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We study an extension of temporal logic, a multi-agent logic on models with nontran-
sitive linear time (which is, in a sense, also an extension of interval logic). The proposed
relational models admit lacunas in admissibility relations among agents: information
accessible for one agent may be inaccessible for others. A logical language uses temporary
operators ‘until’ and ‘next’ (for each of the agents), via which we can introduce modal
operations ‘possible’ and ‘necessary.’ The main problem under study for the logic
introduced is the recognition problem for admissibility of inference rules. Previously, this
problem was dealt with for a logic in which transitivity intervals have a fixed uniform
length. Here the uniformity of length is not assumed, and the logic is extended by
individual temporal operators for different agents. An algorithm is found which decides
the admissibility problem in a given logic, i.e., it recognizes admissible inference rules.

INTRODUCTION

Temporal logic is a branch of modern nonclassical logics within which models are constructed
to analyze propositions whose truth values vary over time. The advent of temporal logic goes
back to the early 1950s, to A. N. Prior’s works. Since then, it has been (and still is) an active
field of research in mathematical logic, computer science, and artificial intelligence (see [1-3]). An
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important particular case is the linear temporal logic (LTL) which has been employed in analyzing
computation protocols and correctness verification. The use of mathematical logic in information
sciences involves the employment of the machinery of nonclassical logic in analyzing correctness.

For example, multi-agent logics applying modalities interpreted via agent relations of acces-
sibility for model verification were used in studying the interaction and autonomy of agents (see
[4-12]).

Modeling interactions between agents as a dual representation of common knowledge (informa-
tion) was offered in [12]. The very conception of common knowledge for agents was proposed and
thoroughly studied in [13] in which agent relations of knowledge are used as (S5-like) modalities.
Properties of interval linear logics were examined in [14]. Knowledge, as a general conception,
was based on a multi-agent approach, since personal knowledge may generate common knowledge
only through interactions among agents. A similar simulation in terms of symbolic logic can be
traced back to the late 1950s. [15] was probably the first work of a book size which proposed to
employ modalities to describe mathematical semantics for the concept of knowledge. Temporal
ontology and arguments that include temporal components were taken up in [16]. The technique
of formal automata for solving the satisfiability problem in linear temporal logic was developed
in [17, 18]. Central to research in nonclassical logics are algorithmic problems such as decidability
and recognizability [14, 19].

Recently, I have undertaken a study into nontransitive temporal logics that are close to an
interval temporal logic [20-23]. The satisfiability and decidability problems for such logics were
solved. In particular, a solution to the admissibility problem for a nontransitive temporal logic was
found, but only in the case where all transitivity intervals in models have a fixed uniform length
[23]. The present paper gives a solution to the admissibility problem in the general case where
all transitivity intervals have an arbitrary nonuniform length bounded by a given fixed number.
Furthermore, the models may have new expanded properties: (1) different accessibility operations
are allowed for different agents; (2) accessibility operations can have lacunas in basic frames. The
latter approach for standard models was considered in [24]. We point out a decision algorithm for
the admissibility problem in a given logic—namely, it recognizes admissible rules of inference.

1. INTERVAL LINEAR MULTI-AGENT LOGIC

First we describe the semantics and language for the logical system proposed. Models are not
transitive linear structures; they are based on composite interval frames. The assumption that all
computational flows are linear and potentially infinite is too strong. In fact, all resources are always
bounded: these can be rather rich, but with a certain hypothetical upper bound. Therefore, as basic
semantics we choose the following frames.

In what follows, N , as is common in the mathematical notation, denotes the set of natural
numbers. We fix some In ⊂ N , an infinite set of time indices. For every i ∈ In, by i(next) we
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denote a least number greater than i in In; In(i) := [i, i(next)]. Thus N =
⋃

i∈In
In(i). We consider

In(i) as transitive time-intervals.
A temporary interval linear multi-agent k-frame is the structure

F :=

〈

⋃

i∈In

In(i), R1, . . . , Rk,Next

〉

,

where any Rj is a binary relation, which is some bound for the standard linear order ≤ in the
interval I(n), i.e.,

∀i ∈ In ∀j Rj ⊆ (In(i) × In(i)) ∩ (≤).

