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We consider algebras of binary formulas for compositions of theories both in the
general case and as applied to ℵ0-categorical, strongly minimal, and stable theories,
linear preorders, cyclic preorders, and series of finite structures. It is shown that e-
definable compositions preserve isomorphisms and elementary equivalence and have
basicity formed by basic formulas of the initial theories. We find criteria for e-definable
compositions to preserve ℵ0-categoricity, strong minimality, and stability. It is stated
that e-definable compositions of theories specify compositions of algebras of binary
formulas. A description of forms of these algebras is given relative to compositions
with linear orders, cyclic orders, and series of finite structures.

Algebras of binary formulas are a tool for describing connections between realizations of types at
a binary level relative to a superposition of binary definable sets. These algebras are characterized
for the general case in [1-3] and for natural classes of theories in [4-11].

In the present paper, we consider specific features and describe properties and algebras for
compositions of theories both in the general case and as applied to ℵ0-categorical, strongly minimal,
and stable theories, linear orders, cyclic orders, and series of finite structures.

Our plan is as follows. In Sec. 1, we set out the notation and preliminary concepts. Namely, we
define the following: an I-groupoid for an axiomatization of algebras of binary isolating formulas,
a composition for graphs and monoids, and a composition of some natural monoids with groups
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generating algebras of binary isolating formulas for suitable theories (Thms. 1.4, 1.5). In Sec. 2,
we introduce natural concepts of compositions for structures and theories that generalize the
corresponding notions for graphs, as well as e-definable compositions M[N] which allow us to
construct the desired structures by substituting definable equivalence classes with copies of a
structure N for elements of a structure M. We show that compositions preserve uniqueness of
1-types (Prop. 2.2), and that e-definable compositions preserve isomorphisms and elementary
equivalence (Thm. 2.4), allow reconstructing the given theories from their e-definable compositions
(Cor. 2.5), and have basicity formed by basic formulas of the initial theories (Prop. 2.8). We find
criteria for e-definable compositions to preserve ℵ0-categoricity, strong minimality, and stability
(Thms. 2.9-2.11). It is stated that e-definable compositions specify compositions of algebras of
binary formulas for families of 1-types (Thm. 2.12) and for fixed 1-types (Cor. 2.13). In Secs. 3-5,
we describe forms of these algebras relative to compositions with linear orders, cyclic orders, and
for series of finite structures. It is proved that every composition of an algebra of binary isolating
formulas for dense linear orders with a given algebra having nonnegative labels is realized by some
theory (Thm. 3.1). Similarly, there exist realizations in which linear orders are replaced with an
Ehrenfeucht example (Thm. 3.2), with a discrete infinite linear order (Thm. 3.4), and with dense
and discrete cyclic orders (Thms. 4.5, 4.6), including values of the number of labels and rules for the
labels (Thms. 4.3, 4.4). In Sec. 5, we describe rules for algebras of compositions of finite complete
graphs and of compositions of cycles (Examples 5.1-5.3).

1. PRELIMINARY NOTIONS, THE NOTATION, AND STATEMENTS

Without further comment, we use the terminology adopted in [1-3]. In treating algebras of
binary formulas, we describe, as usual, their restrictions to corresponding algebras of binary
isolating formulas.

Recall basic properties of groupoids Pν(p) for 1-types p.

Definition 1.1 [1, 2]. Let U = U− ∪̇ {0} ∪̇U+ be some alphabet consisting of a set U− of
negative elements, a set U+ of positive elements, and zero (0). We will write u < 0 for any element
u ∈ U−, u > 0 for any element u ∈ U+, u ≤ 0 for elements u ∈ U− ∪ {0}, and u ≥ 0 for elements
u ∈ U+ ∪ {0}. Thus the symbols <, >, ≤, and ≥ are used to compare labels in U with zero. In
treating the operation · on the set P(U) \ {∅}, we will use u · v instead of {u} · {v}.

A groupoid P = 〈P(U) \ {∅}; ·〉 is called an I-groupoid if the following conditions hold:
the set {0} is the identity element of P;
the operation · on P is generated by the function · on elements in U , which assigns a nonempty

set (u · v) ⊆ U to any elements u, v ∈ U ; for any sets X,Y ∈ P(U) \ {∅}, the following relation
holds:

X · Y =
⋃

{x · y | x ∈ X, y ∈ Y };

if u < 0, then the sets u · v and v · u consist of negative elements for any v ∈ U ;
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if u > 0 and v > 0, then the set u · v consists of nonnegative elements;
for any element u > 0, there exists a unique inverse element u−1 > 0 for which 0 ∈ (u · u−1) ∩

(u−1 · u);
if a positive element u belongs to the set v1 ·v2, then the element u−1 belongs to a set v−1

2 ·v−1
1 ;

for any elements u1, u2, u3 ∈ U , the following inclusion holds:

(u1 · u2) · u3 ⊇ u1 · (u2 · u3)

in which case the strict inclusion

(u1 · u2) · u3 ⊃ u1 · (u2 · u3)

is possible only if u1 < 0 and the set u2 · u3 has infinite cardinality;
P contains the deterministic subgroupoid P

≥0
d (which is a monoid) with universe P(U≥0

d )\{∅},
where

U≥0
d = {u ∈ U≥0 | u−1 · u = {0}};

moreover, |u · v| = 1 for any u, v ∈ U≥0
d .

By definition, every I-groupoid P contains I-subgroupoids P≤0 and P≥0 with universes P(U−∪
{0}) \ {∅} and P(U+ ∪ {0}) \ {∅}, respectively. The structure P≥0 is a monoid.

Using syntactic generic constructions, we can establish the following representation theorems.

