, by Lemma 2, is G-discriminated by the group G. Then its subgroup H =

(
A 0

Ty/L 1

)

is

also G-discriminated by G.
Now, relying on Proposition 2, we assert that H is the coordinate group of an irreducible

algebraic set S in variables x and y in an affine space Gn × Gn. By the remark to Proposition 1,
the set S consists of tuples (g1, . . . , gn, gn+1, . . . , g2n), for which the mapping x → (g1, . . . , gn),
y → (gn+1, . . . , g2n) defines a G-epimorphism H → G. Now, for x, the specific value (a1, . . . , an) ∈
An is fixed, and so it is always true that (g1, . . . , gn) = (a1, . . . , an). Note also that H is itself

a 2-step solvable r-group, in which ρ2(H) =

(
1 0

Ty/L 1

)

coincides with the centralizer of any

nontrivial element in ρ2(G) =

(
1 0
T 1

)

. Therefore, for any G-epimorphism H → G, the image of

ρ2(H) is ρ2(G), and we identify the latter with T . Thus y1, . . . , yn must assume values in T , and
S ⊆ {(a1, . . . , an)}×T n is an irreducible algebraic set in the special variables x and y. The theorem
is proved.

5. UNIVERSAL THEORIES OF r-PAIRS

Universal theories of r-groups were studied in [7], from which we borrow some definitions and
facts. More precisely, we update them to the case of theories with constants.

An r-pair is (A,R), where R is a commutative integral domain and A is a torsion-free nontrivial
multiplicative subgroup in R∗ generating a ring R. Such a pair is associated with every 2-step
solvable r-group the first factor of a rigid series in which is torsion-free.

An r-pair (A,R) is finitely generated if A is a finitely generated group.
An r-pair (A,R) is a subpair of an r-pair (A′, R′) if R is a subring in R′ and A is a subgroup

in A′. If G � G′ are 2-step solvable r-groups then, for appropriate pairs, (A,R) will be a subpair
in (A′, R′).

A morphism (A′, R′) → (A,R) between two r-pairs is a ring homomorphism R′ → R mapping
A′ to A. A morphism of pairs is essential if the image of A′ is nontrivial. A homomorphism G′ → G

of 2-step solvable r-groups is essential if the image of G′ is non-Abelian.

PROPOSITION 5 [6]. Let G′ → G be an essential homomorphism (epimorphism) between 2-
step solvable r-groups. Then it induces an essential morphism (epimorphism) between appropriate
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pairs.
For a given r-pair (A,R), we take a tuple of variables (x1, . . . , xm, y1, . . . , yn), assuming that

the variables xi take values in A, and yj take values in R. As terms we consider elements of the
free right module

y1 · R(x1, . . . , xm) + . . . + yn · R(x1, . . . , xm)

with basis {y1, . . . , yn} over the ring R(x1, . . . , xm) of Laurent polynomials with coefficients from
R in the variables x1, . . . , xm. In a natural manner, we define first-order formulas in the variables
(x1, . . . , xm, y1, . . . , yn), in which the quantifier-free part is a Boolean combination of equalities of
the form w(x1, . . . , xm, y1, . . . , yn) = 0, where w is a term. As usual, by the universal theory of a
pair (A,R) with constants in A (equivalently, in R) we mean a collection of ∀-sentences valid on
that pair.

PROPOSITION 6. Let (A,R) be a subpair of an r-pair (A′, R′). The universal theories of
these two pairs with constants in A coincide if and only if (A′, R′) is locally (A,R)-discriminated
by (A,R).

