
Algebra and Logic, Vol. 58, No. 6, January, 2020

(Russian Original Vol. 58, No. 6, November-December, 2019)

FIELDS OF ALGEBRAIC NUMBERS
COMPUTABLE IN POLYNOMIAL
TIME. I

P. E. Alaev1∗ and V. L. Selivanov2∗∗ UDC 510.52+512.62+510.67

Keywords: field of complex algebraic numbers, ordered field of real algebraic numbers, polyno-
mially computable presentation.

It is proved that the field of complex algebraic numbers has an isomorphic presentation
computable in polynomial time. A similar fact is proved for the ordered field of real
algebraic numbers. The constructed polynomially computable presentations are based
on a natural presentation of algebraic numbers by rational polynomials. Also new
algorithms for computing values of polynomials on algebraic numbers and for solving
equations in one variable with algebraic coefficients are presented.

INTRODUCTION

The paper is devoted to investigation of algorithmic properties of the following two fields:
the field of complex algebraic numbers AC = (Calg,+,×) and the ordered field of real algebraic
numbers AR = (Ralg,�,+,×). A number α ∈ C is said to be algebraic over Q if p(α) = 0 for some
nonzero polynomial p(x) ∈ Q[x]. If p(x) is a polynomial of least degree with this property, then it
is called a minimal polynomial for α, and its degree is the degree of α. A minimal polynomial is

∗Supported by RFBR (project No. 17-01-00247) and by the RF Ministry of Science and Higher Education (state
assignment to Sobolev Institute of Mathematics, SB RAS, project No. 0314-2019-0002).

∗∗The work was carried out at the expense of the subsidy allocated to Kazan (Volga Region) Federal University
for the fulfillment of the state assignment in the sphere of scientific activity, project No. 1.13556.2019/13.1.

1Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia. Novosibirsk
State University, ul. Pirogova 1, Novosibirsk, 630090 Russia; alaev@math.nsc.ru. 2Ershov Institute of
Informatics Systems, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia. Kazan (Volga Region) Federal
University, ul. Kremlevskaya 18, Kazan, 420008 Russia; vseliv@iis.nsk.su. Translated from Algebra i Logika,
Vol. 58, No. 6, pp. 673-705, November-December, 2019. Original article submitted July 15, 2018; accepted
February 12, 2020.

0002-5232/20/5806-0447 c© 2020 Springer Science+Business Media, LLC 447

DOI 10.1007/s10469-020-09565-0

unique up to multiplication by a constant in Q. Let Calg = {α ∈ C | α is algebraic over Q} and
Ralg = Calg ∩ R. Then Calg is a subfield of (C,+,×).

If Σ is a finite alphabet then Σ∗ denotes the set of all words in the alphabet Σ. A structure C of
a finite language is computable in polynomial time (p-computable) if there exists a finite alphabet Σ
such that its universe C is a subset of Σ∗, and C and all its operations and relations are computable
in polynomial time. Some literature on this subject can be found [1]. We say that a structure C′ has
a p-computable presentation if there exists a p-computable structure C ∼= C′. It is well known that
the field of rational numbers Q has such a presentation. Using known algorithms, it is not hard
to show that every finite algebraic extension Q(α1, . . . , αk) also has a p-computable presentation.
One of the results of the paper is the following:

THEOREM A. The fields AC and AR have p-computable presentations, where the operations
−x and 1/x are p-computable.

The theorem cannot be thought of as being truly new. To construct a p-computable structure
AR

1
∼= AR, we code a number α ∈ Ralg by a word defining a pair (p(x), k), where p(x) ∈ Z[x]

is a minimal polynomial such that p(α) = 0, and k � 1 is the number of α in the ordered list
of all real roots α1 < α2 < . . . < αk of p(x). This is a quite known presentation which can be
found in literature. If α and β are specified by pairs (p1(x), k1) and (p2(x), k2), then we may define
in polynomial time whether α < β by applying a standard root isolation algorithm in [2], which
is based on the computation of a Sturm sequence and on a known estimation for the minimum
distance between real roots of a polynomial p(x) ∈ Z[x].

In order to define p-computable operations on pairs, we can use formulas in [3], which are based
on the computation of resultants: for example, if p1(α) = 0 and p2(β) = 0, then α + β is a root of
the polynomial resy(p1(x−y), p2(y)). In [3], a pair (p(x), I) is used to code an algebraic number α,
where p(α) = 0 and I = (a, b] is an interval in R with rational endpoints such that α is the unique
root of p(x) in I. Such an interval is said to be isolating for α. Applying a root isolation algorithm,
it is not hard to pass from the presentation (p(x), I) to (p(x), k) (or vice versa) in polynomial time,
where k � 1 is the number of a root.

If we have an arbitrary polynomial p(x) ∈ Z[x] such that p(α) = 0, then we can pass from it
to a minimal polynomial by applying a polynomial-time algorithm for decomposing a polynomial
into irreducible factors [4].

If a p-computable presentation AR
1 is constructed, then we may construct a p-computable

presentation AC
1

∼= AC by coding a complex algebraic number via its real and imaginary parts,
which are in Ralg. If necessary, therefore, the proof of Theorem A can be reduced to a combination
of a series of known polynomial algorithms and some additional constructions. The proof in the
present paper proceeds along essentially different lines.

We recall that a structure C of a finite language with universe C ⊆ Σ∗ is said to be computable if
C itself and all operations and relations are computable via some algorithms, without any explicit
restrictions on the working time. In [5], it was proved that if a field F is computable then its

448

algebraic closure also has a computable presentation. Using a computable presentation for Q, we
obtain a computable presentation for AC. In [6], a similar fact was proved: if an ordered field
is computable then its real closure also has a computable presentation. From this, we obtain
a computable presentation for AR. Theorem A is a natural strengthened version of the facts
mentioned. Their general proof can be found in [7].

Let AR
1 and AC

1 be the above-specified p-computable presentations over an alphabet Σ. A
more complicated part of the paper is related to some important algorithms in these structures.
For example, we can ask how quickly we can compute the function of iterated addition, i.e., the
function taking a word α1 ∗ α2 ∗ . . . ∗ αk to a word α1 + . . . + αk, where k � 1, αi ∈ AR

1 , and
∗ �∈ Σ. Generally, if a field F is p-computable then the function has exponential complexity. A more
general question asks the following: What is the complexity of the function taking t(x1, . . . , xk)
and α1 ∗ α2 ∗ . . . ∗ αk to t(α1, . . . , αk), where k � 1 and t(x̄) ∈ Q[x1, . . . , xk]?

We note that Theorem A asserts more than is stated: namely, Ralg and Calg have p-computable
presentations based on a quite standard and natural presentation of algebraic numbers, which is
closely related to computer algebra. Every question about the complexity of algorithms in AR

1 and
AC

1 is connected with corresponding questions for the algebra of polynomials over Q and for the
computer arithmetic of algebraic numbers, which is of considerable practical importance.

Some algorithms for computing the function t(x1, . . . , xk), α1 ∗ α2 ∗ . . . ∗ αk 	→ t(α1, . . . , αk)
are well known from literature. If k = 2 then we can apply formulas that use resultants similar to
those above, and in the general case, obtain a formula with k−1 successively applied resultants. To
compute the resultants, we have sufficiently good algorithms [8]. Nevertheless, direct applications
of such formulas produce algorithms with very bad estimations.

At the same time, the problem can be easily solved for the case k = 1, since the arithmetic in
a simple algebraic extension Q(α1) works very simply. In the general case, the standard algorithm
is to reduce the problem to the case k = 1. If α1, . . . , αk ∈ Calg then there exists θ ∈ Calg for
which Q(α1, . . . , αk) = Q(θ). Such θ is called a primitive element. Moreover, there is a polynomial
algorithm that, given two numbers α1, α2 ∈ Calg, finds θ ∈ Calg and two polynomials c1(x), c2(x) ∈
Q[x] such that Q(α1, α2) = Q(θ) and ci(θ) = αi for i = 1, 2. The algorithm was constructed in [3]
and can be found, for example, in [9, Sec. 5.4]. For many specialists in this area, the existence of such
an algorithm seems to be a sufficient reason for reducing the whole arithmetic of algebraic numbers
to the case of Q(θ) (see [10, Sec. 4.2; 11]). The method of searching a primitive element was used
in [12] for constructing an algorithm of quantifier elimination in Th(AR). Iterating the algorithm,
we can, given a tuple α1, . . . , αk, find a primitive element θ and polynomials ci(x), i � k, such that
αi = ci(θ). For fixed k, the method provides a polynomial algorithm for computing t(α1, . . . , αk).
However, how quickly its complexity grows with growing k seems to be a nontrivial question.

