NEIGHBORHOODS AND ISOLATED POINTS IN SPACES OF FUNCTIONAL CLONES ON SETS

A. G. Pinus

UDC 512.56

Keywords: functional clone, topological space, neighborhood, isolated point.

In a previous paper, on a collection F_A of functional clones on a set A, we introduced a natural metric d turning it into a topological (metric) space $\mathfrak{F}_A = \langle F_A; d \rangle$. In this paper, we describe the structure of neighborhoods of clones in spaces \mathfrak{F}_A and establish a number of consequences of this result.

A collection F_A of functional clones on a set A is conventionally treated as a lattice $L_A = \langle F_A; \wedge, \vee \rangle$ with respect to a relation \subseteq on these clones. To date, significant information has been accumulated concerning such lattices, their cardinalities, atoms, coatoms, sublattices, intervals, unrefinable chains, unsolvability of lattice identities on them, etc. A review of basic results on functional clones and their lattices can be found in [1, 2].

In [3], we came up with another approach to studying a collection of functional clones on a set A. Namely, on F_A , we introduced a natural metric d turning it into a topological (metric) space $\mathfrak{F}_A = \langle F_A; d \rangle$ with respect to which the operations \wedge and \vee are continuous. In [3, 4], the following properties of spaces \mathfrak{F}_A were proved: (1) the spaces \mathfrak{F}_A are complete; (2) \mathfrak{F}_A is a compact space iff A is a finite set; (3) for any $B \subseteq A$, a space \mathfrak{F}_B is isomorphically embedded in a space \mathfrak{F}_A and is a topological retract of the space \mathfrak{F}_A ; (4) for any not more than three-element set A, there exists a sublattice L of L_A forming a perfect subset of the space F_A which is homeomorphic to the Cantor discontinuum.

In the present paper, we describe the structure of neighborhoods of clones in spaces \mathfrak{F}_A and establish a number of consequences of this result.

First we recall the definition of a metric d on a set F_A and some relevant notions.

Definition 1. For any natural n, by an *n*-fragment $\mathfrak{F}^{(n)}$ of a clone \mathfrak{F} we mean the collection of all functions in \mathfrak{F} depending on at most n arguments.

0002-5232/20/5903-0230 © 2020 Springer Science+Business Media, LLC

Novosibirsk State Technical University, Novosibirsk, Russia; ag.pinus@gmail.com. Translated from *Algebra i Logika*, Vol. 59, No. 3, pp. 334-343, May-June, 2020. Russian DOI: 10.33048/alglog.2020.59.304. Original article submitted November 13, 2018; accepted October 21, 2020.

Notice that $\mathfrak{F}^{(n)} \subseteq \mathfrak{F}^{(m)}$ for $n \leq m$ and $\mathfrak{F} = \bigcup_{n \in \omega} \mathfrak{F}^{(n)}$. For any $\mathfrak{F}_1, \mathfrak{F}_2 \in F_A$, put

$$d(\mathfrak{F}_1,\mathfrak{F}_2) = \begin{cases} \frac{1}{\min\{n \in \omega \mid \mathfrak{F}_1^{(n)} \neq \mathfrak{F}_2^{(n)}\}} & \text{if } \mathfrak{F}_1 \neq \mathfrak{F}_2, \\ 0 & \text{if } \mathfrak{F}_1 = \mathfrak{F}_2. \end{cases}$$

Furthermore, for any collection S of functions on a set A, by $\langle S \rangle$ we denote the functional clone on A generated by the collection S.

Definition 2. A clone \mathfrak{F} is said to be *boundedly generated* if $\mathfrak{F} = \langle \mathfrak{F}^{(n)} \rangle$ for some natural n.

The collection of all boundedly generated clones on A forms a sublattice L'_A of L_A having cardinality less than that of L_A but inheriting most of the properties of the lattice L_A (see [5]).