Moreover, different transitive intervals are inaccessible with respect to Rj , i.e., ∀x ∈ In(i) ∀y /∈
In(i) ¬(xRjy). Furthermore, Next is a standard binary relation, the next natural number. We
suppose that m is a fixed natural number and ∀i ∈ In (i(next) − i) ≤ m; m is called an upper
bound for transitivity of a frame (the frames themselves are naturally not transitive).

A model M on F is F with a valuation V for some set Prop of propositional variables (i.e,
∀p ∈ Prop V (p) ⊆

⋃

i∈In
In(i)). We write

M :=

〈

⋃

i∈In

In(i), R1, . . . , Rk,Next, V

〉

.

The universe of M is merely the set N of all natural numbers; we denote it by |M|. For brevity, we
write a ∈ M in place of a ∈ |M|. If a ∈ M and a ∈ V (p), then we write (M, a) �V p and say that
p is true at a under a valuation V . A logical language is introduced as follows.

Definition 1. The set of all formulas contains the set Prop of all propositional variables and
is closed under taking the Boolean operations ∧,∨,¬,→, the unary operation N (next), and the
binary operations U j (until), j ∈ [1, k] (for each agent j).

Definition 2. For any model M, truth values can be extended from propositional variables to
all formulas as follows:

∀p ∈ Prop (M, a) �V p ⇔ a ∈ V (p);

(M, a) �V (ϕ ∧ ψ) ⇔ (M, a) �V ϕ ∧ (M, a) �V ψ;

(M, a) �V (ϕ ∨ ψ) ⇔ (M, a) �V ϕ ∨ (M, a) �V ψ;

(M, a) �V (ϕ → ψ) ⇔ (M, a) �V ϕ ∨ (M, a) �V ψ;

(M, a) �V ¬ϕ ⇔ ¬[(M, a) �V ϕ];

(M, a) �V Nϕ ⇔ ∀b [(aNext b) ⇒ (M, b) �V ϕ];

(M, a) �V (ϕUjψ) ⇔ ∃b (aRjb)((M, b) �V ψ)

∧ ∀c [(aRjc < b) ⇒ (M, c) �V ϕ].
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Thus every operator Uj (until) works in the usual manner, but it has an upper bound
for transitivity of the local part [i,next(i)]. This agrees well with ordinary intuition about
computational procedures and computational flows—decisions (states satisfying a formula) should,
if any, be reached before the end of computation of the current local computational flow.

Standard derivative logical operations can be specified via those postulated above. Modal
operations �j (necessary for an agent j) and �j (possible for an agent j) are defined thus:
�ip := &Uip and �ip := ¬�i¬p. It is easy to verify that

(M, a) �V �jϕ ⇔ ∃b ∈ N [(aRjb) ∧ (M, b) �V ϕ];

(M, a) �V �jϕ ⇔ ∀b ∈ N [(aRjb) ⇒ (M, b) �V ϕ].

For example, suppose (M, a) �V [�1p → �2¬p] ∧ [�2p → �1¬p]. The truth of this formula
expresses the property of agents 1 and 2 to be in opposition in relation to truth of indisputable
facts: in the future, the agents always have opposite opinions—if one assumes that a fact is true,
then the other thinks that it is false.

Definition 3. A logic L(m,max) is the set of all formulas true in all models with maximal
transitivity boundary m under all valuations.

Recall that the temporal degree of a formula ϕ is the maximum number of nested occurrences
of temporal operations in the formula. A formal definition is introduced inductively: the temporal
degree of propositional variables equals zero, i.e., td(p) := 0; the temporal degree of a formula
whose basic operation is Boolean is the maximum temporal degree of its components, i.e., for
ϕ := ϕ1 � ϕ2, where � is a binary logical operation, we put td(ϕ) := max{td(ϕ1), td(ϕ2)} and
td(¬ϕ) := td(ϕ); for ϕ := ϕ1Uϕ2, we put td(ϕ) := max{td(ϕ1), td(ϕ2)} + 1, and td(Nϕ) :=
td(ϕ) + 1.