In [3], some estimations were given for computing θ and ci(x), i = 1, 2, for k = 2. However, it
has no estimations for the general case, and finding them seems to be an unwieldy computational
problem. Apparently, one of the stages of a general algorithm—computing ci(x) for i � k—requires

449

at least nck log(k)Ld steps, where n is the maximal degree of αi, i � k, L is the total input length of
the algorithm, and c and d are fixed constants. Possibly, final estimation would have a still worse
form.

In the present paper, we propose another algorithm (Thm. 4) for computing t(α1, . . . , αk). Our
algorithm does not use resultants and primitive elements and has an estimation for the number
of steps of the form nckLd. Moreover, the estimation can be written in the form (n1n2 . . . nk)cLd,
where ni is the degree of αi for i � k. It looks much better if ni are essentially different. Also there
are examples showing that this estimation cannot be improved, up to polynomial equivalence.

The second problem considered in the paper is finding roots of an equation with algebraic
coefficients, i.e., equations of the form αex

e + . . . + α1x + α0 = 0, where αi ∈ Calg for i � e. To
improve estimations, it is convenient to rewrite an equation in the form

te(α1, . . . , αk)xe + . . . + t1(α1, . . . , αk)x + t0(α1, . . . , αk) = 0,

where α1, . . . , αk ∈ Calg and tj(x̄) ∈ Q[x1, . . . , xk]. The problem is as follows. Given α1 ∗ . . . ∗ αk

in the constructed presentation AC
1 and a list of polynomials {tj(x̄)}j�e, we need to find a list of

all roots of the equation in AC
1 . Again we have well-known polynomial algorithms for solving the

problem for k = 1, and in the general case, we can pass from α1, . . . , αk to a primitive element (see
[3]). In searching for such as element, here we meet the same difficulties as those described above.

In the paper, we come up with a different algorithm for solving the problem mentioned. Again
our algorithm does not use resultants or primitive elements and has an estimation for working time
of the form (n1 . . . nk)cLd (Thm. 8).

In [13, 14], it was proved that for every infinite p-computable structure A, there exists a p-
computable structure A′ ∼= A such that A and A′ are not p-computably isomorphic. Therefore,
the fields AR and AC have other, essentially different p-computable presentations. In a subsequent
paper, we intend to discuss other presentations of AR and AC known in literature, and general
questions concerning the uniqueness of such presentations.

1. BASIC ARITHMETIC ALGORITHMS

As our basic model of computation we use multi-tape Turing machines (see, e.g., [15, Sec. 1.6]
for additional details). Let Σ be a finite alphabet and f : A → Σ∗, where A ⊆ (Σ∗)n. We say that
f is computable on a k-tape Turing machine T in t(x̄) steps, where t : A → N, if k � n + 1 and we
can write words x̄ = x1, . . . , xn in A on the first n tapes and run T , which stops in at most t(x̄)
steps with f(x̄) written on the (n + 1)th tape. (A more detailed definition can be found in [14]).

If t(x̄) = c|x̄|m for |x̄| �= 0, where c,m ∈ N and |x̄| = max
i�n

{|xi|}, then f(x̄) is said to be

computable on T in polynomial time (p-computable) and so on.
For a natural number n, the word b(n) = akak−1 . . . a1a0 in the alphabet {0, 1} is the binary

representation of n, where n = ak2k + ak−12k−1 + . . . + a12 + a0, ai ∈ {0, 1}, and ak �= 0 for k �= 0.

450

In this case L(n) = |b(n)| is called the length of n. If n �= 0 then L(n) = [log2(n)] + 1, where [β] is
the integer part of β ∈ R.

If a = −n, where n � 1, then we define b(a) = 0b(n), and again L(a) = |b(a)|. If α is a rational
number of the form a

b , where a, b ∈ Z are relatively prime and b > 0, then we put b(α) = b(a)∗b(b),
which is a word in the alphabet {0, 1, ∗}, and L(α) = |b(α)|. This definition somewhat conflicts
with the previous one because an integer a can be written both in the form b(a) and in the form
b(a) ∗ 1. Whether we deal with integers or rational numbers will usually be clear from the context.
We point out some well-known estimates for the arithmetic in Z.

LEMMA 1. Let x, x1, . . . , xk ∈ Z and k � 1. Then:
(a) L(−x) � L(x) + 1;
(b) L(x1 + x2) � max{L(x1),L(x2)} + 1;
(c) L(x1 + x2 + . . . + xk) � max

i�k
{L(xi)} + L(k);

(d) L(x1 · x2 · . . . · xk) � L(x1) + L(x2) + . . . + L(xk).
In the formulation of the next lemma, we use the symbol c which will also appear in what

follows. Often the working time of an algorithm is of the form cf(L), where L is the length of
input data and c is a fixed constant. To simplify formulations, we use the same symbol c (even if
its value is different in different situations) unless this leads to confusion. Usually, our constants
are not big, not exceeding 100. Whenever we deal with an algorithm on integers, we tacitly mean
that the integers are specified by their binary representations. For instance, in Lemma 2(a) below
we speak about an algorithm that takes the word b(x) as input and returns the word b(−x). A
number x � 0 can sometimes be given in the unary form 1x, where ax stands for a word of length
x consisting only of symbols a. By gcd[x, y] we denote the greatest common divisor of x and y.

LEMMA 2. Let x, x1, . . . , xk ∈ Z, k � 1, and M = max
i�k

{L(xi)}. Then, for some constant

c � 1, the following hold:
(a) −x is computed from x in time cL(x);
(b) x1 + x2 is computed from x1, x2 in time cmax{L(x1),L(x2)};
(c) x1 + x2 + . . . + xk is computed from the word b(x1) ∗ . . . ∗ b(xk) in time ck(M + L(k));
(d) x1 · x2 is computed from x1, x2 in time cL(x1) · L(x2);
(e) x1 · x2 · . . . · xk is computed from the word b(x1) ∗ . . . ∗ b(xk) in time ck2M2.

LEMMA 3. Let x ∈ N and x1, x2 ∈ Z. Then, for some constant c � 1, the following hold:
(a) the transfer from b(x) to 1x and back can be done in time c(x + 1);
(b) given x1, x2, where x2 �= 0, we can compute numbers q, r ∈ Z such that x1 = qx2 +r, where

0 � r < |x2|, in time cL(x1) · L(x2);
(c) given x1, x2, where x1 �= 0 or x2 �= 0, we can compute gcd[x1, x2] in time cmax{L(x1),

L(x2)}3.
Similar estimates can also be given for arithmetical operations in Q. Since these yield an

essentially worse result, all computations are, as a rule, done only with integers. We only observe

451

that the functions sending the word b(a1)∗b(a2)∗ . . . ∗b(ak) to b(a1 + . . .+ak) and b(a1 · . . . ·ak),
where ai ∈ Q for i � k, are p-computable.

If p(x) ∈ Q[x] and the variable x is fixed, then b(p(x)) = b(an) ∗ . . . ∗ b(a1) ∗ b(a0), where
p(x) = anxn + . . . + a1x + a0 and an �= 0 for n �= 0. As usual, L(p(x)) = |b(p(x))|. When
speaking about algorithms on Q[x], we tacitly identify p(x) with b(p(x)). Note that the degree
of a polynomial satisfies the relation deg[p(x)] � L(p(x)). In this encoding, the function sending
p(x) ∈ Q[x] and a ∈ Q to p(a) ∈ Q is p-computable.

