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In a previous paper, on a collection FA of functional clones on a set A, we introduced
a natural metric d turning it into a topological (metric) space FA = 〈FA; d〉. In this
paper, we describe the structure of neighborhoods of clones in spaces FA and establish
a number of consequences of this result.

A collection FA of functional clones on a set A is conventionally treated as a lattice LA =
〈FA;∧,∨〉 with respect to a relation ⊆ on these clones. To date, significant information has been
accumulated concerning such lattices, their cardinalities, atoms, coatoms, sublattices, intervals,
unrefinable chains, unsolvability of lattice identities on them, etc. A review of basic results on
functional clones and their lattices can be found in [1, 2].

In [3], we came up with another approach to studying a collection of functional clones on a
set A. Namely, on FA, we introduced a natural metric d turning it into a topological (metric) space
FA = 〈FA; d〉 with respect to which the operations ∧ and ∨ are continuous. In [3, 4], the following
properties of spaces FA were proved: (1) the spaces FA are complete; (2) FA is a compact space iff
A is a finite set; (3) for any B ⊆ A, a space FB is isomorphically embedded in a space FA and is a
topological retract of the space FA; (4) for any not more than three-element set A, there exists a
sublattice L of LA forming a perfect subset of the space FA which is homeomorphic to the Cantor
discontinuum.

In the present paper, we describe the structure of neighborhoods of clones in spaces FA and
establish a number of consequences of this result.

First we recall the definition of a metric d on a set FA and some relevant notions.

Definition 1. For any natural n, by an n-fragment F(n) of a clone F we mean the collection of
all functions in F depending on at most n arguments.
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Notice that F(n) ⊆ F(m) for n ≤ m and F =
⋃

n∈ω
F(n). For any F1,F2 ∈ FA, put

d(F1,F2) =

⎧

⎪

⎨

⎪

⎩

1

min{n ∈ ω | F
(n)
1 �= F

(n)
2 }

if F1 �= F2,

0 if F1 = F2.

Furthermore, for any collection S of functions on a set A, by 〈S〉 we denote the functional clone
on A generated by the collection S.

Definition 2. A clone F is said to be boundedly generated if F = 〈F(n)〉 for some natural n.
The collection of all boundedly generated clones on A forms a sublattice L′

A of LA having
cardinality less than that of LA but inheriting most of the properties of the lattice LA (see [5]).

For any natural n, the 1
n -neighborhood D 1

n
(F) = {F′ | d(F′,F) < 1

n} of a clone F has the

form {F′ ∈ FA | F′(n) = F(n)} and is, obviously, a convex sublattice of LA with a least element—
a boundedly generated clone Fn

min = 〈F(n)〉—and a greatest element Fn
max.

Definition 3. For any clone F on A and for arbitrary natural n < m, a function g(x1, . . . , xm)
on A is said to be n-reducible to a fragment F(n) of the clone F (g ∈ n-RedF) if, in identifying some
variables from x1, . . . , xm with at most n pairwise distinct variables in the function g(x1, . . . , xm),
we will obtain functions in F(n).

Note that the above relation is transitive, i.e., if g(x1, . . . , xm) is n-reducible to F(n), and all
functions in F(n) are k-reducible to a fragment F

(k)
1 of some clone F1 (here k < n), then g is itself

k-reducible to F
(k)
1 .

Superposition of any functions n-reducible to a fragment F(n) on A is itself n-reducible, and
each of the selector functions em

i (x1, . . . , xm) = xi is n-reducible to F(n) for any clone F. Thus
the collection n-Red F is a functional clone on A such that (n-Red F)(n) = F(n), while the clone
n-RedF is a maximal clone with an n-fragment equal to F(n). In other words, n-Red F = Fn

max.
We have n-Red F =

⋃

m≥n
(n-Red F)(m). In order to construct n-Red F, therefore, we need only

point out the chain of expansions

F(n) = (n-Red F)(n) ⊆ (n-Red F)(n+1) ⊆ . . . ⊆ (n-Red F)(m) ⊆ (n-Red F)(m+1) ⊆ . . . ,

and then take n-Red F to be their union.
Thus suppose that m ≥ n and that an m-fragment (n-Red F)(m) of the clone n-Red F has been

constructed. Then (n-Red F)m+1 is the collection of all (m + 1)-ary functions m-reducible to the
constructed fragment (n-Red F)(m).