For any natural n, the $\frac{1}{n}$ -neighborhood $D_{\frac{1}{n}}(\mathfrak{F}) = \{\mathfrak{F}' \mid d(\mathfrak{F}',\mathfrak{F}) < \frac{1}{n}\}$ of a clone \mathfrak{F} has the form $\{\mathfrak{F}' \in F_A \mid \mathfrak{F}'^{(n)} = \mathfrak{F}^{(n)}\}$ and is, obviously, a convex sublattice of L_A with a least element— a boundedly generated clone $\mathfrak{F}_{\min}^n = \langle \mathfrak{F}^{(n)} \rangle$ —and a greatest element \mathfrak{F}_{\max}^n .

Definition 3. For any clone \mathfrak{F} on A and for arbitrary natural n < m, a function $g(x_1, \ldots, x_m)$ on A is said to be *n*-reducible to a fragment $\mathfrak{F}^{(n)}$ of the clone \mathfrak{F} ($g \in n$ -Red \mathfrak{F}) if, in identifying some variables from x_1, \ldots, x_m with at most n pairwise distinct variables in the function $g(x_1, \ldots, x_m)$, we will obtain functions in $\mathfrak{F}^{(n)}$.

Note that the above relation is transitive, i.e., if $g(x_1, \ldots, x_m)$ is *n*-reducible to $\mathfrak{F}^{(n)}$, and all functions in $\mathfrak{F}^{(n)}$ are *k*-reducible to a fragment $\mathfrak{F}_1^{(k)}$ of some clone \mathfrak{F}_1 (here k < n), then *g* is itself *k*-reducible to $\mathfrak{F}_1^{(k)}$.

Superposition of any functions *n*-reducible to a fragment $\mathfrak{F}^{(n)}$ on A is itself *n*-reducible, and each of the selector functions $e_i^m(x_1, \ldots, x_m) = x_i$ is *n*-reducible to $\mathfrak{F}^{(n)}$ for any clone \mathfrak{F} . Thus the collection *n*-Red \mathfrak{F} is a functional clone on A such that (n-Red $\mathfrak{F})^{(n)} = \mathfrak{F}^{(n)}$, while the clone *n*-Red \mathfrak{F} is a maximal clone with an *n*-fragment equal to $\mathfrak{F}^{(n)}$. In other words, *n*-Red $\mathfrak{F} = \mathfrak{F}_{\max}^n$.

We have n-Red $\mathfrak{F} = \bigcup_{m \ge n} (n$ -Red $\mathfrak{F})^{(m)}$. In order to construct n-Red \mathfrak{F} , therefore, we need only point out the chain of expansions

$$\mathfrak{F}^{(n)} = (n \operatorname{-Red} \mathfrak{F})^{(n)} \subseteq (n \operatorname{-Red} \mathfrak{F})^{(n+1)} \subseteq \ldots \subseteq (n \operatorname{-Red} \mathfrak{F})^{(m)} \subseteq (n \operatorname{-Red} \mathfrak{F})^{(m+1)} \subseteq \ldots,$$

and then take n-Red \mathfrak{F} to be their union.

Thus suppose that $m \ge n$ and that an *m*-fragment $(n\operatorname{-Red} \mathfrak{F})^{(m)}$ of the clone *n*-Red \mathfrak{F} has been constructed. Then $(n\operatorname{-Red} \mathfrak{F})^{m+1}$ is the collection of all (m+1)-ary functions *m*-reducible to the constructed fragment $(n\operatorname{-Red} \mathfrak{F})^{(m)}$.

(*) For any *i* and any *j* such that $1 \le i < j \le m+1$, we denote by $\Phi_{ij}(x_1, \ldots, x_{m+1})$ the formula $x_i = x_j$, and by $\Phi(x_1, \ldots, x_{m+1})$ the formula $\bigwedge_{\substack{1 \le i < j \le m+1 \\ n \le i \le m+1}} x_i \ne x_j$. As usual, for $1 \le j \le m+1$ and for a sequence a_1, \ldots, a_{m+1} , we write $a_1, \ldots, \hat{a_j}, \ldots, a_{m+1}$ to denote this sequence with an omitted element a_j .