Let Z[i] = {a + ib | a, b ∈ Z} and Q[i] = {a + ib | a, b ∈ Q}. Defining for these sets natural
binary encodings as b(a + ib) = b(a) ∗ b(b) and their length as L(a + ib) = |b(a + ib)|, we may
speak about algorithms on Z[i] and Q[i].

LEMMA 4. Let z, z1, . . . , zk ∈ Z[i], k � 1, and M = max
i�k

{L(zi)}. Then the following hold:

(a) L(−z) � L(z) + 2;
(b) L(z1 + . . . + zk) � 2(M + L(k));
(c) L(z1 · . . . · zk) � 2kM .
Proof. (c) Let zj = xj + iyj, where xj, yj ∈ Z. Then L(xj),L(yj) � M −2 for j � k. Removing

the parenthesis in (x1 + iy1)(x2 + iy2) . . . (xk + iyk), we see that z = z1 . . . zk = x + iy, where x

and y are sums of 2k−1 monomials, and each monomial a has the form ±xj1 . . . xjtye1 . . . yes , where
t+ s = k. Then L(a) � k(M −2)+1 and L(x),L(y) � k(M −2)+1+L(2k−1), where L(2k−1) = k.
Therefore, L(z) � L(x) + L(y) + 1 � 2kM . �

Since the length of the product z1 · . . . ·zk grows linearly in k, it is easy to see that the functions
sending the word b(z1) ∗ . . . ∗ b(zk) to b(z1 + . . . + zk) and b(z1 · . . . · zk), where zi ∈ Z[i] for i � k,
are p-computable. The same is true for the case zi ∈ Q[i].

2. ENCODING ALGEBRAIC NUMBERS

For a commutative ring R with 1 and without divisors of 0, by R[x] we denote the set of all
polynomials in a variable x with coefficients in R. We will mainly work with polynomials in Z[x]
and Q[x]. Now we briefly recall some properties of polynomials. If p(x) = anxn + . . . + a1x + a0,
where ai ∈ Q and an �= 0 for n �= 0, then n is called the degree of p(x) and is denoted by deg[p(x)].
The number an is the leading coefficient of p(x). If an = 1 or (n = 0 and an = 0), then the
polynomial is said to be normalized. If p1(x), p2(x) ∈ Q[x] and p2(x) �= 0 then there exist unique
polynomials q(x), r(x) ∈ Q[x] such that p1(x) = q(x)p2(x) + r(x), where deg[r(x)] < deg[p2(x)] or
r(x) = 0.

We say that p2(x) divides p1(x) in Q[x], p2(x) | p1(x), if there is q(x) ∈ Q[x] with q(x)p2(x) =
p1(x). A polynomial ph(x) is a greatest common divisor of p1(x) and p2(x) if ph(x) | pi(x) for i = 1, 2
and the fact that q(x) | pi(x) for i = 1, 2 implies q(x) | ph(x). A greatest common divisor always
exists and is unique up to multiplication by a nonzero constant in Q. The normalized greatest
common divisor is denoted by gcd[p1(x), p2(x)].

452

A polynomial p(x) ∈ Q[x] is irreducible in Q[x] if deg[p(x)] � 1 and the equality p(x) =
p1(x)p2(x) implies that deg[p1(x)] = 0 or deg[p2(x)] = 0. If p(x) is an irreducible polynomial
and p(x) | p1(x)p2(x), then p(x) | p1(x) or p(x) | p2(x). Every nonzero polynomial p(x) ∈ Q[x] is
representable as

p(x) = ap1(x)p2(x) . . . pk(x),

where a ∈ Q and pi(x) are normalized irreducible polynomials, and such a representation is unique
up to factor permutation.

The derivative p′(x) of a polynomial p(x) = anxn + an−1x
n−1 + . . . + a2x

2 + a1x+ a0 is defined
as nanxn−1 + (n − 1)an−1x

n−2 + . . . + 2a2x + a1. If

p(x) = a[p1(x)]e1 [p2(x)]e2 . . . [pk(x)]ek ,

where a ∈ Q, pi(x) are normalized irreducible polynomials, ei � 1, and pi(x) �= pj(x) for i �= j,
then

gcd[p(x), p′(x)] = [p1(x)]e1−1[p2(x)]e2−1 . . . [pk(x)]ek−1.

In particular, p(x)/ gcd[p(x), p′(x)] = ap1(x) . . . pk(x).
A polynomial p(x) is square free if, in the factorization above, ei = 1 for i � k. This is equivalent

to gcd[p(x), p′(x)] = 1. In every field that extends Q, the roots of p(x) and p(x)/ gcd[p(x), p′(x)]
coincide.

If p(x) ∈ Z[x] and α1 < α2 < . . . < αn are all its distinct real roots then the separator of p(x)
is defined as Δp = min

1�i<j�n
|αi −αj |. For n � 1 or p(x) = 0, we put Δp = ∞. The next result gives

a lower bound for the separator.

THEOREM 1 (Mahler, see [16, Sec. 7.2.12]). Let p(x) ∈ Z[x] be a polynomial of degree n � 2
and gcd[p(x), p′(x)] = 1. Then

Δp �
√

3

n
n+2

2 |p(x)|n−1
1

.

Here |p(x)|1 = |an|+ |an−1|+ . . . + |a0| if p(x) = anxn + an−1x
n−1 + . . . + a0. The theorem implies

PROPOSITION 1. There is a p-computable function that, given a polynomial p(x) ∈ Q[x],
finds a number δp ∈ Q such that 0 < δp � Δp.

Proof. If deg[p(x)] � 1 then Δp = ∞, and we can set δp = 1. Let deg[p(x)] = n � 2. A brief
proof sketch is as follows. First we compute p′(x), find gcd[p(x), p′(x)], and then replace p(x) by
the square-free polynomial p(x)/ gcd[p(x), p′(x)]. A complication is associated with the fact that
the standard Euclidean algorithm of finding gcd[p(x), p′(x)] is not polynomial.

A modified version of the algorithm mentioned is the method of subresultant residues based on
works of Silvester (1853) and Gabicht (1948) (see [16, Sec. 5.2.3]). It constructs in polynomial time
a sequence of polynomials which differs from the usual sequence in Euclid’s algorithm by some
additional factors, and thus finds gcd[p(x), p′(x)].

453

Let p(x) be square free. If we multiply it by the product of denominators of all coefficients
we obtain p(x) ∈ Z[x]. Find then k = |p(x)|1 and use the formula given in Theorem 1, replacing√

3 by 1 and n
n+2

2 by nn+2. The computation of kn−1 requires c(n − 1)2L(k)2 steps, and since
L(p(x)) � n, this time is polynomial; the same holds for nn+2. �

The next theorem is based on an algorithm for approximating real roots of a polynomial, which
uses Sturm’s method. Being a minor modification of a corresponding algorithm in [2], it can be
thought of as being well known.

THEOREM 2. There exists a p-computable function that, given a nonzero polynomial p(x) ∈
Q[x], k ∈ ω, and ε ∈ Q, ε > 0, solves the following two problems:

(a) determines whether p(x) has at least k distinct real roots;
(b) if it has and α1 < α2 < . . . < αm are all real roots of p(x) then it finds a, b ∈ Q such that

αk ∈ (a, b) and |a − b| � ε.
Proof. We give a brief proof sketch. Arguing as in Proposition 1, we may assume that p(x)

is square free. Find a Sturm sequence sseq (x) = (p(x), p′(x), p3(x), . . . , ph(x)). It is constructed in
essentially the same way as the sequence in Euclid’s algorithm and can be computed in polynomial
time.

If a1, a2, . . . , an is a sequence in R, then the sign alternation number in this sequence is the
number of pairs (i, j) such that 1 � i < j � n, ai · aj < 0, and at = 0 for i < t < j. Sturm’s
theorem says that the number of roots of p(x) in the interval (a, b] equals v(a)− v(b) if v(a) is the
sign alternation number in the sequence sseq (a) for a ∈ R. Since the sequence of polynomials is
found in polynomial time, its components have bounded length, and the function that computes
v(a) from a ∈ Q and p(x) is p-computable. Because v(a) � h � deg[p(x)], it does not matter
whether we speak about b(v(a)) or about 1v(a).