(∗) For any i and any j such that 1 ≤ i < j ≤ m+1, we denote by Φij(x1, . . . , xm+1) the formula
xi = xj, and by Φ(x1, . . . , xm+1) the formula

∧

1≤i<j≤m+1
xi �= xj. As usual, for 1 ≤ j ≤ m + 1 and

for a sequence a1, . . . , am+1, we write a1, . . . , âj , . . . , am+1 to denote this sequence with an omitted
element aj.
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Definition 4. A set consisting of m-ary functions Sij(x1, . . . , xm) on A (for 1 ≤ i < j ≤ m+1)
is said to be consistent if, for any i, j, i1, j1 such that 1 ≤ i < j ≤ m + 1 and 1 ≤ i1 < j1 ≤ m + 1
and for arbitrary a1, . . . , am+1 in A for which ai = aj and ai1 = aj1 , the following equalities hold:

Sij(a1, . . . , âj, . . . , am+1) = Si1j1(a1, . . . , âj1 , . . . , am+1).

Definition 5. An (m + 1)-ary function g(x1, . . . , xm+1) on a set A is said to be (n-Red F)(m)-
conservatively conditional if, for some consistent set of (n-Red F)(m)-functions Sij(x1, . . . , xm) (with
1 ≤ i < j ≤ m + 1), the following holds: for any a1, . . . , am+1 in A, if some of the formulas
Φij(a1, . . . , am+1) is true, then

g(a1, . . . , am+1) = Sij(a1, . . . , âj , . . . , am+1).

Thus every (n-Red F)(m)-conservatively conditional function g(x1, . . . , xm+1) is uniquely defined
by some (any) (m + 1)-ary function h(x1, . . . , xm+1) on A, some (any) consistent set of functions
Sij(x1, . . . , xm) in (n-Red F)(m), and the following condition: for any a1, . . . , am+1 in A, if
Φ(a1, . . . , am+1) holds, then g(a1, . . . , am+1) = h(a1, . . . , am+1), and the equality g(a1, . . . , am+1) =
Sij(a1, . . . , âj , . . . , am+1) holds whenever some formula Φij(a1, . . . , am+1) is true.

Obviously, every (n-Red F)(m)-conservatively conditional function on A will be m-reducible to
a fragment (n-Red F)(m), and it will be n-reducible to a fragment (n-Red F)(n) by the transitivity
of an n-reduction relation and by the inductive assumption on (n-Red F)(m). The converse is also
true: all (m+1)-ary functions m-reducible to (n-Red F)(m) on A will be (n-Red F)(m)-conservatively
conditional. Thus we arrive at

THEOREM 1. For any clone F on a set A and any natural n, the 1
n -neighborhood of F in

a space FA is a convex sublattice of the lattice LA of all clones on A with a least element—a
boundedly generated clone Fn

min = 〈F(n)〉—and a greatest element Fn
max = n-Red F, which is the

union of the chain of m-fragments of clones (m ≥ n):

F(n) ⊆ (n-Red F)(n+1) ⊆ . . . ⊆ (n-Red F)(m) ⊆ (n-Red F)(m+1) ⊆ . . . ,

where (n-Red F)(m+1) consists of all (n-Red F)(m)-conservatively conditional functions.
Notice that the same clone Fn

max = n-Red F of functions n-reducible to a fragment F(n) of a
clone F can be defined, avoiding an inductive construction of fragments (n-Red F)(m) for m ≥ n, as
follows. We fix a natural number m greater than or equal to n. Let {Sm

k | k ∈ K} be the collection
of all partitions of a set {1, . . . ,m} into n nonempty disjoint subsets Sm

k = {Sm
kj | 1 ≤ j ≤ n} for

k ∈ K.

(∗∗) By Φm
k (x1, . . . , xm) we denote a condition (the conjunction of equalities between variables

xi for 1 ≤ i ≤ m) of the form

Φm
k (x1, . . . , xm) =

n
∧

j=1

⎡

⎣

∧

i1,i2∈Sm
kj

xi1 = xi2

⎤

⎦ .
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A collection {Fk(x1, . . . , xn) | k ∈ K} of n-ary function on a set A is said to be n-consistent if, for
any k1, k2 ∈ K and any a1, . . . , am in A, the fact that Φk1(a1, . . . , am) and Φk2(a1, . . . , am) are true
on a tuple 〈a1, . . . , am〉 implies that Fk1(ai1 , . . . , ain) = Fk2(ai1 , . . . , ain), where ij ∈ Sm

k1j

⋂

Sm
k2π(j);

here π is a permutation on {1, . . . , n}.
Definition 6. A function F (x1, . . . , xm) on a set A is said to be F(n)-conservatively conditional

if, for some n-consistent collection of functions Fk (k ∈ K) from F(n) and some m-ary function
F ′(x1, . . . , xm), the following condition holds:

for all a1, . . . , am in A, the truth of a condition Φm
k (a1, . . . , am) on a tuple 〈a1, . . . , am〉 (where

k ∈ K) implies that F (a1, . . . , am) = Fk(ai1 , . . . , ain), where ij ∈ Sm
kj, and if none of the conditions

Φm
k (a1, . . . , am), where k ∈ K, holds on 〈a1, . . . , am〉, then F (a1, . . . , am) = F ′(a1, . . . , am).