Definition 4. A set consisting of *m*-ary functions $S_{ij}(x_1, \ldots, x_m)$ on A (for $1 \le i < j \le m+1$) is said to be *consistent* if, for any i, j, i_1, j_1 such that $1 \le i < j \le m+1$ and $1 \le i_1 < j_1 \le m+1$ and for arbitrary a_1, \ldots, a_{m+1} in A for which $a_i = a_j$ and $a_{i_1} = a_{j_1}$, the following equalities hold:

$$S_{ij}(a_1,\ldots,\widehat{a_j},\ldots,a_{m+1}) = S_{i_1j_1}(a_1,\ldots,\widehat{a_{j_1}},\ldots,a_{m+1})$$

Definition 5. An (m + 1)-ary function $g(x_1, \ldots, x_{m+1})$ on a set A is said to be $(n\text{-Red}\,\mathfrak{F})^{(m)}$ conservatively conditional if, for some consistent set of $(n\text{-Red}\,\mathfrak{F})^{(m)}$ -functions $S_{ij}(x_1, \ldots, x_m)$ (with $1 \leq i < j \leq m + 1$), the following holds: for any a_1, \ldots, a_{m+1} in A, if some of the formulas $\Phi_{ij}(a_1, \ldots, a_{m+1})$ is true, then

$$g(a_1, \ldots, a_{m+1}) = S_{ij}(a_1, \ldots, \widehat{a_j}, \ldots, a_{m+1}).$$

Thus every $(n\operatorname{-Red} \mathfrak{F})^{(m)}$ -conservatively conditional function $g(x_1, \ldots, x_{m+1})$ is uniquely defined by some (any) (m + 1)-ary function $h(x_1, \ldots, x_{m+1})$ on A, some (any) consistent set of functions $S_{ij}(x_1, \ldots, x_m)$ in $(n\operatorname{-Red} \mathfrak{F})^{(m)}$, and the following condition: for any a_1, \ldots, a_{m+1} in A, if $\Phi(a_1, \ldots, a_{m+1})$ holds, then $g(a_1, \ldots, a_{m+1}) = h(a_1, \ldots, a_{m+1})$, and the equality $g(a_1, \ldots, a_{m+1}) =$ $S_{ij}(a_1, \ldots, \widehat{a_j}, \ldots, a_{m+1})$ holds whenever some formula $\Phi_{ij}(a_1, \ldots, a_{m+1})$ is true.

Obviously, every $(n\operatorname{-Red} \mathfrak{F})^{(m)}$ -conservatively conditional function on A will be m-reducible to a fragment $(n\operatorname{-Red} \mathfrak{F})^{(m)}$, and it will be n-reducible to a fragment $(n\operatorname{-Red} \mathfrak{F})^{(n)}$ by the transitivity of an n-reduction relation and by the inductive assumption on $(n\operatorname{-Red} \mathfrak{F})^{(m)}$. The converse is also true: all (m+1)-ary functions m-reducible to $(n\operatorname{-Red} \mathfrak{F})^{(m)}$ on A will be $(n\operatorname{-Red} \mathfrak{F})^{(m)}$ -conservatively conditional. Thus we arrive at

THEOREM 1. For any clone \mathfrak{F} on a set A and any natural n, the $\frac{1}{n}$ -neighborhood of \mathfrak{F} in a space \mathfrak{F}_A is a convex sublattice of the lattice L_A of all clones on A with a least element—a boundedly generated clone $\mathfrak{F}_{\min}^n = \langle \mathfrak{F}^{(n)} \rangle$ —and a greatest element $\mathfrak{F}_{\max}^n = n$ -Red \mathfrak{F} , which is the union of the chain of m-fragments of clones $(m \ge n)$:

$$\mathfrak{F}^{(n)} \subseteq (n\operatorname{-Red}\mathfrak{F})^{(n+1)} \subseteq \ldots \subseteq (n\operatorname{-Red}\mathfrak{F})^{(m)} \subseteq (n\operatorname{-Red}\mathfrak{F})^{(m+1)} \subseteq \ldots,$$

where $(n-\operatorname{Red}\mathfrak{F})^{(m+1)}$ consists of all $(n-\operatorname{Red}\mathfrak{F})^{(m)}$ -conservatively conditional functions.