Proof. Let (A′, R′) be locally (A,R)-discriminated by (A,R). Coincidence of ∀-theories is
equivalent to coincidence of ∃-theories. If some ∃-sentence (with constants in A) is satisfied on a pair
(A,R), then it is obviously satisfied on the pair (A′, R′) containing (A,R). Now let an ∃-sentence
Φ be satisfied on (A′, R′). Take all terms w1(x1, . . . , xm, y1, . . . , yn), . . . , ws(x1, . . . , xm, y1, . . . , yn)
involved in the formula Φ. There are values x1 = a′1, . . . , xm = a′m and y1 = u1, . . . , yn = un, where
a′1, . . . , a

′
m ∈ A′ and u1, . . . , un ∈ R′, realizing Φ. Let w1, . . . , ws be the corresponding values of

the terms. In the group A′, there is a finite set of elements such that an A-subgroup generated by
this set contains a′1, . . . , a

′
m, and an R-subring generated by it contains u1, . . . , un. Let (A1, R1)

be a subpair generated over (A,R) by the set mentioned. Clearly, the sentence Φ is satisfied on
(A1, R1). We choose an (A,R)-epimorphism ϕ : (A1, R1) → (A,R) for which wiϕ �= 0 if wi �= 0.
The values

x1 = a′1ϕ, . . . , xm = a′mϕ, y1 = u1ϕ, . . . , yn = unϕ

realize the formula Φ.
Now let the ∃-theories of pairs (A,R) and (A′, R′) with constants in A be equal. Then so

will be the ∃-theory of any intermediate pair. Hence it suffices to show that if the pair (A′, R′)
is itself generated over (A,R) by a finite set of elements {a′1, . . . , a′m} ⊆ A′, then it is (A,R)-
discriminated by (A,R). For convenience, we will suppose that the set {a′1, . . . , a′m} is closed under
taking inverse elements, and then R′ = R[a′1, . . . , a

′
m]. Denote by K the ring of quotients of R.

A ring K[a′1, . . . , a
′
m] is represented as the quotient ring of a polynomial ring K[x1, . . . , xm] with

respect to an ideal generated by some finite set of elements {f1(x1, . . . , xm), . . . , fs(x1, . . . , xm)}.
There is no loss of generality in assuming that the polynomials fi have coefficients in R. We may
assert that if (a1, . . . , am) is a tuple of elements in A, and fi(a1, . . . , am) = 0 for all i = 1, . . . , s, then
the mapping (a′1, . . . , a

′
m) → (a1, . . . , am) defines an R-epimorphism of the ring R′ onto R, which
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induces an A-epimorphism of the group A′ onto A. That is, we obtain an (A,R)-epimorphism of the
pair (A′, R′) onto (A,R). In the ring R′, we take a finite set {v1(a′1, . . . , a

′
m), . . . , vn(a′1, . . . , a

′
m)}

of nonzero elements, which we want to discriminate, and associate with it an ∃-sentence

∃x1 . . . ∃xm∃y((y �= 0) ∧ (y · f1(x1, . . . , xm) = 0) ∧ . . . ∧ (y · fs(x1, . . . , xm) = 0)

∧ (y · v1(x1, . . . , xm) �= 0) ∧ . . . ∧ (y · vn(x1, . . . , xm) �= 0)).

The sentence is satisfied on (A′, R′), and hence on (A,R). Let x1 = a1, . . . , xm = am,
and let y = w be the corresponding realization. Then the mapping (a′1, . . . , a

′
m) → (a1, . . . ,

am) defines an (A,R)-epimorphism of (A′, R′) onto (A,R), which discriminates the set {v1(a′1, . . . ,
a′m), . . . , vn(a′1, . . . , a

′
m)}. The proposition is proved.

6. 2-STEP SOLVABLE GROUPS, THE CASE WHERE A

IS A TORSION-FREE GROUP

In this section, we consider the main case where A is torsion free.