THEOREM 1.2 [1, 2]. For any I-groupoid P, there is a theory T with a type p(x) ∈ S1(T )
and a regular labeling function ν(p) such that Pν(p) = P. If the alphabet is at most countable and
the operation in P does not induce continuum many types, then T is a small theory.

Recall [12, 13] that a composition Γ1[Γ2] of graphs Γ1 = 〈X1;R1〉 and Γ2 = 〈X2;R2〉 is a graph
〈X1 × X2;R〉 in which ((a1, b1), (a2, b2)) ∈ R iff one of the following conditions is satisfied:

(1) (a1, a2) ∈ R1;
(2) a1 = a2 and (b1, b2) ∈ R2.
A composition of monoids is defined in a similar way. Let S1 and S2 be monoids for which 0 is

an identity element, and let S1 ⊆ U≤0 and S2 ⊆ U≥0. A composition, or sequentially annihilating
band S1[S2] [14, 15], of monoids S1 and S2 is an algebra 〈S1 ∪ S2; �〉 where 〈S1 ∪ S2; �〉 � Si = Si,
for i = 1, 2, and u� v = v � u = u for u < 0 and v > 0.

PROPOSITION 1.3 [15]. Every sequentially annihilating band S1[S2] is a monoid.
Below are two theorems which show that compositions of graphs, as well as compositions of

monoids and their associated compositions of algebras of binary formulas, can be realized both for
dense linear orders and for a monoid on natural numbers.

THEOREM 1.4 [1, 2]. For any group 〈G; ∗〉 the universe of which consists of nonnegative
elements and whose identity element is 0 and for a monoid 〈{−1, 0}; +〉 with a zero element 0
and an idempotent element −1, there is a theory T with a type p ∈ S(T ) and a regular labeling
function ν(p) such that the monoid P′

ν(p) coincides with 〈{−1, 0}; +〉[〈G; ∗〉].
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THEOREM 1.5 [1, 2]. For any group 〈G; ∗〉 the universe of which consists of nonnegative
elements and whose identity element is 0 and for a monoid 〈ω∗; +〉 of nonpositive integers, there
is a theory T with a complete type p ∈ S(T ) and a regular labeling function ν(p) such that the
monoid P′

ν(p) coincides with 〈ω∗; +〉[〈G; ∗〉].

2. COMPOSITIONS OF STRUCTURES AND COMPOSITIONS
OF THEORIES

We generalize the concept of a composition Γ1[Γ2] of graphs as follows. Let M and N be
structures in relational signatures ΣM and ΣN, respectively. The composition M[N] of structures
M and N is defined via the following rules:

(1) ΣM[N] = ΣM∪ΣN;
(2) M [N ] = M ×N , where M [N ], M , and N are universes of the structures M[N], M, and N,

respectively;
(3) for R ∈ ΣM \ ΣN and μ(R) = n, put ((a1, b1), . . . , (an, bn)) ∈ RM[N] if (a1, . . . , an) ∈ RM;
(4) for R ∈ ΣN \ ΣM and μ(R) = n, put ((a1, b1), . . . , (an, bn)) ∈ RM[N] if a1 = . . . = an and

(b1, . . . , bn) ∈ RN;
(5) for R ∈ ΣM ∩ ΣN and μ(R) = n, put ((a1, b1), . . . , (an, bn)) ∈ RM[N] if (a1, . . . , an) ∈ RM

or a1 = . . . = an and (b1, . . . , bn) ∈ RN.
Note that the condition a1 = . . . = an in the definition somewhat modifies the predicates

R by adding sets of elements to diagonals. Also there are other approaches to such a definition
of a composition. With several possibilities for defining a composition at hand, we consider a
composition with diagonals for the sake of convenience and based on the initial definition for
graphs.

By definition, the composition M[N] is obtained by replacing each element in M with a copy
of the structure N.

The notion of a composition of structures is naturally carried over to a composition P1[P2] of
algebras P1 and P2 of binary isolating formulas.

The theory T = Th(M[N]) is the composition T1[T2] of theories T1 = Th(M) and T2 = Th(N).
In what follows, we consider a special form of the composition of theories T1 and T2 for which

T1[T2] does not depend on the choice of structures M |= T1 and N |= T2. At the same time, the
remark below shows that such independence may not be the case in general.

Remark 2.1. If M � M′ and N � N′, then M[N] � M′[N′], but the reverse implication
is untrue. Indeed, if we consider the structures M and N in the empty signature we obtain the
composition M[N] of the empty signature with |M |× |N | elements. However, the cardinality |M |×
|N | does not recover cardinalities |M | and |N |. In particular, the infinite cardinality |M ×N | may
be obtained with some finite set M and infinite N , as well as with infinite M and N . Therefore,
there are M �≡ M′ and N �≡ N′ such that M[N] � M[N′] and M[N] � M′[N′].
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PROPOSITION 2.2. If structures M and N have transitive automorphism groups, then M[N]
also has a transitive automorphism group.

Proof. By hypothesis, any two elements of N are connected by an automorphism, and there
are automorphisms connecting copies of the structure N in M[N]. Therefore, choosing elements a

and b in the copies N′ and N′′ of N, respectively, we can map N′ to N′′ by some automorphism f

and then map f(a) to b by some automorphism g extending an automorpism of the structure N′′

and fixing all elements of M [N ] \ N ′′. Thus f ◦ g is an automorphism of the structure M[N] that
connects a with b. �

By Proposition 2.2, T = Th(M[N]) is a transitive theory, i.e., T has a unique complete 1-type
p0(x), and therefore the operation M[N] can be treated as a version of the transitive arrangement
of structures [16].