Obviously, a collection of F(n)-conservatively conditional functions coincides with a clone
Fn

max = n-Red F.
Below are some corollaries to Theorem 1. By the definition of F(m)-conservatively conditional

functions for arbitrary F ∈ FA and m ∈ ω, we have

COROLLARY 1. Let F be a clone on a set A and n a natural number. For any m-ary function
h(x1, . . . , xm) on A, m > n, the clone Fn

max contains some m-ary function whose values coincide
with those of a function h on any tuple 〈a1, . . . , am〉 including at least (n + 1) pairwise distinct
elements of A.

We also point out some properties of being isolated for points in a space FA, i.e., clones F on
A satisfying the equality Fn

min = Fn
max for a natural number n.

COROLLARY 2. If a clone F is an isolated point in FA, i.e., D 1
n
(F) = {F} for some n, then a

boundedly generated clone 〈F(n)〉 for some n ∈ ω satisfies the following condition: for every m > n

and every m-ary function h(x1, . . . , xm) of a set A, the clone 〈F(n)〉 contains an m-ary function
whose values coincide with those of a function h on a tuple 〈a1, . . . , am〉 including at least (n + 1)
pairwise distinct elements of A.

Denote by T (A) the clone of all termal functions of a universal algebra A = 〈A;σ〉. Notice that
for any functional clone F on a set A, F = T (AF), where AF = 〈A;F〉 is a universal algebra with
universe A and all functions in F as signature functions.

Denote by CT (A) the clone of all conditionally termal [6] functions of an algebra A. Recall that
CT (A) contains all possible functions defined thus:

f(x1, . . . , xn) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g1(x1, . . . , xn) if Φ1(x1, . . . , xn),

. . .

gk(x1, . . . , xn) if Φk(x1, . . . , xn),

where gi(x1, . . . , xn) ∈ T (A) and Φi(x1, . . . , xn) are quantifier-free elementary formulas of a

signature σ, in which case
k
∨

i=1
Φi(x1, . . . , xn) is an identically true formula in σ, and for 1 ≤

i �= j ≤ k, Φi(x1, . . . , xn) ∧ Φj(x1, . . . , xn) are unsatisfiable formulas.
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Recall that a discriminator function dA(x, y, z) is defined on a set A as follows:

dA(x, y, z) =

⎧

⎨

⎩

x if x �= y,

z if x = y.

In this case, for any algebra A = 〈A;σ〉, we have CT (A) = T (Ad), where Ad = 〈A;σ, dA〉 is an
enrichment of A obtained by adding dA to its signature functions.

Now we consider the following version of the definition of F(n)-conservatively conditional
functions for the case where n ≥ 3 and dA ∈ F. Let m ≥ n and {Sm

k | k ≤ K} be the collection
of all partitions of a set {1, . . . ,m} into n nonempty disjoint subsets Sm

k = {Sm
k,j | 1 ≤ j ≤ n} for

k ≤ K.

(∗∗∗) By ψm
k (x1, . . . , xm) for 1 ≤ k ≤ K we denote a condition (the conjunction of equalities

and inequalities between variables xi for 1 ≤ i ≤ m) of the form

ψm
k (x1, . . . , xm) =

n
∧

j=1

⎡

⎣

∧

i1,i2∈Sm
k,j

xi1 = xi2

⎤

⎦ ∧
∧

j1 	=j2≤n

⎡

⎢

⎣

∧

l1∈Sm
kj1

,l2∈Sm
kj2

xl1 �= xl2

⎤

⎥

⎦ .

Note that for any clone F on a set A and any n, every F(n)-conservatively conditional function
F (x1, . . . , xm) for m ≥ n can be defined by some set of functions Gk(x1, . . . , xn), where k ≤ K, in
F(n) and some (any) function F ′(x1, . . . , xm) on A as the following conditionally termal function
of an algebra A′ = 〈A;F(n), F ′(x1, . . . , xm)〉:

F (x1, . . . , xm) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

G1(x1
i1

, . . . , x1
in

) if ψ1(x1, . . . , xm),

. . .