From the coefficients of p(x), we can find a number M ∈ Q such that all roots of p(x) are in
the interval (−M,M). If v(−M) − v(M) < k then αk does not exist. Otherwise, we subsequently
divide the interval (−M,M) in half searching for αk: namely, we define a sequence of intervals
(at, bt) such that |at − bt| = M

2t−1 and αk ∈ (at, bt) for all t. If (at, bt) is found then we compute
ct = at+bt

2 , check whether ct is a root of p(x), and find v(ct). With v(at) and v(bt) computed, it is
not hard to determine which of the intervals (at, ct) and (ct, bt) contains αk.

If in the search process we find a precise value αk ∈ Q, then (αk − ε/2, αk + ε/2) is the desired
interval. Otherwise, the process continues until |at−bt| � ε. Therefore, the last step t0 is determined
by the formula M

2t0−1 � ε, which is equivalent to log2(
M
ε) + 1 � t0. Put t0 = [log2(

M
ε)] + 2.

By construction, at = Ma′
t

2t and bt = Mb′t
2t , where −2t � a′t < b′t � 2t. In particular, a′0 = −1,

b′0 = 1, and a′t+1, b
′
t+1 ∈ {2a′t, 2b′t, a′t + b′t}. We obtain L(a′t),L(b′t) � c(L(M) + t0) and t0 �

c(L(M) + L(ε)), where c ∈ ω. The total estimate for the number of steps is polynomial. �

Let p(x) ∈ Q[x] and k � 1. We say that a pair (p(x), k) encodes a number α ∈ R if p(x) �= 0,
p(x) has at least k real roots, and α = αk, where α1 < α2 < . . . < αn are all real roots of p(x). We
say that pairs (p(x), k) and (q(x),m) are equivalent ((p(x), k) ∼ (q(x),m)) if they encode the same

454

number. By the standard binary representation of a pair (p(x), k) we mean the word b(p(x))∗b(k).

COROLLARY 1. A set of pairs (p(x), k) which encode some number and an equivalence
relation on such pairs are p-computable.

Proof. Verification that (p(x), k) encodes some number is straightforward from Theorem 2.
Let (p(x), k) encode a number α ∈ R and (q(x),m) encode a number β. Then α and β are roots
of the polynomial r(x) = p(x)q(x). Applying Proposition 1, we find δr ∈ Q such that the distance
between distinct roots of r(x) is at least δr. We set ε = δr/3, and using Theorem 2, find intervals
Iα = (a1, b1) and Iβ = (a2, b2) such that α ∈ Iα, β ∈ Iβ, and |ai − bi| � ε for i = 1, 2. If α = β

then Iα ∩ Iβ �= ∅. If α �= β and Iα ∩ Iβ �= ∅, then the distance between two distinct roots of r(x)
is at most 2ε, which is impossible. Therefore, α = β ⇔ Iα ∩ Iβ �= ∅, which is a p-computable
condition. �

COROLLARY 2. Let a pair (p(x), k) encode α ∈ R and q(x) ∈ Q[x]. Then there is a p-
computable function that, given p(x), k, and q(x), determines whether α is a root of q(x), and if
yes, then it finds m � deg[q(x)] such that (p(x), k) ∼ (q(x),m).

Proof. We simply go through all m � deg[q(x)], and for each such m, verify the condition
(p(x), k) ∼ (q(x),m) by using Corollary 1. �

COROLLARY 3. Let pairs (p(x), k) and (q(x),m) encode numbers α and β, respectively.
Given these pairs, we can determine in polynomial time whether α < β, and if yes, find ε ∈ Q such
that |β − α| � ε > 0.

Proof. We construct r(x) = p(x)q(x), and using Corollary 2, find k1,m1 ∈ ω for which
(p(x), k) ∼ (r(x), k1) and (q(x),m) ∼ (r(x),m1). Then α < β ⇔ k1 < m1 and |α − β| � δr,
where δr is the number found by applying Prop. 1. �

Whenever we specify an algebraic number by a minimal polynomial, the number is determined
up to a constant. To provide uniqueness, we should normalize it in some way. In order to stay within
Z[x], this can be done by using primitive polynomials. A polynomial p(x) ∈ Z[x] is primitive
if p(x) �= 0 and the greatest common divisor of its coefficients is 1. Every p(x) ∈ Q[x] \ {0}
may be represented as p(x) = ap∗(x), where a ∈ Q and p∗(x) is a primitive polynomial. Such a
representation is unique up to a sign: if p∗(x) = bp∗1(x), where b ∈ Q and p∗(x), p∗1(x) are primitive,
then b ∈ {1,−1}.

THEOREM 3 [4, Thm. 3.6]. There exists a p-computable function that, given a polynomial
p(x) ∈ Q[x], finds a tuple of polynomials p1(x), . . . , pn(x) ∈ Q[x] irreducible in Q[x] such that
p(x) = p1(x) . . . pn(x). In particular, we can determine in polynomial time whether p(x) is
irreducible in Q[x].

Proof. The algorithm in [4, Thm. 3.6] is described only for primitive polynomials p(x) ∈ Z[x].
In the general case we should represent p(x) as ap∗(x), where a ∈ Q and p∗(x) is primitive. �

We say that (q(x),m) is a natural code for α ∈ Ralg if q(x) is a primitive irreducible polynomial
in Z[x] with positive leading coefficient, and the pair (q(x),m) encodes α.

455

COROLLARY 4. Given a pair (p(x), k), which encodes α ∈ Ralg, we can find in polynomial
time a unique natural code (q(x),m), which encodes the same number.

Proof. We find a decomposition p(x) = p1(x)·. . . ·pn(x) into irreducible factors and then, by an
exhaustive search, find a pair (i,m) such that i � n, m � deg[pi(x)], and (p(x), k) ∼ (pi(x),m). To
pass from pi(x) ∈ Q[x] to a primitive polynomial, we multiply pi(x) by the product of denominators
of its coefficients, and then divide by their greatest common divisor. All these computations are
doable in polynomial time.

The uniqueness of the natural code is well known: if q(α) = 0 and q(x) is irreducible then it is
a minimal polynomial for α which is unique up to a constant in Q. �

Let (q(x),m) be a natural code for α. The degree deg[q(x)] is called the degree of a number α

and is denoted deg[α]. Let b(α) = b(q(x))∗b(m) and Ralg = {b(α) | α ∈ Ralg}. We will sometimes
identify α with b(α).

It is known that a number γ = α + iβ, where α, β ∈ R, is algebraic iff both α and β are
algebraic. A constructive proof of this fact is implicitly contained in Lemma 10. If γ ∈ Calg then
we define b(γ) = b(α) + b(β), which is a word in the alphabet {0, 1, ∗,+}. Let Calg = {b(γ) |
γ ∈ Calg}. Speaking about Calg, we sometimes identify γ ∈ Calg with b(γ). As in the case of
reals, deg[γ] is the minimal degree of a polynomial q(x) ∈ Z[x] \ {0} for which q(γ) = 0. Put
degR[γ] = max{deg[α],deg[β]}.

3. PSEUDO-DIVISION OF POLYNOMIALS

First, we need exact estimates for a pseudo-division algorithm. Let p(x), q(x) ∈ Z[x], q(x) �= 0,
n = deg[p(x)] � k = deg[q(x)], and b be the leading coefficient of q(x). Pseudo-division of p(x) by
q(x) is searching for unique polynomials p∗(x) and r(x) ∈ Z[x] for which

bn−k+1p(x) = p∗(x)q(x) + r(x),

where deg[r(x)] < deg[q(x)] or r(x) = 0. The polynomial r(x) is called the pseudo-remainder and
p∗(x) is called the pseudo-quotient. Pseudo-division differs from the usual division of polynomials in
Q[x] in that it is always possible not going beyond Z[x]. If n < k, then p∗(x) = 0 and r(x) = p(x).

PROPOSITION 2. The operation of pseudo-division p(x), q(x) 	→ p∗(x), r(x) in Z[x] is p-
computable.

