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Maximal solvable subgroups of odd index in symmetric groups are classified up to
conjugation.

INTRODUCTION

We study maximal solvable subgroups of odd index in symmetric groups. Interest in solvable
subgroups of symmetric groups has its origins in group theory, Galois theory, and issues in
solvability of algebraic equations in radicals (see Galois’ Memoir [1], Jordan’s Commentary [2]
and especially his Treatise on substitutions [3]). In the frames of the approach adopted in group
theory, it is natural to attempt to find maximal solvable subgroups. In dealing with the general
case, in turn, we usually succeed in reducing it to one where a group is primitive.

Every primitive maximal solvable subgroup of the symmetric group Symn should be contained
in an affine group. That is, every such subgroup must be an extension of a regular elementary
Abelian group, whose order pα coincides with the degree n of the symmetric group, by a maximal
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solvable subgroup of the group GLα p . Much progress in the study of such subgroups has been
made due to Suprunenko’s theorem on primitive solvable subgroups of linear groups [4, Chap. 5].
Unfortunately, even that theorem does not make it possible to classify maximal solvable subgroups
of symmetric groups up to conjugation. In the literature, therefore, more narrow classes of maximal
solvable subgroups of symmetric groups are examined.

Thus, Mann in [5] showed that all solvable subgroups of greatest order are conjugate in Symn,
and studied their properties. Maximal subgroups of odd index in simple and almost simple (in
particular, in symmetric) groups have been described by Kantor [6], Liebeck and Saxl [7], and
Maslova [8-12]. Therefore, it seems natural to concentrate efforts on examining maximal solvable
subgroups of odd index. Such subgroups exist since a Sylow 2-subgroup is solvable, has odd index,
and is always contained in some (and, up to conjugation, in any) maximal solvable subgroup of
odd index.

In [13, 14], we came up with the classification program—which goes back to Wielandt’s report
[14]—, for so-called submaximal X-subgroups of odd index in finite simple groups for any complete
(i.e., closed under taking subgroups, homomorphic images, and extensions) class X of finite groups
containing a group of even order. (The implementation of that program would allow us to find
maximal X-subgroups of odd index in an arbitrary finite group.) An important particular case of
such a complete class is the class of solvable groups, and, as follows from [13, Prop. 7], finding
submaximal solvable subgroups of odd index in alternating groups requires a knowledge of all
maximal solvable subgroups of odd index in symmetric groups. Aschbacher in [16] noted that
every maximal solvable subgroup H in Symn, whose index Symn : H is odd, should be a 2, 3 -
group. The objective of the present paper is to propose a relatively simple arithmetic-combinatorial
parametrization of conjugacy classes of such subgroups H.

We parametrize maximal solvable subgroups of odd index in Symn by so-called admissible
diagrams associated with a number n.

Let sequences akak 1 . . . a0 and bkbk 1 . . . b0 be given in which every element is equal to 0, 1, or
3. We say that the sequence bkbk 1 . . . b0 is obtained from akak 1 . . . a0 by elementary replacement
if there exists a number i 1 such that ai ai 1 1, bi 0, bi 1 3, and aj bj for j i, i 1 .
In other words, an elementary replacement is the replacement of two consecutive 1’s in the sequence
with 0 and 3. If bkbk 1 . . . b0 is obtained from akak 1 . . . a0 by elementary replacement, then, in
view of 2i 1 2i 3 2i,

k

i 0

ai 2i
k

i 0

bi 2i.

We define an extended binary representation of a natural number n. First, consider the binary
decomposition

n akak 1 . . . a0

i 0

ai 2i, where ai 0, 1 , ai 0 for i k, and ak 1.

Clearly, k log2 n .
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An extended (binary) representation of a number n is the decomposition

n bkbk 1 . . . b0

i 0

bi 2i (1)

such that bi 0, 1, 3 , bi 0 for i k, and the representation bkbk 1 . . . b0 is obtained from
akak 1 . . . a0 by a series of elementary replacements. Note that a given number has only finitely
many extended binary representations, and finding them is a simple matter. For instance, the
number n 22 24 22 21 has exactly two extended binary representations: 10110 and 10030.

With each extended representation bkbk 1 . . . b0 of n we associate a template of a diagram using
the following rule. The template consists of k 1 rows, where k log2 n , and the numbering starts
from 0, from the bottom upward. The length of an ith row equals i (the zero row is empty). All rows
are left-aligned. To the right of the ith row we put the digit bi from the extended representation
bkbk 1 . . . b0.