THEOREM 2. Let R be a commutative integral domain, A be a torsion-free nontrivial
multiplicative subgroup in R∗ which generates R as a ring, K be the field of quotients of R,

T be a vector space over K with basis {ti | i ∈ I}, and G be a group equal to

(
A 0
T 1

)

. Then the

coordinate group H of an irreducible algebraic set over G in the special variables x = (x1, . . . , xn)
and y = (y1, . . . , yn) corresponding to the decomposition

G =

(
A 0
0 1

)(
1 0
T 1

)

will have the following form.
There exists an r-pair (A′, R′) which contains (A,R) as a subpair and is such that A′ is generated

over A by the elements x1, . . . , xn ∈ A′, and the universal theories (with constants in A) of (A,R)
and (A′, R′) coincide. Let K ′ be the field of quotients of R′, KR′ be a subring in K ′ generated by
K and R′, and T ′ =

∑
ti · KR′ + y1R

′ + . . . + ynR′ be an R′-module equal to the direct sum of a
free KR′-module with basis {ti | i ∈ I} and a free R′-module with basis {y1, . . . , yn}. The group

H is representable as

(
A′ 0

T ′/L 1

)

, where L is an isolated R′-submodule in T ′ with the condition

L ∩
∑

ti · KR′ = 0.
Conversely, any group H represented as shown above is the coordinate group of an irreducible

algebraic set over G in the special variables x = (x1, . . . , xn) and y = (y1, . . . , yn).
Proof. Let H be the coordinate group of an irreducible algebraic set S ⊆ An×T n in the special

variables x = (x1, . . . , xn) and y = (y1, . . . , yn). By Proposition 2 and 3, its universal theory with
constants in G coincides with the universal theory of G, and H is itself a 2-step solvable r-group
the first factor of a rigid series in which is torsion-free.
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Let H comply with (A′, R′). Since G is contained in H, (A,R) will be a subpair of (A′, R′). In
Sec. 3, we noted that H is representable as the quotient group of the constructed group G[x, y] of

equations with respect to the annihilator Θ(S) of a set S, which splits itself; i.e., Θ(S) =

(
Θ1 0
Θ2 1

)

,

where Θ1 � A × 〈x1, . . . , xn〉. Therefore, H =

(
A′ 0
E 1

)

. The group A′ = (A × 〈x1, . . . , xn〉)/Θ1

is torsion-free, contains A as a subgroup, and is generated over A by the images of x1, . . . , xn, for
which the notation is left unchanged.

Every specialization (x, y) → S defines a G-epimorphism H → G, and by Proposition 5, an
(A,R)-epimorphism (A′, R′) → (A,R). Then the pair (A′, R′) is (A,R)-discriminated by such
epimorphisms, and by virtue of Proposition 6, the universal theories of (A′, R′) and (A,R) with
constants in A will coincide. We represent R′ as the quotient ring R(x)/J , and then factor G[x, y]
with respect to the normal subgroup

(
Θ1 0

∑
tiK(x)J + y1R(x)J + . . . + ynR(x)J, 1

)

,

which is contained in Θ(S). As a result, we obtain exactly the group

(
A′ 0
T ′ 1

)

. The group H

derives from it as

(
A′ 0

T ′/L 1

)

, where L is an R′-submodule of T ′. The module T ′/L is R′-torsion

free, and so L is an isolated submodule.
We show that L ∩

∑
ti · KR′ = 0. Assume the contrary, i.e., 0 �=

∑
tiui ∈ L, where ui ∈ KR′.

There exists 0 �= u ∈ R for which all uiu are in R′. The ring R′ is R-discriminated by R via
specializations (x, y) → S, and so there exists a specialization for which the images of all nonzero
uiu are distinct from zero. By assumption, the image of any element in L should be equal to zero,
a contradiction. Thus the coordinate group of an irreducible algebraic set S ⊆ An × T n in the
special variables x = (x1, . . . , xn) and y = (y1, . . . , yn) has the desired form.

In order to prove the converse, in view of Propositions 2 and 3, it suffices to state that H,
whose construction is presented in the formulation of the theorem, is G-discriminated by G.

By assumption, the R′-modules T ′ =
∑

ti ·KR′ + y1R
′ + . . . + ynR′ and T ′/L are torsion-free,

and so they are complemented to vector spaces over the field K ′. Since L ∩
∑

ti · KR′ = 0, the
projection of L onto y1R

′ + . . . + ynR′ is an embedding, and the rank m of the module L does
not exceed n. We can assert (using only elementary transformations over R′) that L contains a
maximal system of elements h1, . . . , hm linearly independent over R′, which, up to renumbering
y1, . . . , yn, has the following form: h1 = y1u + f1, . . . , hm = ymu + fm, where

0 �= u ∈ R′, f1, . . . , fm ∈ ym+1R
′ + . . . + ynR′ +

∑
ti · KR′.