The fact that in our models, the truth of a formula of temporal degree n depends only on
truth of propositional variables in succeeding n transitivity intervals is trivial (easily verifiable by
induction on the temporal degree of formulas). Therefore, we have

LEMMA 4. For any m, the logic L(m,max) is decidable.
The question whether the admissibility problem is decidable in such logics is nontrivial. For

the case where all transitivity intervals In(i) in models have length m, it was decided in [23]. In
this paper, we want to lift this restriction and decide the admissibility problem in the general case
for a more expressive—multiagent—logic.

Definition 5. A rule

r := ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)/ψ(x1, . . . , xn)

is admissible in a logic L if, for all formulas α1, . . . , αn,
⎡

⎣

⎛

⎝

∧

1≤i≤m

ϕi(α1, . . . , αn)

⎞

⎠ ∈ L] =⇒ [ψ(α1, . . . , αn) ∈ L

⎤

⎦ .
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Definition 6. A rule

r := ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)/ψ(x1, . . . , xn)

is valid on a frame F (written F � r) if, for all valuations V of variables from r in F, whenever
all premises of r are true at all states in F under V , the conclusion of r is also true at all states
under V .

We can transform any formula ϕ to a rule x → x/ϕ, and ϕ is a theorem of the logic L(m,max)
(i.e., ϕ ∈ L(m,max)) iff the rule (x → x/ϕ) is valid on any frame F. It might be helpful to use
rules in special uniform form without formulas of temporal degree higher than 1.

Definition 7. A rule r is in reduced normal form if r = ε/x1, where

ε :=
∨

1≤j≤l

⎡

⎣

∧

1≤i≤n

x
t(j,i,0)
i ∧

∧

1≤i≤n

(Nxi)t(j,i,1) ∧
∧

a∈[1,k],1≤i,i1≤n

(xiUaxi1)
t(j,i,i1,a,2)

⎤

⎦ ,

t(j, i, 0), t(j, i, 1), t(j, i, i1 , a, 2) ∈ {0, 1}, and α0 := α, α1 := ¬α for any formula α used above.

Definition 8. A rule in reduced normal form rnf is called the reduced normal form of a rule r
in a logic L(m,max) if these rules are equivalent with respect to admissibility in L(m,max) and
with respect to validity in any frame for L(m,max).

Naturally, we confine ourselves to treating a rule with a single premise since every rule
α1, . . . , αn/β is equivalent with respect to validity and admissibility to a rule α1 ∧ · · · ∧ αn/β.

THEOREM 9. There exists a time-exponential algorithm which, given any rule r, constructs
its reduced form rnf (for L(m,max)).

Proof. We only give a scheme, which is similar to one in [23] and was applied in some of
my earlier works. Let an inference rule r = α/β be given. By Sub (r) we denote the set of all
subformulas of formulas in r. Introduce a set Z = {zγ | γ ∈ Sub (r)} of variables which do not
occur in r and define a rule (in intermediate form) as follows:

rif = zα ∧
∧

γ∈Sub (r)\Var (r)

(zγ ↔ γ�)/zβ ,

where

γ� =

⎧

⎨

⎩

zδ ∗ zε if γ = δ ∗ ε for ∗ ∈ {∧,∨,→,Uj};

∗zδ if γ = ∗δ for ∗ ∈ {¬, N}.