Diagrams corresponding to the extended binary representation

n bkbk 1 . . . b0,

are defined as follows.
(a) If a diagram template for such a representation has 0 opposite a row, then we delete the

row.
(b) A row with number i opposite which there is a nonzero digit bi is cut into bands of lengths

1 or 2, so that no two rows of length 1 would be consecutive. Such a partition of a row corresponds
to the ordered partition l1, . . . , lt of a number i l1 lt, where lj 1, 2 , and if lj 1 for
some j t then lj 1 2. We assume that bands of lengths l1, . . . , lt are arranged in the specified
order, from left to right. Notice that

2i 2l1 lt 2l1 . . . 2lt . (2)

A template whose rows are partitioned in the above-indicated way is called a diagram
representing a number n. A diagram is said to be inadmissible if it contains two consecutive rows
opposite which is digit 1, and a larger row is obtained from a smaller one by adding on the right
bands of length 1. Otherwise, a diagram is said to be admissible. The fact that D is an admissible
diagram for a number n is written thus:

n D or D n.

Note that not every extended binary representation will comply with an admissible diagram.
For example, if an extended binary representation of n ends with two ones, i.e., n 1 21 1 20,
then a row with number 1 in any diagram complying with the extended binary representation is
obtained from an (empty) row with number 0 by pasting a band of length 1, and such a diagram
will always be inadmissible.
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Let D n be an admissible diagram complying with the extended representation of a number
n bkbk 1 . . . b0, and let the ith row of the diagram corresponding to a nonzero digit bi be
partitioned into bands whose lengths form an ordered tuple l1, . . . , lt . With the given diagram we
associate a subgroup in Symn using the following rule. An ith row is assigned the wreath product

Sym2l1 � � Sym2lt � Symbi
,

which is treated as a transitive subgroup of Symbi 2i and is defined in it uniquely up to conjugation
(see equality (2)). The entire diagram is assigned the direct wreath product (corresponding to its
rows)1

k

i 0

Sym2l1 � � Sym2lt � Symbi
, where k log2 n .

In view of equality (1), we can naturally identify this product with a subgroup in Symn and denote
it by SD . The subgroup SD is defined uniquely up to conjugation in Symn.

The main result of the present paper is describing maximal solvable subgroups of odd index in
symmetric groups. Namely, the following holds:

THEOREM. Let G Symn. Then the map

D SG
D

yields a bijection between a set of admissible diagrams D n and a set of conjugacy classes of
maximal solvable subgroups of odd index in Symn.

As an illustration we list all (up to conjugation) maximal solvable subgroups of odd index in
Sym15. We start with a canonical binary representation of the number 15:

15 1111.

By elementary replacements we obtain all extended binary representations of 15:

1111, 1031, 0311, 1103, 0303.

Now we are in a position to create diagram templates for extended representations of the number
15 23 22 21 20:

15 1111 15 1031 15 0311 15 1103 15 0303

1
1

1
1

1

3
1

3
1

1

1
1

3

3

3

1Rows opposite which we wrote 0 and then removed them from the template are assigned the wreath product
equal to Sym0 1 by definition; i.e., the rows make no contribution to the direct product associated with the
diagram.
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The templates show that no admissible diagram will correspond to the extended representations
1111 and 0311.

Our present goal is to obtain all admissible diagrams and their corresponding subgroups (the
group Sym1 is trivial and so omitted):

1111 1031 0311 1103 0303

∅

1
3

1

1
3

1
∅

1
1

3

3
3

Sym2 � Sym4

Sym2 � Sym4 Sym4 � Sym2 Sym4 � Sym3

Sym4

Sym2 � Sym3 Sym2 � Sym3 Sym3

Sym3

Thus the group Sym15 has four classes of conjugate maximal solvable subgroups of odd index:
Sym2 � Sym4 Sym2 � Sym3 with a fixed point;
Sym4 � Sym2 Sym2 � Sym3 with a fixed point;
Sym2 � Sym4 Sym4 Sym3 without fixed points;
Sym4 � Sym3 Sym3 without fixed points.
Here, the presence or absence of fixed points is understood in the sense that the listed groups,

when treated as subgroups of Sym15, act naturally.