LEMMA 3. Suppose that there is an R-epimorphism ϕ : R′ → R, with uϕ �= 0. This induces

125



a module epimorphism T ′ → T + y1R + . . . + ynR, which we denote by the same symbol ϕ. Then
Lϕ is contained in the R-isolator of a submodule h1ϕ · R + . . . + hmϕ ·R of T + y1R + . . . + ynR.

Proof. Indeed, let
v =

∑
tiαi + y1β1 + . . . + ynβn ∈ L.

Then
vu = h1β1 + . . . + hmβm, vϕ · uϕ = h1ϕ · β1ϕ + . . . + hmϕ · βmϕ.

Since uϕ �= 0, it follows that vϕ is in the isolator of the submodule h1ϕ · R + . . . + hmϕ · R. The
lemma is proved.

Suppose that we want to discriminate some finite set of nontrivial elements of H. Each of the

elements under consideration will be decomposed into the product of an element in

(
A′ 0
0 1

)

and

an element in

(
1 0

T ′/L 1

)

. Since T embeds in T ′/L, it follows that a′ �= 1 ⇔ ti(a′ − 1) �= 0 for

a′ ∈ A′. This allows us to reduce the problem to the case where a discriminated set is contained in(
1 0

T ′/L 1

)

. In this case the result follows from the following:

LEMMA 4. Let W be a finite set of elements in T ′ \ L. Then there exist a pair (A,R)-
epimorphism (A′, R′) → (A,R) and a mapping y → T n, which, together with a mapping ti → ti

(i ∈ I), define a module T -epimorphism T ′ → T with kernel containing L, and moreover, the
images of all elements in W are distinct from zero.

Proof. Every element w ∈ W can be represented as w = y1α1 + . . .+ynαn +w′, where αj ∈ R′

and w′ ∈
∑

ti · KR′. Then

wu − h1α1 − . . . − hmαm ∈ ym+1R
′ + . . . + ynR′ +

∑
ti · KR′.

If we replace w by wu − h1α1 − . . . − hmαm we reduce the problem to the case where

W ⊆ ym+1R
′ + . . . + ynR′ +

∑
ti · KR′.

Suppose that w ∈ W and w = ym+1αm+1 + . . . + ynαn +
∑

tiβi in this case. Choose a pair
(A,R)-epimorphism ϕ : (A′, R′) → (A,R) such that uϕ �= 0 and αjϕ �= 0, if αj �= 0, and βiϕ �= 0
if βi �= 0. The pair isomorphism induces a module epimorphism

ym+1R
′ + . . . + ynR′ +

∑
ti · KR′ → ym+1R + . . . + ynR + T,

which discriminates the set W . We can then select a tuple of values vm+1, . . . , vn for ym+1, . . . , yn,
so that for a composition epimorphism

ym+1R
′ + . . . + ynR′ +

∑
ti · KR′ → T,
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which we denote by ψ, the images of all elements of W would also be other than zero. Recall that
L is the isolator in T ′ of an R′-submodule h1R

′ + . . . + hmR′. We write

y1 · uϕ + f1ψ = 0, . . . , ym · uϕ + fmψ = 0

and find in T values y1 = v1, . . . , ym = vm such that the above equalities are satisfied. As a result,
ψ is lifted to a module epimorphism

ψ : T ′ = y1R
′ + . . . + ymR′ + ym+1R

′ + . . . + ynR′ +
∑

ti · KR′ → T,

complying with a ring epimorphism ϕ : R′ → R which discriminates W and is such that h1ψ =
0, . . . , hmψ = 0. Relying on Lemma 3, we can assert that Lψ = 0. Lemma 4, together with Theorem
2, is proved.
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