The rules r and rif are both valid or refutable on any frames for L(m,max) and are equivalent
with respect to admissibility. We start with validity. In fact, let M be a model for L(m,max) based
on a frame F with valuation V , for which M ��V r. Then M �V α and there exists a state a ∈ F

such that (M, a) ��V β. Choose a valuation V1 : Z → 2N , where V1(zγ) := V (γ). Using induction
on the length of formulas, we can readily see that M �V1 zα ∧

∧

{zγ ↔ γ� | γ ∈ Sub (r) \ Var (r)}
and (M, w) ��V1 zβ .
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On the other hand, assume that M is a model for L(m,max) based on a frame F with valuation
V1 : Z → 2N such that M �V1 zα ∧

∧

{zγ ↔ γ� | γ ∈ Sub (r) \ Var (r)} and ∃w ∈ F (M, w) ��V1 zβ.
We define V : Var (r) → 2N by the rule V (xi) := V1(zxi). If we use induction on the length of

formulas we obtain V (γ) = V1(zγ) for all γ ∈ Sub (r). Consequently, M �V α and (M, w) ��V β;
so M ��V r. The same scheme applies in proving equivalence with respect to admissibility.

We transform the premise of rif to the perfect disjunctive normal form constructed on formulas
like xi, Nxi, and xiUlxj . As is known, such a construction requires one-exponential time in the
number of all formulas xi, Nxi, and xiUlxj, hence in the number of subformulas of the initial rule
and thereby in its length. �

The reduced normal forms obtained by using the algorithm given in the proof of this theorem
are defined uniquely. For any x, y ∈ |F|, where x < y, we assume that the distance between x and y

dist (x, y) = y − x

is the length of a chain of states leading from x to y.
Definition 10. Given a model M = 〈F, V 〉 and a new valuation Vs of variables in some set S

on a frame F, we say that Vs is first-order definable (definable) in M if there exist formulas βi such
that

∀xi ∈ S Vs(xi) = V (βi).

LEMMA 11. If the rule rnf =
∨

1≤j≤l

ϕj/x1 in normal reduced form is inadmissible in

L(m,max), then there exist a frame F1 =
〈

⋃

i∈In
In(i), R1, . . . , Rk,Next

〉

with valuation V1 of

variables in rnf and some ws ∈ In such that
⋃

i∈In
In(i) = [0, ws]∪

⋃

i∈In,i≥ws

In(i), and the following

conditions hold:
(i) every variable in the rule rnf has the same truth value for V1 at all states in

⋃

i∈In,i≥ws

In(i);

(ii) there exists j0 such that (F1, n) �V1 ϕj0 for any n ∈
⋃

i∈In,i≥ws

In(i);

(iii) for every n ∈ N , there exists j such that (F1, n) �V1 ϕj (we denote such unique ϕj by θ(n));
(iv) (F1, 0) �V1 x1.
Proof. Let rnf = φ/x1, where

φ :=
∨

1≤j≤l

[

∧

1≤i≤n

x
t(j,i,0)
i ∧

∧

1≤i≤n

(Nxi)t(j,i,1) ∧
∧

1≤i,1≤i1,i�=i1,g∈[1,k]

(xiUgxi1)
t(j,i,i1,g,2)

]

and the map xi → ε(xi) is a substitution of formulas ε(xi) for the variables xi in rnf . Moreover,
after extending this substitution to the formulas, we have

ε(φ) ∈ L(m,max) and ε(x1) /∈ L(m,max).
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Define

ϕj :=
∧

1≤i≤n

⎡

⎣x
t(j,i,0)
i ∧

∧

1≤i≤n

(Nxi)t(j,i,1) ∧
∧

1≤i,1≤i1,i�=i1,g∈[1,k]

(xiUgxi1)
t(j,i,i1,g,2)

⎤

⎦ .

In the family of frames defining a logic L(m,max) with valuation V , there then exists a frame

F :=

〈

⋃

i∈In

In(i), R1, . . . , Rk,Next

〉

such that
(F, b) �V ε(x1)

for some b ∈
⋃

i∈In
In(i). Naturally, we may assume that b = 0, i.e., (F, 0) �V ε(x1). Let d be the

maximum temporal degree of formulas ε(xi) for all i. Suppose also that

ws := min {n | n ∈ In, n > d} + 1;

i.e., ws exceeds by 1 the least number in the set In of indices strictly larger than d. Now we modify
the valuation V , assuming that variables of all formulas ε(xi) are true at all a ∈

⋃

i∈In,i>ws

[i, i(next)],

and in [0, ws], they have the same values as before for V . Denote the new valuation by V0. Note
that

∀xi ∈ Var (φ) ∀a ∈ In(0) := [0, 0(next)], [(F, x) �V ε(xi) ⇔ (F, a) �V0 ε(xi)];

i.e., this modification of V does not change truth values of all formulas ε(xi) at all states in
[0, 0(next)]. This is verified by standard induction on the length of formulas and their temporal
degree.