Definition 2.3. A composition M[N] is said to be e-definable or equ-definable if M[N] has an
∅-definable equivalence relation E the E-classes of which are universes of copies of the structure
N forming M[N]. If an equivalence relation E is fixed, then an e-definable composition is said to
be E-definable.

By definition, every E-definable composition M[N] can be represented as an E-combination
[17] of copies of N together with an additional structure which is generated by predicates on M

and connects elements of the copies of N.
Clearly, there are compositions which are not e-definable. For example, compositions of struc-

tures of the empty signature which are not e-definable are presented in Remark 2.1.
The construction for proving Theorem 1 specifies an E-definable composition M[N], where M

forms a dense linear order, N is a binary structure representing a group, and E is a definable
relation of belonging to a common antichain:

xEy ⇔ x = y, or x �< y and y �< x.

At the same time, the construction for proving Theorem 1.5 specifies a composition which is not
e-definable, producing a transitive arrangement of structures [16] on an exact pseudoplane M with
a contourless directed graph 〈M ;Q〉. In these structures, copies of the structure N are recovered in
the form of structures on lines of the structure M where the lines are defined as sets of solutions
for formulas Q(a, y), a ∈ M .

THEOREM 2.4. If M[N] is not an e-definable composition, then the following relations hold:
(1) M[N] � M′[N′] if and only if M � M′ and N � N′;
(2) M[N] ≡ M′[N′] if and only if M ≡ M′ and N ≡ N′.
Proof. Let M[N] be an E-definable composition.
If M[N] � M′[N′], then M[N] consists of E-classes which are copies of N, and M′[N′] consists

of E′-classes of copies of N′ for which the relations E and E′ are defined by the same formula, and
N � N′ holds. The structure M is isomorphic to M0, which is obtained from M[N] by replacing
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E-classes with elements, and similarly the factor structure M′[N′] with respect to E′-classes defines
a structure M′

0 isomorphic to M′. Since M � M0 � M′
0 � M′, we obtain M � M′.

Conversely, if M � M′ and N � N′, then M[N] � M′[N′] by the definition of a composition.
Moreover, this implication holds in the general case, without the presupposition of e-definability.

Based on the same argument using e-definability, we state that M[N] ≡ M[N] iff M ≡ M′ and
N ≡ N′. �

Theorem 2.4 immediately implies

COROLLARY 2.5. If M[N] is an e-definable composition, then the theory Th(M[N]) is
uniquely determined by Th(M) and Th(N), while the theories Th(M) and Th(N) are uniquely
determined by Th(M[N]).

Corollary 2.5 allows us to uniquely determine the composition T1[T2] = Th(M[N]) given theories
T1 = Th(M) and T2 = Th(N), and to determine T1 and T2 given T1[T2].

Note that in view of Remark 2.1, Theorem 2.4(1), (2) and Corollary 2.5 may fail to hold if M[N]
is not an e-definable composition.

Definition 2.6 [18]. A theory T is said to be Δ-based, where Δ is a set of formulas without
parameters if every formula of T is equivalent in T to a Boolean combination of formulas in Δ.

For Δ-based theories T , we also say that T admits elimination of quantifiers or reduction of
quantifiers relative to Δ.

Let Δ be a set of formulas of a theory T and let p(x̄) be a type of the theory T belonging to
S(T ). We say that p(x̄) is Δ-based if p(x̄) is isolated by a set of formulas ϕδ ∈ p, where ϕ ∈ Δ and
δ ∈ {0, 1}.

LEMMA 2.7 [18]. A theory T is Δ-based if and only if tp(ā) is a Δ-based type for any tuple
ā of any (some) weakly saturated model of the theory T .

Suppose now that M[N] is E-definable, T1 = Th(M) is Δ1-based, and T2 = Th(N) is Δ2-based.
Using Lemma 2.7, we describe a set Δ for which T = T1[T2] is a Δ-based. For this goal to

be met, we consider a tuple ā of a weakly saturated model of a theory T . By Theorem 2.4, we
may assume that this model is again a composition M[N]. Since the composition is E-definable,
the tuple ā is partitioned into nonintersecting parts āi so that every part belongs to some E-class
and different parts belong to different E-classes. Include in Δ the formulas E′(x, y) witnessing
the partition mentioned. Now, by the definition of an E-definable composition, every type tp(āi)
is (Δ1 ∪ Δ2 ∪ Ẽ)-based, where Ẽ consists of formulas E′(x, y) since this type is defined by the
description of ‘belonging to a common E-class,’ by a Boolean combination of formulas in Δ2

describing tpNi
(āi) for a copy Ni of a structure N containing āi, and by a Boolean combination of

1-formulas in Δ1 describing tpM(bi) for an element bi ∈ M , which is replaced by a structure N′ in
constructing M[N].

Moreover, the type tp(ā) is again (Δ1∪Δ2∪Ẽ)-based since it is derived in T from the description
of ‘belonging to a common E-class’ for every āi, “belonging to different E-classes’ for different āi,
and from Boolean combinations of formulas in Δ2 describing types tpNi

(āi) together with Boolean
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combinations of formulas in Δ1 describing a type tpM(b̄) for a tuple b̄ ∈ M , whose coordinates are
replaced by the structures Ni considered in constructing M[N].

Applying Lemma 2.7, we obtain the following:

PROPOSITION 2.8. If M[N] is an E-definable composition, then T = Th(M[N]) is a (Δ1 ∪
Δ2 ∪ Ẽ)-based theory, where Th(M) is Δ1-based, Th(N) is Δ2-based, and Ẽ is a set of formulas
E′(x, y) witnessing that E is a definable equivalence relation.