More precisely, let p(x) = anxn + . . .+a1x+a0 and q(x) = bkx
k + . . .+b1x+b0, where ai, bj ∈ Z

and L(ai),L(bj) < M for all i and all j. Then, for n �= 0, the length of coefficients of p∗(x) and
r(x) is at most 2n(M + L(k)), while the working time of the algorithm with n, k �= 0 for some
c � 1 can be estimated as

ckn2(M + L(k))2.

456

Proof. The division algorithm for polynomials is well known. Let n � k � 1. Define b = bk

and ⎧
⎨

⎩

p0(x) = bn−k+1p(x),

ps+1(x) = ps(x) − csx
n−k−sq(x)

for all s � n − k. The numbers cs ∈ Z are chosen so that the coefficients at xn−s in ps(x) and
csx

n−k−sq(x) will coincide. Then deg[ps(x)] � n − s and

p0(x) =

(
n−k∑

s=0

csx
n−k−s

)

q(x) + p(n−k)+1(x),

and we can put r(x) = p(n−k)+1(x) and p∗(x) =
n−k∑

s=0
csx

n−k−s. Assuming that cs = 0 for s < 0, it

is easy to deduce an inductive formula

cs = bn−kan−s −
1
b

k−1∑

j=0

(cs−k+jbj)

for all s � n−k. The formula follows directly from the obvious inductive formula for the coefficients
of ps(x). By induction on s � n−k, it is easy to show that b(n−k)−s | cs, and hence all cs are integers.
From the formula above, we derive the inductive estimate

L(cs) � (n − k + 1)M + s(M + L(k + 1)).

Therefore, L(cs) � L0 = (2n − 2k + 1)M + (n − k)L(k + 1) for all s � n − k. An estimate for
coefficients of r(x) is L0 +M +L(k +1); for k �= 0, it does not exceed 2n(M +L(k)). If k = 0 then
p∗(x) = bn−kp(x).

Consequently, the same estimate holds for all numbers involved in intermediate computations
for obtaining {cs}s�n−k. Clearly, most of the working time is taken by arithmetical operations; the
cost of reading and writing intermediate values is obviously smaller. For instance, while inductively
computing cs, we save the sequence b(c0) ∗ b(c1) ∗ . . . ∗ b(cs) on a separate tape, and every time
we read from it the last k elements, which requires at most ckL0 steps.

During the computation of one cs, most of the time is consumed by multiplications that require
ckn(M + L(k))2 steps; for all s � n − k, this takes ckn2(M + L(k))2 steps. Every coefficient of
r(x) requires at most k multiplications of cs and coefficients of q(x), followed by k additions, which
does not exceed the estimate ckn(M + L(k))2. For all k coefficients, this yields ck2n(M + L(k))2

steps. All the above expressions do not exceed the total estimate. �

4. COMPUTING VALUES OF POLYNOMIALS

We fix a natural lexicographic order on a set ω∗. If I ⊆ ω∗, I = {i0 < i1 < . . . < in}, ai, i ∈ I,
are words in some alphabet, and b is a new symbol, then we define

Cb
i∈Iai = ai0bai1b . . . bain .

457

Fix a sequence of variables x1, x2, Every polynomial t(x̄) in Q[x1, . . . , xn] is representable as

t(x̄) =
∑

(s1,...,sk)∈I

qs1,...,sk
xs1

1 xs2
2 . . . xsk

k ,

where I ⊆ ω∗, I �= ∅, sk �= 0 for k �= 0, qs1,...,sk
∈ Q, and qs1,...,sk

�= 0 for k �= 0. Define

b(t(x̄)) = 1m ∗ C+
(s1,...,sk)∈Ib(qs1,...,sk

) ∗ b(s1) ∗ . . . ∗ b(sk),

where m = max
(s1,...,sk)∈I

{si}. As usual, by L(t(x̄)) we denote |b(t(x̄))|. The added word 1m makes

this encoding polynomially equivalent to the above-mentioned encoding for Z[x] with k = 1.

PROPOSITION 3. There exists an algorithm that, given k � 1 and nonzero polynomials
p1(x), . . . , pk(x) ∈ Z[x] and t(x1, . . . , xk) ∈ Q[x1, . . . , xk], finds a nonzero polynomial q(x) ∈ Z[x]
such that if α1, . . . , αk ∈ C and pi(αi) = 0 for i � k then q(t(α1, . . . , αk)) = 0.

More precisely, the algorithm sends words C+
i�kb(pi(x)) and b(t(x̄)) to the word b(q(x)). Let

ni = deg[pi(x)] for i � k and let n = max
i�k

{ni}. The working time for n1n2 . . . nk �= 0 can be

estimated as (n1n2 . . . nk)cLd, or nckLd, where c and d are fixed constants and L is the total input
length. For k fixed, the algorithm is polynomial. Furthermore, deg[q(x)] � n1n2 . . . nk.

Proof. If ni = 0 for some i � k, then the number αi does not exist, and so we can put q(x) = 1.
Suppose ni � 1 for i � k. Denote by bi the leading coefficient of pi(x). We may assume that bi > 0.
Let L(a) < M for an arbitrary coefficient a of any polynomial pi(x), i � k. Below we present
several algorithms assuming that, along with the objects specified in the formulation above, they
take as inputs polynomials pi(x), i � k. Let αi be some numbers in C for which pi(αi) = 0. The
algorithms do not depend on the choice of these numbers. �

LEMMA 5. There exists a p-computable function that, given pi(x), where i � k, and 1s,
s � 0, finds a tuple (cs,i

0 , . . . , cs,i
ni−1) in Z such that

αs
i =

1
bs
i

∑

t<ni

cs,i
t αt

i. (1)

Furthermore, L(cs,i
t) � 3s(M + L(ni)) for s �= 0, L(cs,i

t) = 1 for s = 0, and the working time is
bounded by cn2

i (s + 1)2(M + L(ni))2 steps for some constant c � 1.
Proof. If s < ni then αs

i = 1
bs
i
(bs

iα
s
i). Suppose s � ni. By Proposition 2, we obtain bs−ni+1

i xs =
p∗(x)pi(x)+r(x), where r(x) ∈ Z[x], deg[r(x)] < ni, and L(a) � 2s(M +L(ni)) if a are coefficients
of r(x). These coefficients generate the desired tuple since pi(αi) = 0 and αs

i = 1

b
s−ni+1
i

r(αi) =
1
bs
i
(bni−1

i r(αi)). Multiplying the coefficients by bni−1
i increases the length to (ni − 1)M � s(M +

L(ni)), which yields an estimate of the same form.
The time for pseudo-division is cnis

2(M +L(ni))2, and the degree bni−1
i is computed in cn2

i M
2

steps, which does not exceed the desired estimate. �

458

LEMMA 6. There exists an algorithm that, given 1t1 ∗ . . .∗1tk and 1s1 ∗ . . .∗1sk , where ti < ni

and si � 0, finds a number ds1,...,sk
t1,...,tk

∈ Z for which

αs1
1 αs2

2 . . . αsk
k =

1
bs
1b

s
2 . . . bs

k

∑

ti<ni

ds1,...,sk
t1,...,tk

αt1
1 αt2

2 . . . αtk
k , (2)

where s = max
i�k

{si}. Furthermore, L(ds1,...,sk
t1,...,tk

) � 3ks(M + L(n)) for s �= 0 and 1 for s = 0, and the

working time is bounded by ck2n2(s + 1)2(M + L(n))2.
Proof. Let e = bs−s1

1 . . . bs−sk
k . Using (1) and removing parenthesis, we have ds1,...,sk

t1,...,tk
=

ecs1,1
t1 . . . csk,k

tk
. The estimate for L(cs,i

t) implies that L(ds1,...,sk
t1,...,tk

) �
k∑

i=1

[
(s − si)M + 3si(M +

L(ni))
]

� 3ks(M + L(n)). The working time involves computing all cs,i
ti

, i � k, which requires
ckn2(s+1)2(M +L(n))2 steps, computing their product in ck2(s+1)2(M +L(n))2 steps, computing
e in ck2(s + 1)2M2 steps, and multiplying these. �

Let u = n1n2 . . . nk. Then u � nk.