The presence of possible lacunas in accessibility relations Rj (we allow that Rj ⊂ (≤) in
some time interval) does not violate inductive steps, since the operations Uj are bounded by time
intervals. Furthermore, variables of all formulas ε(xi) for V0 in

⋃

i∈In,i≥ws

[i, i(next)] have the same

values. Therefore, every formula ε(xi) will have the same truth value for all a ∈
⋃

i∈In,i>ws

[i, i(next)]

under V0.
By the hypothesis of the lemma, ε(φ) ∈ L(m,max), and so

∀c ∈ |F| ∃j (F, c) �V0 ε(ϕj).

Denote such unique ϕj by θ(c).
On the frame F we introduce another valuation now for the variables of the rule itself, setting

V1(xi) := V0(ε(xi)). Then

∀xi ∈ Var (φ) ∀a ∈ |F| [(F, x) �V0 ε(xi) ⇔ (F, x) �V1 xi].

For such V1, all conclusions of Lemma 11 are satisfied. �
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We extend the lemma. As above, the rule rnf =
∨

1≤j≤l

ϕj/x1 = φ/x1 is not admissible and

the map xi → ε(xi) is a substitution of formulas ε(xi) for the variables xi in rnf . Moreover, after
extending this substitution to the formulas, we have ε(φ) ∈ L(m,max) and ε(x1) /∈ L(m,max),
while ϕj are disjuncts in the premise of the rule. Let t(ws) be the number of intervals of the form
In(i), i.e., transitivity intervals, within [0, ws]. Below we use the notation given in the proof of
Lemma 11.

LEMMA 12. Let rnf be an inadmissible rule, and let a frame F1 with valuation V1 and a state
ws ∈ F1 be as in Lemma 11. Suppose also that [0, a] is some initial segment of an arbitrary frame
for a logic L(m,max), where the number of transitivity intervals within [0, a] equals t(ws) + 3 and
Vs is a valuation for variables in all formulas ε(xi) in [0, a], with all the variables being true under
Vs. Then for any w ∈ [0, ws] ⊂ |F1| there exist a frame F2(w) and a valuation V2 of variables in
rnf such that:

(a) |F2(w)| = [0, a] ∪ {b | b ∈ |F1|, b ≥ w}, where a = w and accessibility relations Rj at
concatenation are any that are admissible with respect to the maximum length m of the transitivity
interval;

(b) V2 coincides with V1 in {b | b ≥ w} and all formulas ϕj at states in {b | b ≥ w} with respect
to V1 and V2 have the same truth values;

(c) for any x in the first transitivity interval in [0, a], it is true that (F2, x) �V2 ϕj0 , where ϕj0

is as in Lemma 11(ii);
(d) for any x ∈ [0, a], there is ϕj such that (F2, x) �V2 ϕj .
Proof. Let a model on F1 with V1 and ws ∈ F1 be as in Lemma 11. Take F2(w), |F2(w)| =

[0, a]∪{b | b ≥ w}, such as in item (a). For {b | b ≥ w}, we repeat verbatim the proof of Lemma 11,
and assume that such b satisfy all the facts mentioned. For x ∈ [0, a], we repeat the fragment
associated with use of the temporal degree of formulas in Lemma 11.

More precisely, we define the valuation V0 for variables of all formulas ε(xi) as follows: at
x ∈ [0, a − 1], the values are assumed to be true (at all states greater than ws as in Lemma 11),
and in {b | b ≥ w}, they are the same as in the proof of Lemma 11. Then the truth value of any
formula ε(xi) for V0 will be the same at all a ∈

⋃

i∈In,i≥ws

In(i) in F1 under V0 and at all states in

the first transitivity interval in [0, a] under V0, in which case it will be equal for all of those states.
As in Lemma 11, we prove these facts by induction on the temporal degree of formulas.