Gk(xk
i1

, . . . , xk
in

) if ψk(x1, . . . , xm),

. . .

GK(xK
i1

, . . . , xK
in) if ψK(x1, . . . , xm),

F ′(x1, . . . , xm) if the number of pairwise not equal
values of variables x1, . . . , xm

is greater than n.

Here k ≤ K and xk
i1

, . . . , xk
in

are representatives of variables in the set {x1, . . . , xm} such that
i1, . . . , in occur in pairwise distinct sets in the partition Sm

k . Now it is no longer necessary to take
care of the consistency of a set of functions Gk due to choosing conditions ψk disjunctive.

Thus the function F (x1, . . . , xm) occurs in the clone 〈F(n) ∪ {F ′, dA}〉. This, together with
Theorem 1, implies the following sufficient conditions for a clone F to be an isolated point in a
space FA.

COROLLARY 3. Suppose that a clone F includes a discriminator function, and for any
m > n ≥ 3 and any m-ary function h(x1, . . . , xm) on a set A, the clone 〈F(n)〉 contains an m-ary
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function h′(x1, . . . , xm) whose values on any tuple 〈a1, . . . , am〉 of elements in A including at least
n + 1 pairwise distinct elements coincide with those of a function h on a same tuple. Then the
clone F is an isolated point in the space FA.

A functional clone on a set A is called a discriminator clone if it contains a function dA.

THEOREM 2. For any set A and any discriminator clone F on A, every neighborhood of a
point F in a space FA contains an isolated point of this space.

Proof. Let F be a discriminator clone on a set A. It suffices to show that every 1
n -neighborhood

of F for n ≥ 3 includes a clone F′ satisfying the conditions of Corollary 3, i.e., for any function
h(x1, . . . , xm) on A, m ≥ n, the clone F′ includes a function h′(x1, . . . , xm) whose values coincide
with those of a function h on any tuple of elements of A containing at least n + 1 pairwise distinct
elements.

There are two cases to consider: (1) A is finite and (2) A is infinite.
(1) As is well known [7], a binary Webb function v(x1, x2) = max(x1, x2) + 1 (mod l), if

A = {0, . . . , l − 1}, forms a complete system of functions on A. If the clone F′′ on A is generated
by the function

gv(x1, . . . , xn+1, y1, y2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y1 if not all values of variables
x1, . . . , xn+1 are pairwise distinct,

v(y1, y2) otherwise,

then for any function h(x1, . . . , xm), m ≥ n+1, on A there is a function h′(x1, . . . , xm) in F′′ whose
values coincide with those of a function h on any tuple of elements in A including at least n + 1
pairwise distinct elements. By virtue of Corollary 3, the clone F′ = 〈F(n) ∪ {gv}〉 is isolated and
F′(n) = F(n); i.e., F′ occurs in the 1

n -neighborhood of F, while its 1
n+3 -neighborhood consists of a

single point—F′.
(2) Let c(x1, x2) be a one-to-one mapping of A2 to A and let R be the collection of all unary

functions on A. Then the collection R ∪ {c} is a complete system of functions on A.
Let a clone F′′ be generated by functions gc and gv , r ∈ R, where

gc(x1, . . . , xn+1, y1, y2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y1 if not all values of variables
x1, . . . , xn+1 are pairwise distinct,

c(y1, y2) otherwise;

gr(x1, . . . , xn+1, y1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y1 if not all values of variables
x1, . . . , xn+1 are pairwise distinct,

r(y1) otherwise.

Then for any function h(x1, . . . , xm), m ≥ n + 1, on A there is a function h′(x1, . . . , xm) in F′′

whose values coincide with those of a function h on any tuple of elements in A including at least
n + 1 pairwise distinct elements. In view of Corollary 3, the clone F′ = 〈F(n) ∪ {gc, gr | r ∈ R}〉 is
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an isolated point of the space FA, with F′(n) = F(n); i.e., F′ occurs in the 1
n -neighborhood of a clone

F, while the 1
n+3-neighborhood of a clone F′ consists of a single point—F′. The theorem is proved.

Thus, for any set A, a collection of isolated points of a space FA is everywhere dense in a set
of discriminator points of the space.

Of interest is the question whether a collection of isolated points of a space FA is everywhere
dense in the space for any sets A. The answer is ‘yes’ for at least a two-element set A: in this case
a countable space FA has only eight limit points.
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