LEMMA 7. There exists an algorithm that, given 1s, s � 1, and a tuple e, {et1 ,...,tk}ti<ni in
Z, finds a tuple es, {es

t1,...,tk
}ti<ni in Z such that

if β =
1
e

∑

ti<ni

et1,...,tkαt1
1 . . . αtk

k , then βs =
1
es

∑

ti<ni

es
t1,...,tk

αt1
1 . . . αtk

k . (3)

Suppose also that L(e),L(et1,...,tk) � T for ti < ni, i � k, and R = T + M + L(n). Then
L(es),L(es

t1,...,tk
) � 10sknR.

The algorithm works inductively and the transition from a decomposition for βs to a
decomposition for βs+1 takes csk2n4u3R2 steps. To obtain the final estimate, we should multiply
the last expression by s.

Proof. In this algorithm, (2) will be used only for the case where si � 2n for all i � k. In such
a situation, it seems convenient to think that

αs1
1 αs2

2 . . . αsk
k =

1
d

∑

ti<ni

ds1,...,sk
t1,...,tk

αt1
1 αt2

2 . . . αtk
k ,

where d = (b1 . . . bk)2n. For this, the coefficients in (2) should be multiplied by (b1 . . . bk)2n−s. Since
L(d) � 2knM , we may now assume that L(ds1,...,sk

t1,...,tk
) � 8kn(M + L(n)) � 8knR, and the time for

computing a single coefficient is ck2n4R2.
Suppose that equality (3) holds for βs. Simplifying the expression βs+1 = βsβ, removing

parenthesis, and using (2), we see that es+1 = esed and

es+1
t1,...,tk

=
∑

t′i,t
′′
i <ni

[
d

t′1+t′′1 ,...,t′k+t′′k
t1,...,tk

es
t′1,...,t′k

et′′1 ,...,t′′k

]
. (4)

This implies L(es),L(es
t1,...,tk

) � 10sknR because L(n2k) � 2kL(n). The same estimate holds for
all numbers appearing while using (4) for es+1

t1,...,tk
.

459

Now we estimate the time of transition from βs to βs+1. Suppose that numbers ds1,...,sk
t1,...,tk

are
already found. Each summand in (4) requires two multiplications, i.e., at most ck2n2sR2 steps.

Since the numbers ds1,...,sk
t1,...,tk

permanently appear in our computations, it seems natural to
compute them once, save, and use when needed. However, in this case their list with about 2u2

entries should be kept on a separate tape, and reading from it a single element requires searching
through the entire list. Computing them anew takes only ck2n4R2 steps. The total time for one
summand in (4) equals csk2n4R2.

The formula consists of u2 summands, hence the total time for computing the multiplications
equals csk2n4u2R2. Computing the sums requires at most cu2(csknR + L(u2)) steps, L(u2) �
2kL(n), which is less than the time for multiplications. Since formula (4) is used u times, the whole
time for transition from βs to βs+1 can be estimated by the expression specified in the lemma.

We briefly describe the entire algorithm for computing (4). Choose the lexicographic ordering
on tuples (t1, . . . , tk), where ti < ni, i � k, one tape keeps a list {es

t′1,...,t′k
}t′i<ni

in this order, and

another one keeps a similar list {et′′1 ,...,t′′k
}t′′i <ni

. To obtain one es+1
t1,...,tk

we proceed as follows: look
through elements of the first list, and for each of these, look through the second list; compute the
corresponding products and then sum them all up. In this process we organize counters (t′1, . . . , t

′
k)

and (t′′1 , . . . , t
′′
k), working with which is not time-consuming. �

LEMMA 8. There exists an algorithm that, given b(t(x1, . . . , xk)), finds a tuple of numbers
e, {et1,...,tk}ti<ni in Z such that if β = t(α1, . . . , αk) then

β =
1
e

∑

ti<ni

et1,...,tkαt1
1 . . . αtk

k . (5)

Suppose also that
t(x1, . . . , xk) =

∑

(s1,...,sk)∈I

qs1,...,sk
xs1

1 xs2
2 . . . xsk

k ,

m = max
(s1,...,sk)∈I

{si}, and L(a) < F , where a is the numerator or denominator of qs1,...,sk
. Then

L(e),L(et1,...,tk) � |I|F+4km(M+L(n)), and the working time is bounded by ck2m2n2u|I|2F 2(M+
L(n))2.

Proof. At a first step, we converge t(x̄) to the form 1
f

∑

(s1,...,sk)∈I

fs1,...,sk
xs1

1 . . . xsk
k , where

f, fs1,...,sk
∈ Z. Let f be the product of all denominators of coefficients in t(x̄). Then L(f) � |I|F

and its computation requires a run through b(t(x̄)) and multiplication of |I| numbers, i.e.,
c(m + |I|(kL(m) + F) + |I|2F 2) steps, which does not exceed the total estimate. Then we again
run through b(t(x̄)) and rewrite it, replacing qs1,...,sk

by fs1,...,sk
= fqs1,...,sk

and replacing the
monomial encoding b(s1) ∗ . . . ∗ b(sk) by 1s1 ∗ . . . ∗ 1sk . Furthermore, L(fs1,...,sk

) � |I|F , and the
first operation takes c|I|2F 2 steps while the second one is effected in ckm|I| steps.

Let b = b1 . . . bk. Moving along the list of monomials and using (2) for each, we obtain

460

formula (5) where e = fbm and

et1,...,tk =
∑

(s1,...,sk)∈I

fs1,...,sk
bm−sds1,...,sk

t1,...,tk
, (6)

where s in every summand stands for max{s1, . . . , sk}.
Here L(ds1,...,sk

t1,...,tk
) � 3km(M + L(n)), and the time of its computation is ck2m2n2(M + L(n))2.

In each sum of form (6), the computation should be repeated |I| times, doing so for each et1,...,tk ,
whose number is u. Therefore, the whole time for computing the numbers ds1,...,sk

t1,...,tk
is bounded

by ck2m2n2u|I|(M + L(n))2, which does not exceed the total estimate. Since the length of every
component is known, it is not hard to estimate the time needed for multiplications and summations
in (6), which also fits in the total estimate. �

Let β = t(α1, . . . , αk). It remains to find a nonzero polynomial q(x) ∈ Z[x] with q(β) = 0. Using
Lemma 8, we can find a tuple ē1 ∈ Q

u such that β = ē1ā, where ā is a column vector of numbers
{αt1

1 αt2
2 . . . αtk

k }ti<ni in some fixed order. Applying Lemma 7, we find tuples ē2, . . . , ēu ∈ Q
u such

that βs = ēsā for s � u. In addition, β0 = ē0ā = 1 · α0
1α

0
2 . . . α0

k. Since the dimension of the vector
space Q

u equals u, there is a nonzero tuple λ0, λ1, . . . , λu ∈ Q for which λ0ē0 + . . . + λuēu = 0. In
this case λ0 + λ1β + . . . + λuβu = 0, which gives the required polynomial.

We form a matrix A = [ē0ē1 . . . ēu] of size u × (u + 1), considering ēs as columns. Let λ̄ =
(λ0, . . . , λu)� be a column vector. The problem reduces to finding a nonzero solution for the system
Aλ̄ = 0.

Combining the estimates in Lemmas 7 and 8, we see that the length of numerators and
denominators of the numbers in A is bounded by 10knu(|I|F + 5km(M + L(n)). Let L be the
total input length of the algorithm that is currently under construction. Then the last expression
can be rewritten as uLd, where d is a fixed degree because L � 2.

To find a vector λ̄, we apply the theorem saying that Gauss’s method for solving systems of
linear equations over Q works in polynomial time, which requires subtle estimates for the numbers
appearing in realizing the method (see [17, Thm. 3.3]). Gauss’s method transforms the system into
[B C]λ̄ = 0, where B is a diagonal matrix of size u × u, if we admit column permutations (and
hence also permutations of elements λ̄). Setting then λu = 1, we easily find the desired λ̄.