Introducing on F2(w) (as we did on F) another valuation for variables of the rule by setting
V2(xi) := V0(ε(xi)), we obtain

∀xi∀u ∈ |F2| [(F2, u) �V0 ε(xi) ⇔ (F2, u) �V2 xi].

Then statements (a)-(d) hold. �

LEMMA 13. Suppose that the hypotheses of Lemmas 11 and 12 are valid. We may assume
that intervals of all states below ws in the resulting frames F1 and F2(w) have a finite size with an
upper boundary effectively computable in the size of the rule.
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Proof. We apply the drop-point technique. We start with frame F1. Moving from the least
transitivity interval upward, we consider sequentially all transitivity intervals (as models under V1)
and formulas θ(j) true at states j of these intervals (such θ(j) exist by Lemma 11(iii)).

We find two transitivity intervals—the lowest one and its least successor with coincident
sequences of formulas

[θ(j), . . . , θ(j + m)] and [θ(i), . . . , θ(i + m)].

Thereafter, we remove all transitivity intervals between [i, i+m] and [j, j+m], and replace [j, j+
m] by [i, i + mi] redenoting all accessibility relations and the valuation of variables, respectively.
This transformation preserves truth of formulas of the form θ(j). Taking into account the properties
of model F1 in Lemma 11, we note that the model obtained via such a transformation will have
the same properties.

If we apply the above transformation to all transitivity intervals below ws and move to ws, we
see that in a finite number of steps (computable in the size of a rule), it will be completed, and
the interval of all states below ws will be finite with size computable in the size of the rule.

For models F2(w) with V2, we apply the same transformation first to the whole {b | b ≥ w}
moving from w to ws + 3× m + 1 (as indicated above), and then to [0, a] in F2(w) moving from 0
to a = w, using the properties specified in Lemma 12 and preserving the entry point in F1. �

Now we apply Lemmas 11, 12 (and Lemma 13 for computing upper bounds for initial segments
of verifiable frames) to obtain a sufficient admissibility condition.

THEOREM 14. Let a rule rnf =
∨

1≤j≤l

ϕj/x1 in normal reduced form be given. Suppose also

that there exist a model F1 with valuation V1 and a model F2(w) with valuation V2 for all variables
in rnf satisfying the conditions of Lemma 12. Then the rule rnf is not admissible in L(m,max).

Proof. In view of Lemma 13, we may assume that intervals below ws (stabilization points) in
all the models mentioned are finite and have a size computable in the size of rnf =

∨

1≤j≤l

ϕj/x1.

First we describe the structure of a model on F1 with V1 using the formulas given below. Thus, let

F1 :=
〈

⋃

i∈In
In(i), R1, . . . , Rk,Next

〉

and let V1 be a valuation defined on F1: for all i ∈ In, we

assume that Id(i) = [i, i(next)] are transitivity intervals and
⋃

i∈In
In(i) = [0, ws] ∪

⋃

i∈In,i≥ws

In(i).

For every t ∈ |F1| \ {u | u ≥ ws + 3m + 1}, we introduce a unique variable pt. For x, y ∈
|F1| \ {u | u ≥ ws + 3m + 1} and x < y, as above, dist (x, y) denotes the distance between x and
y, i.e., y − x. For any fixed pt, we define the following formulas:

A(pt) := pt ∧

⎡

⎣

∧

x>t,x∈[t+1,ws+3×m]

Ndist (t,x)

⎛

⎝px ∧
∧

pl �=pt

¬pl

⎞

⎠

⎤

⎦ .