By virtue of Theorem 2.4 and Proposition 2.8, a number of model-theoretic properties
are preserved for e-definable compositions M[N]. Below we deal with characterizations for ℵ0-
categorical, (strongly) minimal, and stable compositions M[N].

THEOREM 2.9. The theory T1[T2] of an infinite E-definable composition M[N], where T1 =
Th(M) and T2 = Th(N), is ℵ0-categorical if and only if one of the structures M and N is finite
and the other is ℵ0-categorical, or these structures are both ℵ0-categorical.

Proof. If T1[T2] is ℵ0-categorical, then it follows by the Ryll-Nardzewski theorem that T1[T2] has
finitely many n-types for any n ∈ ω. In view of the fact that M[N] is E-definable and Theorem 2.4,
n-types for T1[T2] specify both n-types for T2, where all coordinates of realizing tuples are related via
E, and n-types for T1, where all coordinates of realizing tuples are not related via E. Consequently,
the number of n-types is finite both for T1 and T2. Applying the Ryll-Nardzewski theorem again,
we conclude that M and N are either finite or ℵ0-categorical. Since M[N] is infinite, we see that
either one of the structures M and N is finite and the other is ℵ0-categorical, or these structures
are both ℵ0-categorical.

Now we suppose that each of the structures M and N either is finite or ℵ0-categorical. By
the Ryll-Nardzewski theorem, T1 and T2 have finitely many n-types for any n ∈ ω. In view of
Proposition 2.8, there are finitely many options for n-types of the theory T1[T2]. If again we apply
the Ryll-Nardzewski theorem we conclude that T1[T2] is ℵ0-categorical. �

Recall [19, 20] that an infinite structure M is (definably) minimal if any definable subset in M

is either finite or cofinite.
Following [21], we call M a strongly minimal structure if any definable subset of the universe

of a structure N ≡ M is either finite or cofinite.

THEOREM 2.10. An infinite E-definable composition M[N] is (strongly) minimal if and only
if one of the following conditions is satisfied:

(1) M is a singleton and N is (strongly) minimal;
(2) M is (strongly) minimal and N is finite and has no proper ∅-definable subsets.
Proof. By Theorem 2.4, it suffices to show that M[N] is a minimal composition iff M is a

singleton and N is minimal, or M is minimal and N is finite, and the latter has no proper ∅-
definable subsets.

Let M[N] be minimal. By virtue of Proposition 2.8, every E-class cannot be divided by definable
sets into two infinite parts, and definable sets of E-classes cannot be divided into two infinite parts.
Consequently, each of the structures M and N is either finite or minimal. In this case the finite
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structure N should not have proper ∅-definable subsets, since otherwise an infinite number of
copies of N in M[N] would allow us to partition the universe into two infinite definable parts. It
remains to observe that if the structure M is not a singleton and N is minimal, then M[N] has at
least two infinite E-classes, which contradicts the minimality.

Conversely, having considered a definable subset X in M [N ], we note that X is representable
as the union of definable subsets in E-classes. If the structure M is a singleton and N is minimal,
then there exists a unique E-class, and the set X is finite or cofinite since N is minimal. If M is
minimal and N is finite, then it follows by Proposition 2.8 that the set X contains elements of
a finite or cofinite family of E-classes. The E-classes are finite and N has no proper ∅-definable
subsets, so X is either finite or cofinite. Since the set X has been chosen arbitrarily, the structure
M[N] is minimal. �

Recall [22] that a formula ϕ(x̄, ȳ) of a theory T is stable if there exist no tuples ān and b̄n,
n ∈ ω, such that |= ϕ(āi, b̄j) ⇔ i ≤ j. A theory T is stable if every formula of T is stable.

In [23], it was proved that every Boolean combination of stable formulas is again stable. Based
on Proposition 2.8, we can therefore state the following:

THEOREM 2.11. For every E-definable composition M[N], the theory Th(M[N]) is stable if
and only if Th(M) and Th(N) are stable.

Proof. Let Th(M[N]) be a stable theory. Then every formula ϕ(x̄) of the theory Th(M) or
Th(N) is representable as the restriction of some formula ψ(x̄) of the theory Th(M[N]) to some E-
class or to definable relations between E-classes, i.e., as the conjunction ψ(x̄)∧

∧
xi,xj∈x̄

Eδij (xi, xj),

δij ∈ {0, 1}. Formulas ψ(x̄) and E(xi, xj) are stable, so ϕ(x̄) is also stable.
If the theories Th(M) and Th(N) are stable, then it follows by Proposition 2.8 that every

formula of Th(M[N]) is equivalent to a Boolean combination of stable formulas of Th(M) and
Th(N), and also of stable formulas E′(x, y) for an equivalence relation E. Thus Th(M[N]) is a
stable theory. �

THEOREM 2.12. If M[N] is an E-definable composition, then an algebra PT of binary
isolating formulas for a theory T = Th(M[N]) is isomorphic to a composition PT1 [PT2 ] of algebras
PT1 and PT2 of binary isolating formulas for theories T1 = Th(M) and T2 = Th(N).

The proof follows from Corollary 2.5 and Proposition 2.8, since relations via isolating formulas
are representable as compositions of relations on E-classes forming PT1 , and of relations inside
E-classes forming PT2 . �

Proposition 2.2 and Theorem 2.12 can be combined to yield

COROLLARY 2.13. If M[N] is an E-definable composition, and T1 = Th(M) and T2 =
Th(N) are transitive theories with algebras Pν(p) and Pν′(p′), respectively, then the theory T1[T2]
has an algebra Pν′′(p′′) with a unique 1-type p′′ which is isomorphic to a composition Pν(p)[Pν′(p′)].