Notice that the same clone $\mathfrak{F}_{\max}^n = n$ -Red \mathfrak{F} of functions *n*-reducible to a fragment $\mathfrak{F}^{(n)}$ of a clone \mathfrak{F} can be defined, avoiding an inductive construction of fragments (n-Red $\mathfrak{F})^{(m)}$ for $m \ge n$, as follows. We fix a natural number *m* greater than or equal to *n*. Let $\{S_k^m \mid k \in K\}$ be the collection of all partitions of a set $\{1, \ldots, m\}$ into *n* nonempty disjoint subsets $S_k^m = \{S_{kj}^m \mid 1 \le j \le n\}$ for $k \in K$.

(**) By $\Phi_k^m(x_1, \ldots, x_m)$ we denote a condition (the conjunction of equalities between variables x_i for $1 \le i \le m$) of the form

$$\Phi_k^m(x_1,\ldots,x_m) = \bigwedge_{j=1}^n \left[\bigwedge_{i_1,i_2 \in S_{k_j}^m} x_{i_1} = x_{i_2} \right].$$

232

A collection $\{F_k(x_1, \ldots, x_n) \mid k \in K\}$ of *n*-ary function on a set *A* is said to be *n*-consistent if, for any $k_1, k_2 \in K$ and any a_1, \ldots, a_m in *A*, the fact that $\Phi_{k_1}(a_1, \ldots, a_m)$ and $\Phi_{k_2}(a_1, \ldots, a_m)$ are true on a tuple $\langle a_1, \ldots, a_m \rangle$ implies that $F_{k_1}(a_{i_1}, \ldots, a_{i_n}) = F_{k_2}(a_{i_1}, \ldots, a_{i_n})$, where $i_j \in S^m_{k_1j} \cap S^m_{k_2\pi(j)}$; here π is a permutation on $\{1, \ldots, n\}$.

Definition 6. A function $F(x_1, \ldots, x_m)$ on a set A is said to be $\mathfrak{F}^{(n)}$ -conservatively conditional if, for some *n*-consistent collection of functions F_k $(k \in K)$ from $\mathfrak{F}^{(n)}$ and some *m*-ary function $F'(x_1, \ldots, x_m)$, the following condition holds:

for all a_1, \ldots, a_m in A, the truth of a condition $\Phi_k^m(a_1, \ldots, a_m)$ on a tuple $\langle a_1, \ldots, a_m \rangle$ (where $k \in K$) implies that $F(a_1, \ldots, a_m) = F_k(a_{i_1}, \ldots, a_{i_n})$, where $i_j \in S_{kj}^m$, and if none of the conditions $\Phi_k^m(a_1, \ldots, a_m)$, where $k \in K$, holds on $\langle a_1, \ldots, a_m \rangle$, then $F(a_1, \ldots, a_m) = F'(a_1, \ldots, a_m)$.

Obviously, a collection of $\mathfrak{F}^{(n)}$ -conservatively conditional functions coincides with a clone $\mathfrak{F}_{\max}^n = n$ -Red \mathfrak{F} .

Below are some corollaries to Theorem 1. By the definition of $\mathfrak{F}^{(m)}$ -conservatively conditional functions for arbitrary $\mathfrak{F} \in F_A$ and $m \in \omega$, we have

COROLLARY 1. Let \mathfrak{F} be a clone on a set A and n a natural number. For any m-ary function $h(x_1, \ldots, x_m)$ on A, m > n, the clone \mathfrak{F}_{\max}^n contains some m-ary function whose values coincide with those of a function h on any tuple $\langle a_1, \ldots, a_m \rangle$ including at least (n + 1) pairwise distinct elements of A.

We also point out some properties of being isolated for points in a space \mathfrak{F}_A , i.e., clones \mathfrak{F} on A satisfying the equality $\mathfrak{F}_{\min}^n = \mathfrak{F}_{\max}^n$ for a natural number n.