Let S(t) := {x | x ∈ [t, ws + 3 × m]} and let

B(pt) := pt →
∧

x∈S(t),x≥t,tRjx,j∈[1,k]

[�jpx] ∧
∧

x,∈S(t),(F,t),¬(tRjx),j∈[1,k]

[¬�jpx],
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C(pt) := A(pt) ∧
∧

x,y∈S(t),x �=y

[Ndist (t,x)px → ¬py],

D(pt) := A(pt) ∧
∧

x≥t,x∈S(t)

Ndist (t,x)A(px) ∧ B(px) ∧ C(px).

Suppose that F :=
〈

⋃

i∈In
In(i), R1, . . . , Rk,Next

〉

is a model with valuation V for the above

variables pt.

LEMMA 15. Let at ∈ |F|, (F, at) �V D(pt), and Vp be a valuation on F of variables in
rnf =

∨

1≤j≤l

ϕj/x1 defined by the equality

Vp(xi) := V
(∨

{D(pt) | t ∈ |F1| \ {u | u ≥ ws + 3 × m + 1, (F1, t) �V1 xi}}
)

.

Then (F, x) �Vp θ(c), where θ(c) is as in Lemma 11(iii), for all states x ≥ at and for a state c

from [t, ws] in F1, where dist (at, x) = dist (t, c).
Proof. We use the structure of formulas A(pt), B(pt), C(pt), and D(pt). We need to verify

that the models in [at, at + dist (t, ws)] inside F with respect to Vp and in [t, t + dist (t, ws)] inside
F1 with respect to V1 are isomorphic. Indeed, since

(F, at) �V D(pt),

we have

∀a ∈ |F| ∀t, t1 ∈ [0, ws + 3 × m] (dist (at, a) = dist (t, t1) ⇒ (F, a) �V pt1).

Therefore, the intervals [t, t + dist (t, ws + 3×m)] and [at, at + dist (t, ws + 3×m)] are isomorphic
as frames. The valuations V1 and Vp on the respective frames coincide by virtue of the following
definition:

Vp(xi) := V
(∨

{D(pt) | t ∈ |F1| \ {u | u ≥ ws + 3 × m + 1, (F1, t) �V1 xi)}}
)

.

Hence the models on these frames are also isomorphic.
Recall that at ∈ |F| and (F, at) �V D(pt). In Lemma 11, it was proved that (F1, t) �V1 θ(t)

for every element t in F1. Therefore, for any x, x ≥ at, and for b ∈ [t, ws] in model F1, where
dist (at, x) = dist (t, b), we have (F, x) �Vp θ(b). �

Suppose that F :=
〈

⋃

i∈In
In(i), R1, . . . , Rk,Next, V

〉

is a model with valuation V for

variables pt. (Recall that a unique variable pt has been introduced for every t ∈ |F1| \ {u | u ≥
ws + 3m + 1}.) Let mw be the maximum possible number of a in all the obtained models F2(w)
which were introduced in Lemma 12 (after applying Lemma 13). Assume that there exists b ∈ F

such that

b ∈ |F| : (F, b) �V ¬
∨

pt

D(pt) ∧

⎡

⎣

∨

s≤mw,pt

⎡

⎣N sD(pt) ∧ ¬
∨

s1<s−1,t1

N s1D(pt1)

⎤

⎦

⎤

⎦ .
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Let c be a least element greater than b, where

(F, c) �V D(pt)

for some pt.
Elsewhere above, we have shown that the model [t, t + dist (t, ws)] with valuation V1 in model

F1 is isomorphic to the model [c, c + dist (t, ws)] with valuation Vp(xi) := {u | (F, u) �Vp (xi)}
within 〈F, Vp〉. In view of Lemma 11, we obtain

∀d ∈ [c, c + dist (t, ws)] (F, d) �Vp θ(q)

for some q.
For d ∈ [0, c − 1] inside F, again we apply Lemma 12. In view of that lemma, we note, for

any upper interval [a1, c − 1] in the segment [b, c − 1] such that the number of elements inside
[a1, c − 1] does not exceed the number of elements inside [0, a] specified in Lemma 12, there exists
an extension of the valuation V2 of variables xi in [a,∞) to the interval [a1, c− 1], and there exists
an extension of the valuation V1 of xi in [a,∞) to [0, c − 1] such that the following facts hold.
Some formula θ(u) is true on any element in [0, c − 1] under V2. A special formula ϕj0 is true in
the first transitive part in [0, c − 1] under V2 if the length of [a1, c − 1] is greater than the length
of [0(next), a]. In other words, (F, x) �V2 ϕj0 , where ϕj0 is as in the formulation of Lemma 11, for
any state x in such an interval.