Remark 2.14. Theorems 2.9, 2.10, and 2.12 allow us to apply the descriptions [4, 5] of algebras
of binary formulas for E-definable compositions of ℵ0-categorical structures and for E-definable
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compositions of strongly minimal structures.

Remark 2.15. In view of Remark 2.1, Theorem 2.12 and Corollary 2.13 may fail to hold,
if M[N] is not an E-definable composition. In particular, if M and N are infinite structures in
the empty signature, then, for the theories T1 = Th(M), T2 = Th(N), and T = Th(M[N]), the
algebras PT1 , PT2 , and PT are pairwise isomorphic, with two labels 0 and 1 satisfying the rules
0 · u = u · 0 = {u}, for u ∈ {0, 1}, and 1 · 1 = {0, 1}.

3. I-GROUPOIDS FOR LINEAR PREORDERS

In this section, we generalize Theorem 1.4 for I-groupoids, which are treated instead of groups
〈G; ∗〉.

Let λ be a positive cardinality, suppose that Mλ = 〈Mλ, <〉 is a dense linearly preordered set
such that all maximal antichains A have the same cardinality λ, and assume that Mλ/∼ has no
terminal elements, where x ∼ y ⇔ x = y or x �< y and y �< x. This means that Mλ is obtained
from M1 by replacing every element with a copy of an antichain A.

Obviously, Tλ = Th(Mλ) is a transitive theory.
The structure Mλ is linearly ordered iff λ = 1. In this case the algebra P0 = Pν(p0) consists

of three labels 0, 1, and 2 corresponding to formulas a ≈ y, a < y, and y < a, respectively. An
operation · on the Boolean of a set of labels is defined via the following rules: u · 0 = 0 · u = {u}
for u ∈ {0, 1, 2}, 1 · 1 = {1}, 2 · 2 = {2}, and 1 · 2 = 2 · 1 = {0, 1, 2}.

For λ = 2, the algebra Pλ is placed on every antichain A and has two labels, say, 0 and 3,
corresponding to formulas a ≈ y and ¬(a ≈ y), with the following rules: u · 0 = 0 · u = {u}
for u ∈ {0, 3}, and 3 · 3 = {0}. For λ > 2, Pλ has the same labels with the following rules:
u · 0 = 0 · u = {u} for u ∈ {0, 3}, and 3 · 3 = {0, 3}.

Thus the algebra Pν(p0) (of cardinality λ in the general case) is representable as a composition
P0[Pλ], where 0 is the unique common label for P0 and Pλ with condition 0 · u = u · 0 = {u} for
any label u. If u �= 0 is a label in P0 and v is one in Pλ, then u · v = v · u = {u}.

We will place isomorphic structures N having transitive theories on every antichain A of the
structure Mλ, so as to satisfy Theorem 1.2 with condition Pν(p) = P for a given I-groupoid P

with nonnegative labels. The resulting structure is the composition M1[N]. By Proposition 2.2,
Th(M1[N]) is a transitive theory.

Consider an algebra P0[Pλ]. If we replace the algebra Pλ by P we obtain a composition P0[P].
This algebra coincides with an algebra Pν(q) of binary isolating formulas for a transitive theory
T = Th(M1[N]) with a unique 1-type q.

Thus the following holds:

THEOREM 3.1. For any I-groupoid P consisting of nonnegative labels, there exists a theory
T with a type p ∈ S(T ) and a regular labeling function ν(p) such that Pν(p) = P0[P].

Now we consider a modification of Theorems 1.4 and 3.1 by introducing an algebra P̂0 = Pν(q)

for a unique nonisolated 1-type q of the Ehrenfeucht example 〈Q;<, ck〉k∈ω, ck < ck+1, k ∈ ω. The
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algebra P̂0 has two labels, say, 0 and −1, with the following rules: (−1)·0 = 0·(−1) = (−1)·(−1) =
{−1}.

THEOREM 3.2. For every I-groupoid P consisting of nonnegative labels, there exists a theo-
ry T with a type p ∈ S(T ) and a regular labeling function ν(p) such that Pν(p) = P̂0[P].

Proof. We construct a structure M1[N] for which T = Th(M1[N]) has a type p(x) ∈ S(T )
and a regular labeling function ν(p) with Pν(p) = P̂0[P]. For this goal to be met, we consider the
Ehrenfeucht example 〈Q;<, ck〉k∈ω, ck < ck+1, k ∈ ω, and replace every element a by a <-antichain
consisting of λ elements, where λ is the cardinality of the universe of a structure N that realizes
an I-groupoid P. Moreover, we replace every constant ck by a unary predicate Rk consisting of
λ elements. As a result, we obtain a composition 〈Q;<〉[N] enriched with relations Rk, k ∈ ω,
(x < y), ¬(x < y) ∧ ¬(y < x). A unique nonprincipal 1-type p(x) is isolated by a set of formulas
∃y(Rk(y) ∧ (y < x)), k ∈ ω. For any realization a of the type p, a list of pairwise nonequivalent
isolating formulas ϕ(a, y) with ϕ(a, y) � p(y) is exhausted by a formula (a < y) and isolating
relations inside N. We will define a regular labeling function ν(p) so that the formula (a < y)
would have label −1 and formulas ϕ(a, y) for isolating relations inside N would have nonnegative
labels u: ϕ(a, y) = θu(a, y). Since < ◦ < = < and < ◦ θu = θu ◦ < = < for any label u, and
relations between elements of ρ≥0

ν(p) are defined by P, the algebra Pν(p) coincides with P̂0[P]. �

Example 3.3. Let N be a model of the theory of pure equality with λ ≥ 2 elements, and let
M = 〈Q, ;<, ck〉k∈ω be an Ehrenfeucht example, where ck < ck+1 and k ∈ ω. Then the algebra
Pν(p) for a unique 1-type p ∈ S1(∅) in Th(N) has two labels: 0 (x ≈ y) and 1 (¬(x ≈ y)), and
the algebra Pν(q) for a unique nonisolated 1-type q ∈ S1(∅) in Th(M) has the following labels: 0
(x ≈ y) and −1 (x < y).