1. PRELIMINARY RESULTS

Let G be a subgroup of Sym Ω and let Δ Ω. Following [17], we denote by G Δ the stabilizer
of a subset Δ in G, i.e., G Δ g G Δg Δ , and by G Δ the pointwise stabilizer of Δ,
i.e., G Δ g G δg δ for all δ Δ . Clearly, the group G Δ acts on the set Δ, i.e., the
homomorphism g gΔ from G Δ to SymΔ is defined, and its kernel coincides with G Δ .

LEMMA 1. Let G be a finite group, N �G, and H be a subgroup of odd index in the group G.
Then N : H N and G N : HN N are odd indices.

Proof. We write the following chain of equalities:

G : H G : HN HN : H

G N : HN N
H N

H N H

G N : HN N N : H N .
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The left part is odd, and so therefore are both factors in the right part.

LEMMA 2 [18, Thm. 13.3]. Let H be a primitive subgroup of Symn containing a transposition.
Then H Symn.

Let two natural numbers m and n be given. We introduce a relation on a set of natural
numbers. Following [8], for the natural numbers m and n, we write m n if the binary
representation of m is obtained from the binary representation of n by replacing some ones with
zeros. In other words, if

n
i 0

ai 2i and m
i 0

bi 2i, where ai, bi 0, 1 ,

and almost all ai and bi are equal to zero, then m n iff bi ai for all i 0. It is easy to see
that the relation is a partial order on the set of natural numbers, and more exactly, a suborder
of the natural order.

LEMMA 3 [10, 19]. Let m n. Then the index of a subgroup Symm Symn m in Symn is
equal to Cm

n . This index is odd if and only if m n.
The proof is given in a shorter and independent form. We have

Symn : Symm Symn m

Symn

Symm Symn m

n!
m! n m !

Cm
n .

Let n 2l1 2lt , where l1 lt 0. Consider a field F of characteristic 2 and a
polynomial 1 x n over the field F . Since f f2 is an endomorphism of the polynomial ring
F x , we have

1 x n
t

i 1

1 x 2li

t

i 1

1 x2li .

Taking into account l1 lt and removing the brackets in the left part, we obtain

1 x n

m n

xm.

Keeping in mind that F is a field of characteristic 2 and applying the binomial formula, we have

Cm
n

1 mod 2 if m n,

0 mod 2 if m n.

LEMMA 4. (1) Let m and k be natural numbers and let k 1. The index Symmk : Symm �
Symk is odd if and only if m is the degree of two.

(2) Let H be a transitive imprimitive subgroup of odd index in Symn and Δ be a block for H

such that Δ n. Then Δ is the degree of two.
Proof. (1) See [19, Lemma 2].
(2) Let Δ m and let a system of imprimitivity containing Δ consist of k blocks. Then

n mk and the full stabilizer of this imprimitivity system in Symn is equal to Symm �Symk. Since
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H is contained in Symm � Symk and has odd index in Symn, the index Symn : Symm � Symk is
also odd, and by (1), Δ is the degree of two.

LEMMA 5 [20, Thm. 13.1.1, Ex. 3.4.2]. The group Symn is solvable if and only if n 4.

LEMMA 6. If Symn contains a transitive solvable subgroup of odd index, then either n 2t

or n 2t 3 for some nonnegative integer t.
Proof. Let H be a transitive solvable subgroup of odd index in Symn. We use induction on n.

There are two cases to consider—one where H is primitive and one where H is imprimitive.
Assume that H is primitive. Then H Symn by Lemma 2 and n 1, 2, 3, 4 by Lemma 5.
Now suppose that H is imprimitive and possesses an imprimitivity system consisting of k blocks

of cardinality m for some m and k such that n mk and m,k 1. Then

H Symm � Symk.

Since H has odd index in Symn, the index Symn : Symm � Symk is also odd, and by Lemma 4,
m is the degree of two. To complete the proof, we need only show the following:

either k 2s or k 2s 3.
Since H acts on a set of blocks transitively, its image H under the natural epimorphism Symm �

Symk Symk is a transitive solvable subgroup of odd index in Symk. Statement is valid by
the inductive assumption.

LEMMA 7. Let H be a transitive imprimitive solvable subgroup of odd index in Symn and
Δ be a nontrivial block of minimal size for the group H. Then Δ 2, 4 .