It remains to observe that such a valuation V2 for variables xi is definable (defined by formulas)
in the variables pt and can be specified on {d | d ≥ c, d ∈ [c, c+dist (t, ws +3×m)]} as above after
introducing pt (i.e., V2(xi) := V (

∨

{D(pt) | t ∈ |F1| \ {u | u ≥ ws + 3×m + 1}, (F1, t) �V1 xi)}}).
On [b, c − 1], V2 is defined by formulas in just one variable pc; we need to take into account the
structure of the frame [b, c − 1], its finiteness, and computable bounded size. Thus the following
holds:

LEMMA 16. Under the above definable valuation V2,

∀d ∈ [0, c] (F, d) �V2 θ(q)

for some q.
The valuation of variables xi can be summed up as follows:

S(xi) := Vp(xi) ∪ V2(xi) ∪ V3(xi),

where V3 is a definable valuation for xi given by the formula

G(xi) :=
[

¬
[∨

{D(pt) | t ∈ |F1| \ {u | u ≥ ws + 3 × m + 1}
]]

∧ ¬

⎡

⎣¬
∨

pt

D(pt) ∧

⎡

⎣

∨

s≤mw,pt

[N sD(pt) ∧ ¬
∨

s1<s−1,t1

N s1D(pt1 ]

⎤

⎦

⎤

⎦ ∧ Sgi.
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Sgi = & if xi occurs positively in θj0 , and Sgi = ⊥ otherwise.

LEMMA 17. The valuation S(xi) is definable, and the following statements hold:
(a) there exist a frame F0 and a valuation V0 of variables in formulas defining S(x1) on F0 such

that (F0, 0) �V0 x1;
(b) given any valuation V4 of variables in formulas defining valuations S(xi) on any frame F,

the premise of the rule
∨

1≤j≤l

ϕj/x1 is valid on F under V4.

Proof. That S is definable was shown above.
(a) Let F = F1 be a model such as in Lemma 11. Recall that x1 is false on 0 in F1 under V1

(see Lemma 11), while V1(x1) and S(x1) on [0, ws] in F1 coincide.
(b) Take any frame F, an arbitrary valuation V4 for all variables pt introduced earlier, and any

element x in F.
(Step-1) First assume that for some D(pt),

x ∈ F, (F, x) �V4 D(pt).

By Lemma 15, a formula θ(u) is true for x under Vp. Then the valuation S coincides with Vp in
the interval [x, x + dist (t, ws + 3 × m)], and θ(u) will be true for x under S.

(Step-2) Consider the second case where

x ∈ |F| : (F, x) �V ¬
∨

∀pt

D(pt) ∧

⎡

⎣

∨

s≤mw,pt

(N spt ∧ ¬N s−1pt)

⎤

⎦ .

Let c be a least element greater than x with (F, c) �V D(pt). By Lemma 16, some formula θ(u) is
true on u under V2 for any d ∈ [0, c], and then V2 in the interval [x, c − 1] is again consistent with
S (does not extend it in this interval); i.e., ∀x ∈ [0, c − 1] (F, c) �S θ(u) for some θ(u).

(Step-3) Assume that (S1) and (S2) are invalid. Then the given element x is at a distance
greater than mw from those for which formulas D(pt) hold, and the truth of variables xi at x is
then defined only by the valuation V3; hence (F, x) �S ϕj0 (see Lemma 12(d)). �

Using Lemmas 11-13 and Theorem 14, we derive the following:

THEOREM 18. L(m,max) has a decidable admissibility problem. There exists an algorithm
for verifying admissibility of inference rules in L(m,max).
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