If we replace every element in M by a copy of the structure N, then the algebra Pν(q′) for a
unique nonisolated 1-type q′ ∈ S1(∅) in their composition M[N] has three labels: 0 (x ≈ y), −1
(x < y), and 1 (x � y), where

x � y := ¬(x ≈ y) ∧ ¬(x < y) ∧ ¬(y < x).

The following rules are valid: 0 · 1 = 1 · 0 = {1}, 1 · 1 = {0} for λ = 2, 1 · 1 = {0, 1} for λ > 2,
and 1 · (−1) = (−1) · 1 = (−1) · (−1) = {−1}.

Now we consider compositions of a linearly ordered set M = 〈Z;≤〉 with structures N having
transitive theories, and given I-groupoids P. Obviously, every such composition M[N] is E-
definable, where an equivalence relation E connotes the ‘belonging to a common antichain.’ By
Proposition 2.2, Th(M1[N]) is a transitive theory. Note that the algebra PZ of binary isolating
formulas of Th(M) is generated by a monoid P′

Z
= 〈Z; +〉 under the assumption that all labels

for Z are nonnegative. Thus P′
Z

is used in constructing the algebra PZ[P], which is an algebra of
binary isolating formulas for Th(M[N]). Hence the following holds:

THEOREM 3.4. For any I-groupoid P consisting of nonnegative labels, there exists a theory
T with a type p ∈ S(T ) and a regular labeling function ν(p) such that Pν(p) = PZ[P].
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Example 3.5. Let N be an infinite model of the theory of pure equality, and let M = 〈Z, ;≤〉.
Then the algebra PZ for a unique 1-type q ∈ S1(∅) in Th(M) has a countable number of labels: 0
(x ≈ y), 1 (S1(x, y)), 2 (P1(x, y)), . . . , 2n − 1 (Sn(x, y)), 2n (Pn(x, y)), . . . , n ∈ ω, n ≥ 2, where

S1(x, y) := “y is an immediate successor of x,”

P1(x, y) := “y is an immediate predecessor of x,”

Sn(x, y) := x < y ∧ ∃t1, t2, . . . , tn−1

[
x < t1 < t2 < . . . < tn−1 < y

∧ S1(x, t1) ∧
n−2∧

i=1

S1(ti, ti+1) ∧ S1(tn−1, y)
]
, n ≥ 2,

Pn(x, y) := y < x ∧ ∃t1, t2, . . . , tn−1

[
y < t1 < t2 < . . . < tn−1 < x

∧ P1(y, t1) ∧
n−2∧

i=1

P1(ti, ti+1) ∧ P1(tn−1, x)
]
, n ≥ 2.

If every element of M is replaced by a copy of the structure N, then the algebra Pν(q′) for a unique
1-type q′ ∈ S1(∅) in their composition M[N] will also have countably many labels: all labels in
PZ, as well as one extra label for a formula x � y.

4. I-GROUPOIDS FOR CYCLIC PREORDERS

We will deal with some types of cyclic preorders Cλ, which are obtained from cyclic orders C

[24-28] by replacing elements on an antichain of fixed cardinality λ.

Definition 4.1. A cyclic order is a ternary relation K satisfying the following conditions:
(co1) ∀x∀y∀z(K(x, y, z) → K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧ K(y, x, z) ⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z) → ∀t[K(x, y, t) ∨ K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨ K(y, x, z)).
If M := 〈M,<, . . .〉 is a linearly ordered structure, and K is a ternary relation defined by a

relation ≤ via the rule

K(x, y, z) :⇔ (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x), (1)

then K is cyclic order relation on M , i.e., 〈M ;K〉 is a cyclically ordered structure. Note that there
exist cyclically ordered structures which are not linearly ordered.

Let A ⊆ M , where M is a cyclically ordered structure. A set A is said to be convex if, for any
a, b ∈ A, the following property holds: for every c ∈ M with condition K(a, c, b), it is true that
c ∈ A, or for every c ∈ M with K(b, c, a), we have c ∈ A. A structure M is said to be weakly
cyclically minimal if every definable (with parameters) subset M is a finite union of convex sets.
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Let M be a countably categorical weakly cyclically minimal structure, and let G := Aut(M).
Following standard group-theoretic terminology, we say that a group G is k-homogeneous, where
k ∈ ω, if for every two k-element sets A,B ⊆ M there exists g ∈ G for which g(A) = B. A group
G is strongly homogeneous if G is k-homogeneous for all k ∈ ω. A group G is k-transitive if for any
pairwise distinct a1, a2, . . . , ak ∈ M and any pairwise distinct b1, b2, . . . , bk ∈ M there is g ∈ G for
which g(a1) = b1, g(a2) = b2, . . . , g(ak) = bk. A congruence on M is any G-invariant equivalence
relation on M. A group G is said to be primitive if G is 1-transitive and there do not exist nontrivial
proper congruences on M.

If M is a countably categorical weakly cyclically minimal structure with a primitive automor-
phism group, then only the following options are available [24]:

(1) Aut(M) is 2-transitive;
(2) Aut(M) is 2-homogeneous but not 2-transitive;
(3) Aut(M) is primitive but not 2-homogeneous.
Consider a structure M := 〈Q, <〉. Obviously, M is a countably categorical o-minimal structure.