COROLLARY 2. If a clone \mathfrak{F} is an isolated point in \mathfrak{F}_A , i.e., $D_{\frac{1}{n}}(\mathfrak{F}) = {\mathfrak{F}}$ for some n, then a boundedly generated clone $\langle \mathfrak{F}^{(n)} \rangle$ for some $n \in \omega$ satisfies the following condition: for every m > nand every *m*-ary function $h(x_1, \ldots, x_m)$ of a set A, the clone $\langle \mathfrak{F}^{(n)} \rangle$ contains an *m*-ary function whose values coincide with those of a function h on a tuple $\langle a_1, \ldots, a_m \rangle$ including at least (n + 1)pairwise distinct elements of A.

Denote by $T(\mathfrak{A})$ the clone of all termal functions of a universal algebra $\mathfrak{A} = \langle A; \sigma \rangle$. Notice that for any functional clone \mathfrak{F} on a set A, $\mathfrak{F} = T(\mathfrak{A}_{\mathfrak{F}})$, where $\mathfrak{A}_{\mathfrak{F}} = \langle A; \mathfrak{F} \rangle$ is a universal algebra with universe A and all functions in \mathfrak{F} as signature functions.

Denote by $CT(\mathfrak{A})$ the clone of all conditionally termal [6] functions of an algebra \mathfrak{A} . Recall that $CT(\mathfrak{A})$ contains all possible functions defined thus:

$$f(x_1, \dots, x_n) = \begin{cases} g_1(x_1, \dots, x_n) & \text{if } \Phi_1(x_1, \dots, x_n), \\ \dots \\ g_k(x_1, \dots, x_n) & \text{if } \Phi_k(x_1, \dots, x_n), \end{cases}$$

where $g_i(x_1, \ldots, x_n) \in T(\mathfrak{A})$ and $\Phi_i(x_1, \ldots, x_n)$ are quantifier-free elementary formulas of a signature σ , in which case $\bigvee_{i=1}^k \Phi_i(x_1, \ldots, x_n)$ is an identically true formula in σ , and for $1 \leq i \neq j \leq k$, $\Phi_i(x_1, \ldots, x_n) \wedge \Phi_j(x_1, \ldots, x_n)$ are unsatisfiable formulas.

Recall that a discriminator function $d_A(x, y, z)$ is defined on a set A as follows:

$$d_A(x, y, z) = \begin{cases} x & \text{if } x \neq y, \\ z & \text{if } x = y. \end{cases}$$

In this case, for any algebra $\mathfrak{A} = \langle A; \sigma \rangle$, we have $CT(\mathfrak{A}) = T(\mathfrak{A}_d)$, where $\mathfrak{A}_d = \langle A; \sigma, d_A \rangle$ is an enrichment of \mathfrak{A} obtained by adding d_A to its signature functions.

Now we consider the following version of the definition of $\mathfrak{F}^{(n)}$ -conservatively conditional functions for the case where $n \geq 3$ and $d_A \in \mathfrak{F}$. Let $m \geq n$ and $\{S_k^m \mid k \leq K\}$ be the collection of all partitions of a set $\{1, \ldots, m\}$ into n nonempty disjoint subsets $S_k^m = \{S_{k,j}^m \mid 1 \leq j \leq n\}$ for $k \leq K$.

(***) By $\psi_k^m(x_1, \ldots, x_m)$ for $1 \le k \le K$ we denote a condition (the conjunction of equalities and inequalities between variables x_i for $1 \le i \le m$) of the form

$$\psi_k^m(x_1,\ldots,x_m) = \bigwedge_{j=1}^n \left[\bigwedge_{i_1,i_2 \in S_{k,j}^m} x_{i_1} = x_{i_2}\right] \wedge \bigwedge_{j_1 \neq j_2 \le n} \left[\bigwedge_{l_1 \in S_{kj_1}^m, l_2 \in S_{kj_2}^m} x_{l_1} \neq x_{l_2}\right]$$