Proof. According to Lemma 4, the number Δ is the degree of two, and it suffices to state
that Δ 4. We show that the group SymΔ contains a solvable primitive subgroup of odd index
and coincides with it by virtue of Lemma 2 and Sylow’s theorem. In particular, SymΔ is solvable
and Δ 4 in view of Lemma 5.

It follows from [17, 1.5.6] that H Δ acts transitively on Δ. In view of Δ being minimal and
according to [17, 1.5.10], the action of H Δ on Δ is primitive. Let Δ1 Δ,Δ2, . . . ,Δm be an
imprimitivity system containing a block Δ. Suppose that M is the full stabilizer of this system of
imprimitivity in Symn. Then

M Sym Δ � Symm Sym Δ1 SymΔ2 SymΔm Symm.

Denote by B a basis for the above wreath product, i.e., the subgroup

B SymΔ1 Sym Δ2 SymΔm.

Consider the stabilizer M Δ of a block Δ Δ1 in M . Clearly, B M Δ and H Δ H M Δ .
The group M Δ acts on the set Δ, thereby defining the homomorphism

ρ : g gΔ
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from M Δ to SymΔ Sym Δ1, and the kernel of this homomorphism coincides with M Δ . It is
easy to see that

M Δ SymΔ1 Sym Δ2 Sym Δm Symm 1 SymΔ M Δ ,

and the restriction of ρ to the factor SymΔ is the identity mapping

Sym Δ SymΔ.

We show that Hρ
Δ

is a primitive solvable subgroup of odd index in Sym Δ. The group Hρ
Δ

is a homomorphic image of a subgroup H Δ of a solvable group H and is therefore solvable. The
primitivity of Hρ

Δ follows from the primitivity of the action of H Δ on Δ.
We have B M Δ , and so B H M Δ H H Δ . Since the restriction of ρ to SymΔ

is an identity mapping, the following relations hold:

SymΔ H Sym Δ H ρ B H ρ Hρ
Δ SymΔ. (3)

Appealing to Lemma 1, we conclude that H B is a subgroup of odd index in B and H SymΔ
is one in SymΔ. In view of (3), Hρ

Δ
is a solvable primitive subgroup of odd index in SymΔ.

LEMMA 8 [21, Chap. 1, Lemma 15.4]. Let G, H, and K be permutation groups of degrees m,
n, and k respectively. Then, for the naturally defined subgroups in Symnmk, the following equalities
hold:

G � H � K G � H � K .

LEMMA 9. Let K be a maximal solvable subgroup of odd index in Symn, and let K be
transitive. Then, up to conjugation, K SD for some diagram D n, and the diagram D

corresponds to the extended representation of a number n containing exactly one significant digit.
Proof. If the subgroup K is primitive, then K Symn and n 4 by Lemmas 2 and 5. In this

case K SD holds, where

D

1 for n 1,

1 for n 2,

3 for n 3,

1 for n 4.

Now let K be imprimitive. Lemma 6 implies that n 2i 3j , where i 0 and j 0, 1 . Let
Δ1, . . . ,Δm be an imprimitivity system of K having nontrivial blocks of minimal size and let Δ
be one of those blocks. Then Δ 2l0 , where l0 1, 2 by Lemma 7, K SymΔ � Symm, and
m n 2l0 2i l0 3j . We denote by B a basis for the wreath product W Sym Δ � Symm and
consider a natural epimorphism : W Symm. The subgroup

B SymΔ1 SymΔm
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is solvable, and so therefore is BK. Hence B K by the maximality of a solvable subgroup K.
Then the image K is a solvable transitive subgroup in Symm. Since B K, the subgroup K is a
maximal solvable subgroup in Symm.

By the inductive assumption, there exists an admissible diagram D m such that K SD

and D corresponds to the extended binary representation of a number m containing exactly one
significant digit. Therefore, the diagram D consists of one row. Clearly,

K SymΔ � K Sym2l0 � SD .

Let the sole row of D be partitioned into bands of lengths l1, . . . , lt, counting from left to right,
with the digit 3j 1, 3 opposite it. Then

K SD Sym2l1 � � Sym2lt � Sym3j ,

K Sym2l0 � SD Sym2l0 � Sym2l1 � � Sym2lt � Sym3j .

Consider a diagram D obtained by attaching on the left a band of length l0 to the sole row of D .
To complete the proof, it suffices to show that D is admissible. In other words, if l0 1, then the
length l1 of the leftmost band in D equals 2.