If we replace the linear order relation < with the ternary relation K defined by the relation ≤ via
rule (1) we obtain a structure Q

∗
1 := 〈Q,K〉 which is countably categorical weakly cyclically

minimal and has a 2-transitive group of automorphisms. The corresponding algebra PQ1 of binary
isolating formulas has two labels: 0 for a formula x ≈ y, and 1 for a formula ¬(x ≈ y), in which
case 0 · 0 = {0}, 1 · 0 = 0 · 1 = {1}, and 1 · 1 = {0, 1}.

Example 4.2 [29, 30]. Let n be a positive integer with n ≥ 2, let L = {σ0, . . . , σn−1}, where
σ0, . . . , σn−1 are binary predicate symbols, and let Q

∗
n be the structure 〈Qn,K,L〉 for which the

following conditions are satisfied:
(i) the universe Qn is a countable densely ordered subset of the unit circle, and no two points

form a central angle 2πk/n, where k runs over integers;
(ii) for different x, y ∈ Qn, (x, y) ∈ σi ⇔ 2πi/n < arg(x/y) < 2π(i + 1)/n, where arg(x/y)

stands for the magnitude of a central angle between x and y in the clockwise direction.
In [24], it was sown that Q

∗
n is a countably categorical weakly cyclically minimal structure with

a primitive automorphism group Aut(Q∗
n).

The structure Q
∗
2 is properly a countable homogeneous local order, or a cyclic tournament (see

[30, 31]).
Let M and N be cyclically ordered structures. A 2-reduct of the structure M is a cyclically

ordered structure having the universe of M and containing a predicate symbol for every ∅-definable
relation on M of arity at most 2 as well as a ternary predicate symbol K for a cyclic order, but not
containing other predicate symbols of higher arity. We say that M isomorphic to N up to binarity
if a 2-reduct of the structure M is isomorphic to the structure N.

By virtue of [24, Thm. 7.14], the structure Q
∗
2 describes (up to binarity) countably catego-

rical weakly cyclically minimal structures with a 2-homogeneous but not 2-transitive group of
automorphisms, provided that these structures are not linearly ordered. Notice that the correspon-
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ding algebra PQ2 of binary isolating formulas has three labels: 0 for x ≈ y, 1 for σ0(x, y), and 2 for
σ1(x, y), with the following rules: 0 · 0 = {0}, 1 · 0 = 0 · 1 = {1}, 2 · 0 = 0 · 2 = {2}, 1 · 1 = {1, 2},
2 · 2 = {1, 2}, and 1 · 2 = 2 · 1 = {0, 1, 2}.

In view of [24, Thm. 7.15], the structures Q
∗
n, n ≥ 3, describe (up to binarity) ℵ0-categorical

weakly cyclically minimal structures with a primitive but not 2-homogeneous automorphism group.
Notice that the corresponding algebra PQn of binary isolating formulas has n+1 labels: 0 for x ≈ y,
1 for σ0(x, y), 2 for σ1(x, y), . . . , and n for σn−1(x, y).

Thus the following holds:

THEOREM 4.3. For any natural n ≥ 1, there is a countably categorical weakly cyclically
minimal structure Qn with a primitive automorphism group, and the corresponding algebra PQn

of binary isolating formulas has exactly n + 1 labels.

THEOREM 4.4. The algebra PQn of binary isolating formulas possesses the following
multiplication rules:

(1) for any label k with 0 ≤ k ≤ n, we have 0 · k = k · 0 = {k};
(2) for any labels k1 and k2 with 1 ≤ k1, k2 ≤ n, the following conditions hold:
(2a) if k1 + k2 ≤ n, then k1 · k2 = k2 · k1 = {k1 + k2 − 1, k1 + k2};
(2b) if k1 + k2 − n = 1, then k1 · k2 = k2 · k1 = {0, 1, n};
(2c) if k1 + k2 − n = m for some m ≥ 2, then k1 · k2 = k2 · k1 = {m − 1,m}.
Proof. (1) Since ∃t[x = t ∧ t = y] ≡ x = y and ∃t[x = t ∧ σi(t, y)] ≡ σi(x, y) for 0 ≤ i ≤ n− 1,

it follows that 0 · k = k · 0 = {k} for any k with 0 ≤ k ≤ n.
(2) Take arbitrary labels k1 and k2 with 1 ≤ k1, k2 ≤ n. Then k1 is a label for σk1−1(x, y) and

k2 is one for σk2−1(x, y). We have

σk1−1(x, t) ⇔ 2π(k1 − 1)
n

< arg(x/t) <
2πk1

n
,

σk2−1(t, y) ⇔ 2π(k2 − 1)
n

< arg(t/y) <
2πk2

n
.

Consequently,
2π(k1 + k2 − 2)

n
< arg(x/y) <

2π(k1 + k2)
n

.

Case (2a). Let k1 + k2 ≤ n. Then one of the following relations holds:

2π(k1 + k2 − 2)
n

< arg(x/y) <
2π(k1 + k2 − 1)

n
,

2π(k1 + k2 − 1)
n

< arg(x/y) <
2π(k1 + k2)

n
,

whence k1 · k2 = k2 · k1 = {k1 + k2 − 1, k1 + k2}.
Case (2b) Let k1 + k2 − n = 1. Then

2π(k1 + k2 − 2)
n

=
2π(k1 + k2 − n − 2) + 2πn

n
= 2π − 2π

n
,

307



2π(k1 + k2)
n

=
2π(k1 + k2 − n) + 2πn

n
= 2π +

2π
n

.