Note that for any clone \mathfrak{F} on a set A and any n, every $\mathfrak{F}^{(n)}$ -conservatively conditional function $F(x_1, \ldots, x_m)$ for $m \ge n$ can be defined by some set of functions $G_k(x_1, \ldots, x_n)$, where $k \le K$, in $\mathfrak{F}^{(n)}$ and some (any) function $F'(x_1, \ldots, x_m)$ on A as the following conditionally termal function of an algebra $\mathfrak{A}' = \langle A; \mathfrak{F}^{(n)}, F'(x_1, \ldots, x_m) \rangle$:

$$F(x_1,\ldots,x_m) = \begin{cases} G_1(x_{i_1}^1,\ldots,x_{i_n}^1) & \text{if } \psi_1(x_1,\ldots,x_m), \\ \dots \\ G_k(x_{i_1}^k,\ldots,x_{i_n}^k) & \text{if } \psi_k(x_1,\ldots,x_m), \\ \dots \\ G_K(x_{i_1}^K,\ldots,x_{i_n}^K) & \text{if } \psi_K(x_1,\ldots,x_m), \\ F'(x_1,\ldots,x_m) & \text{if the number of pairwise not equal values of variables } x_1,\ldots,x_m \\ & \text{is greater than } n. \end{cases}$$

Here $k \leq K$ and $x_{i_1}^k, \ldots, x_{i_n}^k$ are representatives of variables in the set $\{x_1, \ldots, x_m\}$ such that i_1, \ldots, i_n occur in pairwise distinct sets in the partition S_k^m . Now it is no longer necessary to take care of the consistency of a set of functions G_k due to choosing conditions ψ_k disjunctive.

Thus the function $F(x_1, \ldots, x_m)$ occurs in the clone $\langle \mathfrak{F}^{(n)} \cup \{F', d_A\} \rangle$. This, together with Theorem 1, implies the following sufficient conditions for a clone \mathfrak{F} to be an isolated point in a space \mathfrak{F}_A .

COROLLARY 3. Suppose that a clone \mathfrak{F} includes a discriminator function, and for any $m > n \ge 3$ and any *m*-ary function $h(x_1, \ldots, x_m)$ on a set *A*, the clone $\langle \mathfrak{F}^{(n)} \rangle$ contains an *m*-ary

function $h'(x_1, \ldots, x_m)$ whose values on any tuple $\langle a_1, \ldots, a_m \rangle$ of elements in A including at least n + 1 pairwise distinct elements coincide with those of a function h on a same tuple. Then the clone \mathfrak{F} is an isolated point in the space \mathfrak{F}_A .

A functional clone on a set A is called a *discriminator* clone if it contains a function d_A .

THEOREM 2. For any set A and any discriminator clone \mathfrak{F} on A, every neighborhood of a point \mathfrak{F} in a space \mathfrak{F}_A contains an isolated point of this space.

Proof. Let \mathfrak{F} be a discriminator clone on a set A. It suffices to show that every $\frac{1}{n}$ -neighborhood of \mathfrak{F} for $n \geq 3$ includes a clone \mathfrak{F}' satisfying the conditions of Corollary 3, i.e., for any function $h(x_1, \ldots, x_m)$ on $A, m \geq n$, the clone \mathfrak{F}' includes a function $h'(x_1, \ldots, x_m)$ whose values coincide with those of a function h on any tuple of elements of A containing at least n+1 pairwise distinct elements.

There are two cases to consider: (1) A is finite and (2) A is infinite.