Suppose that l0 l1 1. Then K Sym2l0 � Sym2l1 � Sym2l2 � � Sym2lt � Sym3j is
strictly contained in the solvable group Sym4 � Sym2l2 � � Sym2lt � Sym3j , which contradicts
the maximality.

If the diagram D is associated with a number 2i 3j , where i 0 and j 0, 1 , and consists of
a single row cut into bands of lengths l1, . . . , lt, then the group SD Sym2l1 � � Sym2lt � Sym3j

possesses a natural imprimitivity system Γ1, . . . ,Γs, where s 2l2 lt 3j and Γ1, . . . ,Γs are
blocks of size 2l1 . Since SD contains as a subgroup the full symmetric group Sym Γk of each of
the blocks, the given system of imprimitivity will be unrefinable [17, 1.5.10].

LEMMA 10. Let an admissible diagram D be associated with a number n 2i 3j , where i 0
and j 0, 1, and let it consist of one row. Consider a group H SD and a natural imprimitivity
system Γ1, . . . ,Γs of the group H chosen as described above. Then each block of any nontrivial
system of imprimitivity of H will be the union of some blocks Γ1, . . . ,Γs.

Proof. Consider an arbitrary nontrivial imprimitivity system Δ1, . . . ,Δt of H. Let

Γ Γ1, . . . ,Γs and Δ Δ1, . . . ,Δt .

By the definition of a subgroup H SD , the inclusion Sym Γ H holds. It suffices to show that
Γ Δ if Γ Δ ∅.

Assume that Γ Δ ∅ and Γ Δ, i.e., there exist α Γ Δ and β Γ Δ. Notice that
Δ Γ since Γ is a nontrivial minimal block for the group H. Therefore, there exists δ Δ Γ.
Consider a transposition αβ . We have αβ SymΓ H. This yields δ δ αβ Δ αβ Δ.
Consequently, Δ αβ Δ. In particular, α αβ Δ αβ Δ. On the other hand, α αβ β and
β Γ Δ. Contradiction.
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2. MAIN RESULT

Proof of the theorem. It suffices to verify the following statements:
(1) if H is a maximal solvable subgroup of odd index in Symn, then H coincides with some

subgroup SD , where D n is an admissible diagram;
(2) every such subgroup SD is a maximal solvable subgroup of Symn and its index in Symn is

odd.
We start with statement (1). Let H be a maximal solvable subgroup of Symn, where n 1,

and let Symn : H be an odd number. We show that H SD for some admissible diagram D n.
First suppose that H is primitive. By Lemma 2, the subgroup H coincides with Symn and

n 2, 3, 4 . Thus H SD , where

D

1 for n 1,

1 for n 2,

3 for n 3,

1 for n 4,

in which case the theorem is true.
Now assume that H is transitive but imprimitive. Choose a nontrivial block Δ of minimal

size. Then Δ 2l 2, 4 by Lemma 7, and H SymΔ � Symm, where m n Δ . Let :
SymΔ�Symm Symm be a natural epimorphism. Note that the kernel B SymΔ SymΔ

m times
of this epimorphism is solvable. We argue to state that H is a maximal solvable subgroup of odd
index in Symm. By virtue of Lemma 1, it suffices to show that K H if H K for some solvable
subgroup K Symm. Let K be the complete preimage of K in SymΔ � Symm. Then K is an
extension of a solvable group B by a solvable group K. Consequently, K is solvable and contains
a maximal solvable subgroup H. Hence K H and K H.

By the inductive assumption, H SD for some D m. The group H is transitive and
the subgroup H of Symm is also transitive; so the diagram D consists of one row. It follows
from the definition that H B SD SymΔ � SD . The solvability of SymΔ � SD implies that
H SymΔ � SD SD , where D is a diagram obtained from the one-row diagram D by attaching
on the left a band of length l, where 2l Δ .

We show that the diagram D does not contain two consecutive bands of length 1. Assume the
contrary. The diagram D is admissible, and so we may suppose that l 1 and the leftmost band
also has length 1; i.e., SD Sym2 � SD for some diagram D m 2. By Lemma 8,

H Sym2 � SD Sym2 � Sym2 � SD
Sym2 � Sym2 � S

D
Sym4 � SD

,

which clashes with H being a maximal solvable subgroup.
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Now let H be intransitive, O1, . . . ,Os be all of its orbits, and ni Oi . Without loss of
generality, we assume that

n1 n2 ns.