In the notation of [17], the input size for Gauss’s algorithm is the sum of all lengths of elements
of the matrix A, i.e., a number of the form u3Ld, and the working time is bounded by cu3rLdr

where r � 1 is a fixed number; the same estimate holds for the length of elements of the vector λ.
Since L � 2, the constant c may be removed. The time estimates from Lemmas 7 and 8 also do
not exceed this formula. Passing from Q[x] to Z[x], we see that q(x) is found in time stated in the
formulation. Proposition 3 is proved. �

LEMMA 9. Let n � 1 and a1, . . . , an, b1, . . . , bn ∈ C. Then

|b1b2 . . . bn − a1a2 . . . an| � nMn−1ε,

where ε = max
i�n

|bi − ai| and M = max
i�n

{|ai|, |bi|}.

461

Proof. It suffices to note that

b1b2 . . . bn − a1a2 . . . an =
n∑

t=1

b1 . . . bt−1at+1 . . . an(bt − at).

This can be shown by induction, using the equality b1b2 . . . bn+1 − a1a2 . . . an+1 = b1 . . . bn(bn+1 −
an+1) + an+1(b1 . . . bn − a1 . . . an). From which we derive an estimate for |b1b2 . . . bn − a1a2 . . . an|,
which completes the proof. �

LEMMA 10. (a) There exists a p-computable function that, given a polynomial q(x) ∈ Z[x] \
{0}, finds two polynomials q1(x), q2(x) ∈ Z[x] \ {0} such that if α, β ∈ R and q(α + iβ) = 0 then
q1(α) = q2(β) = 0. Furthermore, deg[q1(x)],deg[q2(x)] � deg[q(x)]2.

(b) There exists a p-computable function that realizes the inverse operation: given polynomials
q1(x), q2(x) ∈ Z[x] \ {0}, it finds a polynomial q(x) ∈ Z[x] \ {0} such that if α, β ∈ R and
q1(α) = q2(β) = 0 then q(α + iβ) = 0. Furthermore, deg[q(x)] � 2 deg[q1(x)] deg[q2(x)].

Proof. (a) We suppose that γ = α + iβ, where α, β ∈ R, and q(γ) = 0. It is well known that
q(γ̄) = 0, where γ̄ = α− iβ. Applying Proposition 3 to α1 = γ, α2 = γ̄, and t(x1, x2) = 1

2(x1 +x2),
we obtain a polynomial q1(x) ∈ Z[x] \ {0} for which q1(α) = 0 and deg[q1(x)] � deg[q(x)]2.
Applying the same proposition to γ, γ̄, and 1

2(x1 − x2), we arrive at a polynomial p(x) such that
deg[p(x)] � deg[q(x)]2 and p(iβ) = 0. Let p(x) = anxn +an−1x

n−1 + . . .+a1x+a0. If we substitute
iβ for x and compute it with t � n we can easily obtain a polynomial q2(x) ∈ Z[x] for which
q2(β) = 0 and deg[q2(x)] � deg[p(x)].

(b) Let q1(α) = q2(β) = 0. If we apply Proposition 3 to α1 = α, α2 = β, α3 = i and to a
polynomial x1 + x2x3 we arrive at q(x). �

In particular, deg[γ] � 2degR[γ]2 for every algebraic number γ ∈ C.

LEMMA 11. There exists a p-computable function that, given γ ∈ Calg and ε ∈ Q, ε > 0,
finds a ∈ Q[i] with |γ − a| � ε. If, in addition, γ is real, then a ∈ Q.

Proof. Let γ = α + iβ, where α, β ∈ R. As input of the algorithm, we use pairs (p1(x),m1)
and (p2(x),m2) that encode α and β, respectively. By Theorem 2, we can find numbers a1, a2 ∈ Q

such that |α − a1|, |β − a2| � ε/2. If a = a1 + ia2 then |γ − a| � ε.
If, in addition, β = 0, we just set a = a1. �

THEOREM 4. There exists an algorithm that, given k � 1, α1, . . . , αk ∈ Calg, and
t(x1, . . . , xk) ∈ Q[x1, . . . , xk], finds β = t(α1, . . . , αk) ∈ Calg.

More precisely, given the words C&
i�kb(αi) and b(t(x1, . . . , xk)), the algorithm finds a word

b(β). Let ni = deg[αi], i � k, and n = max
i�k

{ni}. The working time of the algorithm is bounded by

(n1n2 . . . nk)cLd, or nckLd, where c and d are fixed constants and L is the total input length.
In particular, for every fixed k, we obtain a p-computable function that computes values for
polynomials in Calg. Moreover, deg[β] �

∏

i�k

deg[αi].

The proof is based on the following lemma.

462

LEMMA 12. There exists a p-computable function that, given k � 1, α1, . . . , αk ∈ Calg, a
polynomial t(x1, . . . , xk) ∈ Q[x1, . . . , xk], and ε ∈ Q, ε > 0, finds a number a ∈ Q[i] such that
|a − t(α1, . . . , αk)| � ε.

Proof. First, we consider the case t(x1, . . . , xk) = xs1
1 xs2

2 . . . xsk
k , where sk � 1. Using Lemma 11

k times, we find numbers a0
i ∈ Q[i] for which |αi−a0

i | � 1 with i � k. Then |αi| � |a0
i |+1. Suppose

b = max
i�k

{|a0
i |} + 1.

Let n = s1 + s2 + . . . + sk. By the definition of a polynomial encoding, si � L(t(x̄)) for
i � k, whence n � kL(t(x̄)) � L(t(x̄))2. The number ε1 = min

{
ε

n(b+1)n−1 , 1
}

can be found in
polynomial time. Using Lemma 11 again, we find ai ∈ Q[i] such that |αi − ai| � ε1, and then set
a = as1

1 as2
2 . . . ask

k . By Lemma 9, |αs1
1 . . . αsk

k − a| � n(b + 1)n−1ε1 � ε since |ai| � |αi|+ ε1 � b + 1.
Consider now the case of an arbitrary polynomial

t(x̄) =
∑

(s1,...,sk)∈I

qs1,...,sk
xs1

1 . . . xsk
k .

Let ε1 = ε/|I|. Moving along the list of monomials, for each (s1, . . . , sk) ∈ I, we find a number
as1,...,sk

∈ Q[i] such that |qs1,...,sk
αs1

1 . . . αsk
k − as1,...,sk

| � ε1. To do this, we use the previous
algorithm to find a′ ∈ Q[i] satisfying the condition |αs1

1 . . . αsk
k − a′| � ε1/|qs1,...,sk

|, and then set
as1,...,sk

= qs1,...,sk
a′. Whenever all these numbers are found, we put a =

∑

(s1,...,sk)∈I

as1,...,sk
. �

The algorithm takes as input polynomials in Z[x], whose roots are the real and imaginary parts
of αi. Using Lemma 10 k times, we find polynomials pi(x) ∈ Z[x] \ {0} such that pi(αi) = 0 for
i � k. At the moment, we assume that ni = deg[pi(x)]. The equality ni = deg[αi] may fail to
hold in general. Let u = n1n2 . . . nk. Applying Proposition 3, we find q(x) ∈ Z[x] \ {0} such that
q(β) = 0. Since pi(x) were obtained in polynomial time, this takes ucLd steps; a similar estimate
holds for the length of q(x), and deg[q(x)] � u.

Let β = β′ + iβ′′. Using Lemma 10 again, we find q1(x), q2(x) ∈ Z[x] \ {0} such that q1(β′) =
q2(β′′) = 0. Moving through all numbers s � deg[q1(x)], we find a list β′

1, . . . , β
′
e of all real roots

of q1(x), which are encoded by pairs (q1(x), s), and then find a list β′′
1 , . . . , β′′

f of all roots of q2(x).
As a result, we obtain a list of numbers z1, . . . , zm ∈ Calg of the form β′

s + iβ′′
t , among which are

all complex roots of q(x).
Computing an estimate δq1 for the minimal distance between real roots of q1(x) and computing

a similar estimate δq2 for q2(x), we obtain ε = min{δq1 , δq2} such that |zi − zj | � ε for i �= j.
By Lemma 12, we find a ∈ Q[i] with |a − β| � ε/5, and by Lemma 11, for each j � m we find
aj ∈ Q[i] with |aj − zj | � ε/5. In this case β = zj ⇔ |a − aj | � 2ε/5, and such j can be found by
an exhaustive search.