(1) As is well known [7], a binary Webb function $v(x_1, x_2) = \max(x_1, x_2) + 1 \pmod{l}$, if $A = \{0, \ldots, l-1\}$, forms a complete system of functions on A. If the clone \mathfrak{F}'' on A is generated by the function

$$g_v(x_1, \dots, x_{n+1}, y_1, y_2) = \begin{cases} y_1 & \text{if not all values of variables} \\ x_1, \dots, x_{n+1} & \text{are pairwise distinct,} \\ v(y_1, y_2) & \text{otherwise,} \end{cases}$$

then for any function $h(x_1, \ldots, x_m)$, $m \ge n+1$, on A there is a function $h'(x_1, \ldots, x_m)$ in \mathfrak{F}'' whose values coincide with those of a function h on any tuple of elements in A including at least n+1 pairwise distinct elements. By virtue of Corollary 3, the clone $\mathfrak{F}' = \langle \mathfrak{F}^{(n)} \cup \{g_v\} \rangle$ is isolated and $\mathfrak{F}'^{(n)} = \mathfrak{F}^{(n)}$; i.e., \mathfrak{F}' occurs in the $\frac{1}{n}$ -neighborhood of \mathfrak{F} , while its $\frac{1}{n+3}$ -neighborhood consists of a single point— \mathfrak{F}' .

(2) Let $c(x_1, x_2)$ be a one-to-one mapping of A^2 to A and let R be the collection of all unary functions on A. Then the collection $R \cup \{c\}$ is a complete system of functions on A.

Let a clone \mathfrak{F}'' be generated by functions g_c and g_v , $r \in \mathbb{R}$, where

$$g_c(x_1, \dots, x_{n+1}, y_1, y_2) = \begin{cases} y_1 & \text{if not all values of variables} \\ x_1, \dots, x_{n+1} \text{ are pairwise distinct}, \\ c(y_1, y_2) & \text{otherwise}; \end{cases}$$
$$g_r(x_1, \dots, x_{n+1}, y_1) = \begin{cases} y_1 & \text{if not all values of variables} \\ x_1, \dots, x_{n+1} \text{ are pairwise distinct}, \\ r(y_1) & \text{otherwise}. \end{cases}$$

Then for any function $h(x_1, \ldots, x_m)$, $m \ge n+1$, on A there is a function $h'(x_1, \ldots, x_m)$ in \mathfrak{F}'' whose values coincide with those of a function h on any tuple of elements in A including at least n+1 pairwise distinct elements. In view of Corollary 3, the clone $\mathfrak{F}' = \langle \mathfrak{F}^{(n)} \cup \{g_c, g_r \mid r \in R\} \rangle$ is an isolated point of the space \mathfrak{F}_A , with $\mathfrak{F}'^{(n)} = \mathfrak{F}^{(n)}$; i.e., \mathfrak{F}' occurs in the $\frac{1}{n}$ -neighborhood of a clone \mathfrak{F}' consists of a single point— \mathfrak{F}' . The theorem is proved.

Thus, for any set A, a collection of isolated points of a space \mathfrak{F}_A is everywhere dense in a set of discriminator points of the space.

Of interest is the question whether a collection of isolated points of a space \mathfrak{F}_A is everywhere dense in the space for any sets A. The answer is 'yes' for at least a two-element set A: in this case a countable space \mathfrak{F}_A has only eight limit points.

REFERENCES

- Á. Szendrei, Clones in Universal Algebra, Sémin. Math. Supér., Vol. 99, Les Presses de l'Université de Montreal (1986).
- 2. A. I. Mal'tsev and I. A. Mal'tsev, Iterative Post Algebras [in Russian], Nauka, Moscow (2012).
- A. G. Pinus, "Dimension of functional clones, metric on its collection," Sib. El. Mat. Izv., 13, 366-374 (2016); http://semr.math.nsc.ru/v13/p366-374.pdf.
- A. G. Pinus, "Spaces of of functional clones on sets," in Proc. Int. Alg. Conf. Dedicated to the 110th Anniversary of A. G. Kurosh, MGU, Moscow (2018), pp. 258/259.
- 5. A. G. Pinus, "Fragments of functional clones," Algebra and Logic, 56, No. 4, 318-323 (2017).
- A. G. Pinus, "Conditional terms and their applications in algebra and computation theory," Usp. Mat. Nauk, 56, No. 4, 35-72 (2001).
- 7. S. V. Yablonskii, Introduction to Discrete Mathematics [in Russian], Nauka, Moscow (1979).