Then H Sym O1 SymOs. Since H is a maximal solvable subgroup, H is generated
by its projections Hi onto Sym Oi, of which each is a maximal solvable subgroup of odd index
in Sym Oi and is transitive on Oi. Furthermore, the subgroup SymO1 SymOs contains
a Sylow 2-subgroup of the group Symn. Therefore, if A and B are two unions of some orbits
Oi such that A B, then Sym A Sym B A has odd index in Sym B , and by Lemma 3,
A B . This means that for any subtuple ni1 , . . . , nit of the tuple of numbers n1, . . . , ns, the
binary representation of a number ni1 nit (e.g., a binary representation of the numbers
n1, . . . , ns themselves) is obtained from the binary representation of a number n by replacing some
ones with zeros. If we take one of the orbits Oi1 to be A and take its union with another orbit Oi2

to be B we see that ones may hold only different positions in the binary representation of numbers
ni1 and ni2 for i1 i2. By Lemma 6, either ni 2j or ni 2j 3 2j 1 2j . Replacing each
summand in the equality n ni either by 2j or by 2j 3 yields an extended binary representation
of n.

Every group Hi complies with an admissible one-row diagram Di ni, and the rows of such
diagrams are pairwise different in length. Pasting these, we obtain a diagram D associated with
a number n. We show that D is admissible. Suppose the contrary. Then the diagram D has two
neighboring rows corresponding to diagrams Di and Di 1, in which case Di 1 is obtained from
Di by attaching a band of length 1. Therefore, Hi 1 Hi � Sym2 and Hi Hi 1 Hi � Sym3.
Consequently,

H H1 Hs H1 Hi � Sym3 Hi 2 Hs Symn,

which contradicts the maximality of H.
Now we consider statement (2). Let H SD for some admissible diagram D n. We show

that H is a maximal solvable subgroup of odd index in Symn. The definition of a group SD implies
that H is solvable. It is straightforward to verify that H has odd index in Symn. It remains to
show that if H M for a maximal solvable subgroup M , then H M .

The following lemma yields the desired statement for a particular case.

LEMMA 11. Let an admissible diagram D be associated with a number n 2i 3j , where
i 0 and j 0, 1. Then the group SD corresponding to the diagram D is a maximal solvable
subgroup of odd index in Symn.

Proof. Clearly, the diagram has either one or two rows. Furthermore, SD Symn for n 4,
and so below we assume that n 4.

Consider the case where D consists of one row. Then H SD is a transitive group. Assume
that H M , where M is a maximal solvable subgroup of odd index in Symn. In view of the above,
M SE for some admissible diagram E n. Since M is also transitive, E consists of one row. The
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condition n 4 implies that M is imprimitive. Let the leftmost bands in D and E have lengths k1

and l1 respectively. Fix natural imprimitivity systems Γ1, . . . ,Γs and Δ1, . . . ,Δt for groups H and
M , respectively, such that Γi 2k1 and Δi 2l1 . Then k1, l1 1, 2 . The system Δ1, . . . ,Δt

will also be an imprimitivity system for the group H. We show that the two imprimitivity systems
coincide. Choose Γ Γ1, . . . ,Γs and Δ Δ1, . . . ,Δt such that Γ Δ ∅. By Lemma 10,
Γ Δ.

By construction, the subgroup H is contained in Sym Γ � Syms, and the basis for the wreath
product is contained in H. Consider a homomorphism : SymΓ � Syms Syms. The image of
H under this homomorphism coincides with a group SD complying with a diagram D which is
obtained from D by removing the leftmost band and is therefore admissible. By the inductive
assumption, H is a maximal solvable subgroup of odd index in Syms. The group H acts on the set
Γ1, . . . ,Γs.

If Δ Γ, then M Sym Γ � Syms and M H, and hence M H.
Now let Δ Γ. Then Δ 4, Γ 2, and each block Δi is the union of two blocks in

the system Γ1, . . . ,Γs. An imprimitivity system Δ1, . . . ,Δt of H defines an imprimitivity system
Δ1, . . . ,Δt of H on a set Γ1, . . . ,Γs via the following rule: Γi and Γj belong to one block Δ iff
Γi and Γj are contained in one block Δ. By Lemma 10, we have Δ 2k2 , where k2 is the size
of a left band in D . Hence k2 1 and the diagram D contains two consecutive bands of length 1.
Contradiction.