If arg(x/t) = 2π− 2π
n and arg(t/y) = 2π+ 2π

n , then arg(x/y) = 4π, i.e., x may be equal to y. Hence
k1 · k2 = k2 · k1 = {0, 1, n}.

Case (2c) Let k1 + k2−n = m for some m ≥ 2. In virtue of k1 + k2 ≤ 2n, it is true that m ≤ n.
Then

2π(k1 + k2 − 2)
n

=
2π(k1 + k2 − n − 2) + 2πn

n
= 2π +

2π(m − 2)
n

,

2π(k1 + k2)
n

=
2π(k1 + k2 − n) + 2πn

n
= 2π +

2πm

n
.

Thus k1 · k2 = k2 · k1 = {m − 1,m}. �

Repeating the argument used for dense linear orders and applying it to an algebra Pdco of
binary isolating formulas on dense cyclic preorders, we validate the following:

THEOREM 4.5. For any I-groupoid P consisting of nonnegative labels, there exists a theory
T with a type p ∈ S(T ) and a regular labeling function ν(p) for which Pν(p) = Pdco[P].

Now we consider an infinite discrete cyclic order C which is obtained from a discrete order
on Z. If we replace elements of C by copies of a structure N with a transitive automorphism group
we obtain an E-definable composition C[N] with a transitive theory T = Th(C[N]). If Th(N) has
an algebra P of binary isolating formulas, then T has a unique type p ∈ S(T ) and a regular
labeling function ν(p) for which Pν(p) = PZ[P]. Thus compositions of discrete cyclic orders C with
structures N also confirm Theorem 3.4.

At the moment, we consider a natural finite cyclic order C on Zn, n ≥ 2, and replace elements
of C by copies of a structure N with a transitive automorpism group. As a result, we obtain an
E-definable composition C[N] with a transitive theory T = Th(C[N]). An algebra PZn of binary
isolating formulas for Th(C) is generated by a group Zn. The group Zn and the algebra P of
binary isolating formulas for Th(N) generate the composition PZn [P], which is an algebra of
binary isolating formulas for Th(C[N]). Thus the following holds:

THEOREM 4.6. For any I-groupoid P consisting of nonnegative labels and for an arbitrary
natural n ≥ 2, there exists a theory T with a type p ∈ S(T ) and a regular labeling function ν(p)
for which Pν(p) = PZn [P].

5. EXEMPLIFYING COMPOSITIONS OF FINITE STRUCTURES
AND COMPOSITIONS OF FINITE ALGEBRAS

OF BINARY FORMULAS

In this section, we illustrate with examples compositions of finite structures and compositions of
finite algebras of binary formulas. The compositions of finite structures are finite, so their algebras
of binary formulas are also finite.
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Example 5.1. Let M0 be a two-element graph consisting of a single edge. The theory T0 =
Th(M0) is transitive, and for a unique 1-type p0 ∈ S(T ), as well as for its algebra L = Pν(p0), we
have a unique nonzero label, say, 1, satisfying the following table:

· 0 1
0 {0} {1}
1 {1} {0}

A composition M0[M0] represents a 4-element complete graph K4, is not E-definable, but,
nevertheless, defines a transitive theory T1 with a unique 1-type p1 ∈ S(T ) and an algebra LL =
Pν(p1) having the following table:

· 0 1
0 {0} {1}
1 {1} {0, 1}

More generally, for any m-complete graph Km and for an n-element complete graph Kn of the
same signature, where m,n ≥ 2, Km[Kn] � Kmn and the theory Th(Km[Kn]) has an algebra LL

of binary isolating formulas.

Example 5.2. We modify Example 5.1, by treating the graphs Km and Kn so that edges
e1 ∈ Km and e2 ∈ Kn have different colors. For an algebra P of binary isolating formulas for
Th(Km[Kn]), we have several options.

(1) If m = n = 2, then the algebra P = L[L′], where L′ � L, has the following table:

· 0 1 2
0 {0} {1} {2}
1 {1} {0} {2}
2 {2} {2} {0, 1}

(2) If m = 2 and n > 2, then P = L[LL] has the following table:

· 0 1 2
0 {0} {1} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0, 1}

(3) If m > 2 and n = 2, then P = LL[L] has the following table:

· 0 1 2
0 {0} {1} {2}
1 {1} {0} {2}
2 {2} {2} {0, 1, 2}

(4) If m > 2 and n > 2, then P = LL[LL′], where LL′ � LL, has the following table:
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· 0 1 2
0 {0} {1} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0, 1, 2}

Example 5.3. Let Cm and Cn be undirected graphs forming cycles of length m ≥ 2 and n ≥ 2,
respectively. Every theory Th(Cm) has diameter dm =

[m

2

]
and contains an algebra Pdm of binary

isolating formulas with labels 0, 1, . . . , dm, and also with the following rules for labels u and v:
u · v = |u ± v|(mod dm) if either m is even, or m is odd and u + v ≤ m,
u · v = {(u + v − 1)(mod dm), |u − v|(mod dm)} if m is odd and u + v > m.
Having considered the graph Cm[Cn], we obtain a non-E-definable combination of diameter dm,

with every copy Cn being of diameter min{dn, 2}. For the theory Th(Cm[Cn]), its algebra Pdm,dn

of binary isolating formulas has labels 0, 1, . . . , dm and the following rule: for any labels u and v,
u · v consists of respective values for Th(Cm), and includes a label u, if v = 1 or v = 2, and a label
v if u = 1 or u = 2.

If Cm and Cn consist of edges of different colors, then Cm[Cn] is an E-definable combination,
while algebras P1 and P2 for theories T1 = Th(Cm) and T2 = Th(Cn), respectively, form an
algebra P1[P2] for T1[T2], in accordance with Theorem 2.12.
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