By induction, we conclude that D E .
Consider the second case where D consists of two neighboring rows with 1 opposite each of

these. A subgroup H is intransitive and has two orbits on a set Ω. Denote them by O1 and O2. To
be specific, we assume that O1 O2 . By the definition of a group SD , O1 2 O2 and both
of the numbers are the degrees of two. Let D1 and D2 be one-row diagrams complying with orbits
O1 and O2, respectively, with H SD1

SD2
. As above, consider a diagram E such that M SE .

If M is not transitive, then M has two orbits of the same length as that of H. The above
argument implies that H M .

Suppose now that M is transitive. Let Δ1, . . . ,Δs be its unrefinable imprimitivity system with
blocks of size 2l1 2, 4 . The group H acts on the set of blocks Δ1, . . . ,Δs .

Assume that there exists a block Δ Δ1, . . . ,Δs for which Δ O1 ∅ and Δ O2 ∅.
Then, for any block Δ Δ1, . . . ,Δs , we have Δ Oi Δ Oi , where i 1, 2. Indeed, let
Oi be the orbit for which Δ Oi ∅, and let α Δ Oi. Choose β Δ Oi arbitrarily and
let x H be an element such that α βx. Then Δ Δx since x M . Furthermore, Ox

i Oi.
Consequently,

Δ Oi Δx Ox
i Δ Oi

x

and Δ Oi Δ Oi . Also

Δ O3 i Δ Δ Oi Δ Δ Oi Δ O3 i .
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Now, for i 1, 2, the following equalities hold:

Oi s Δ Oi . (4)

Then numbers Δ Oi are the degrees of two. Since the binary representation is unique, the degree
of two cannot be the sum of two different degrees of two. From the equality

Δ Δ O1 Δ O2

and the fact that Δ is also the degree of two, we now derive

Δ O1 Δ O2 . (5)

Equalities (4) and (5) imply O1 O2 , which clashes with O1 2 O2 .
Hence, for any block Δ Δ1, . . . ,Δs , either Δ O1 or Δ O2. Arguing as in the case

where D is a diagram consisting of one band, we make sure that the lengths of the leftmost bands
in D1 and D2 are equal to l1, where Δ 2l1 . Moreover, the corresponding imprimitivity systems
for the groups SD1 and SD2 on the sets O1 and O2 are composed of blocks Δ1, . . . ,Δs contained
in these sets. Since H stabilizes the system Δ1, . . . ,Δs, we have H Sym Δ � Syms. As above,
let : Sym Γ � Syms Syms be a natural epimorphism. Then H SD1

SD2
SD , where the

diagram D is obtained from D by removing the leftmost bands of length l1 in the rows D1 and D2

and consists of bands D1 and D2.
By the inductive assumption, H is a maximal solvable subgroup of odd index in Syms, and its

complete preimage H is a maximal solvable subgroup of odd index in SymΔ � Syms. On the other
hand, M SE SymΔ � Syms, and so H SE M .

Now we show that H SD is maximal as a solvable subgroup in the general case. We use
induction on n. The degree of a row in a diagram D is the number b 2l, where l is the length of
the row and b is the corresponding digit in the extended representation, which is opposite that row
in the diagram. Thus the degrees of rows are cardinalities of the orbits of the group SD .

If M is transitive, then, by Lemma 6, n 2l 3j , where j 0, 1 . In view of Lemma 11,
H M .

Let M be intransitive. Then H is also intransitive, and the orbits of M are the unions of orbits
of H, which, in turn, correspond to rows of D . Furthermore, M Symm Symn m for some
m n, and the rows of D can be divided into two disjoint subsets D1 and D2, so that m and
n m will be the sums of the degrees of rows in these sets. Denote by D1 and D2 the diagrams
composed of the rows of the two sets. Clearly, D1 m and D2 n m.

The definition of SD implies that

H SD SD1 SD2 Symm Symn m,

and by the inductive assumption, SD1 and SD2 are maximal solvable subgroups of odd index in
Symm and Symn m. Let M1 and M2 be projections of the subgroup M onto Symm and Symn m
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respectively. Then
SDi

Mi,

and hence Mi SDi
. Thus

H M M1 M2 SD1
SD2

H,

and so M H.
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