If we consider α1, . . . , αk, t(x̄) and q(x) as input data of the algorithm, then the last part of
the proof can be done in polynomial time. Consequently, the whole estimate for working time has
the form ucLd. In particular, the algorithm is polynomial for k = 1 since deg[p1(x)] � 2degR[α1]2.

Now, in order to achieve the equality ni = deg[αi], we return to the beginning of the proof.

463

Having found pi(x), we decompose it into irreducible factors, i.e., pi(x) = q1(x) . . . qr(x). Using the
described algorithm to compute q1(α), . . . , qr(α) ∈ Calg, we find j with qj(α) = 0, and then set
pi(x) = qj(x). �

As mentioned in the Introduction, the estimate for working time in Theorem 4 seems asympto-
tically better than an estimate obtained by first finding a primitive element for Q(α1, . . . , αk). Now
we give an example showing that our estimate is in a sense best possible. In [18], the following fact
was proved.

THEOREM 5. Let p1, . . . , pk be distinct primes and n1, . . . , nk � 1. Then the extension
degree satisfies the equality [Q(p1/n1

1 + . . . + p
1/nk

k) : Q] = n1n2 . . . nk.
Let p1, . . . , pk be the first k primes. Then pk � 2k. We consider arbitrary numbers n1, . . . , nk � 1

and set αi = p
1/ni

i for i � k. The number αi is coded by the pair (xni − pi,m), where m ∈ {1, 2},
L(αi) � 2ni +k+5, and L(α1 ∗ . . .∗αn) � 2(n1 + . . .+nk)+k2 +6k. If t(x1, . . . , xk) = x1 + . . .+xk

then L(t) � k2 + 6k. In this case L(α1 + . . .+ αk) � n1n2 . . . nk since the length of a number is not
less than the degree of its minimal polynomial.

This implies that the algorithm in Theorem 4 cannot be polynomial even in computing
polynomials of the form x1 + . . . + xk, and the estimate specified in that theorem is bounded by
a polynomial in L and by the best possible lower bound n1n2 . . . nk. Moreover, if, in our example,
ni = n for i � k and L∗ = |α1 + . . . + αk|, then a lower bound for L∗/Ld as k → ∞ is close to nk,
and therefore the estimate in Theorem 4 cannot be radically improved.

5. POLYNOMIAL PRESENTATIONS FOR Ralg AND Calg

THEOREM 6. The ordered field of algebraic reals AR has a p-computable presentation AR
1 =

(Ralg,�,+,×), in which the functions x 	→ −x and x 	→ 1
x for x �= 0 are also p-computable.

Proof. The set Ralg has been constructed above. For α ∈ Ralg, the transfer from b(α) ∈ Ralg to
a corresponding word in Calg and vice versa is easy, so Theorem 4 implies that the operations x+y,
x × y, and −x are p-computable, while Corollary 3 gives p-computability of the order relation. It
remains to prove this for 1

x .
Let (p(x), k) be the natural code for α ∈ Ralg and p(x) = anxn + . . . + a1x + a0. If α �= 0

then 1
α is a root of a polynomial p1(y) = ynp(1

y) = an + an−1y + . . . + a1y
n−1 + a0y

n. Suppose
α > 0. Using Corollary 3, we find ε0 ∈ Q with 0 < ε0 � α and δp1 ∈ Q with 0 < δp1 � Δp1 .
Let ε = min

{
δp1ε2

0
4 , ε0

2

}
. Now we find a, b ∈ Q such that a < α < b and |b − a| � ε. Then

α − a < ε0
2 and α − ε0

2 � ε0
2 , whence α − ε0

2 > α − a and a > ε0
2 . Furthermore, 1

b < 1
α < 1

a and
1
a − 1

b = b−a
ab � b−a

a2 < ε 4
ε2
0

� δp1 .

Since the interval (1
a , 1

b) contains at most one root of p1(y), it remains to find m � n such that
the pair (p1(y),m) encodes a number in this interval. �

THEOREM 7. The field (Calg,+,×) of complex algebraic numbers has a p-computable
presentation AC

1 = (Calg,+,×), in which the operations −x and 1
x are also p-computable.

464

Proof. The set Calg has been defined above; the p-computability of functions x+ y, x× y, and
−x follows directly from Theorem 4. The function 1

x is expressed via the operations in AR
1 using

the formula 1
y+iz = y−iz

y2+z2 . �

6. SOLVING EQUATIONS WITH ONE VARIABLE

THEOREM 8. There exists an algorithm that, given k � 1, α1, . . . , αk ∈ Calg, and poly-
nomials t0(x̄), . . . , te(x̄) ∈ Q[x1, . . . , xk], finds a list β1, . . . , βg ∈ Calg of all complex roots of the
equation

te(α1, . . . , αk)xe + . . . + t1(α1, . . . , αk)x + t0(α1, . . . , αk) = 0.

More exactly, it maps the words C&
i�kb(αi) and C&

p�eb(tp(x̄)) into a word C&
j�gb(βj). Let ni =

deg[αi] for i � k, n = max
i�k

{ni}, and L be the total input length of the algorithm. Its working time

can be estimated as (n1n2 . . . nk)cLd, or nckLd, where c and d are fixed constants. In particular,
we obtain a polynomial root-finding algorithm for equations if k is fixed or n = 1. In addition,
deg[βj] � e

∏

i�k

deg[αi] for j � g.

Proof. First, we consider the case where te(x̄) = −1, i.e., an equation has the form xe =
te−1(ᾱ)xe−1 + . . . + t1(ᾱ)x + t0(ᾱ), where ᾱ = α1, . . . , αk. Each polynomial tp(x̄) is representable
as

∑

(s1,...,sk)∈Ip

qp
s1,...,sk

xs1
1 . . . xsk

k ,

where Ip ⊆ ωk. We will assume that Ip = I for all p < e. Computing the product f of denominators
of all coefficients of polynomials and then multiplying the polynomials by f , we may also assume
that each tp(x̄) has the form 1

f

∑

(s1,...,sk)∈I

fp
s1,...,skxs1

1 . . . xsk
k , where f, fp

s1,...,sk ∈ Z. Denote by m the

maximum of powers in all polynomials, i.e., m = max
(s1,...,sk)∈I

{si}. We may suppose that m � 1. If

e = 1 then the only root of the equation is t0(ᾱ). A value for this polynomial can be computed in
a specified number of steps using Theorem 4. Below we assume that e � 2.

Applying Lemma 10, we find pi(x) ∈ Z[x] \ {0} such that pi(αi) = 0 for i � k. Arguing as
in Theorem 4, we may suppose that pi(x) is irreducible and deg[pi(x)] = ni. Let bi > 0 be the
leading coefficient of pi(x). Suppose also that L(a) < M if a is a coefficient of pi(x), i � k. Put
u = n1n2 . . . nk.

Let β be a root of the initial equation. Then

βe =
∑

p<e

tp(α1, . . . , αk)βp =
1
f

∑

p<e

∑

(s1,...,sk)∈I

fp
s1,...,sk

αs1
1 . . . αsk

k βp.

We describe an algorithm that, given 1s, s � 1, finds a set es, {es
t1 ,...,tk,p}

p<e
ti<ni

of numbers in Z such
that

βs =
1
es

p<e∑

ti<ni

es
t1,...,tk,pα

t1
1 . . . αtk

k βp. (7)

465

If s < e then es = 1 and es
t1,...,tk,p ∈ {0, 1}. Here Lemma 6 is used in the following form: we assume

that αs1
1 . . . αsk

k = 1
d

∑

ti<ni

ds1,...,sk
t1,...,tk

αt1
1 . . . αtk

k , where d = (b1b2 . . . bk)m+n, since it will be applied only

for cases with si � m + n.
Let s = e. Then

βs =
1
fd

∑

p<e

∑

(s1,...,sk)∈I

∑

ti<ni

fp
s1,...,sk

ds1,...,sk
t1,...,tk

αt1
1 . . . αtk

k βp,

i.e., es = fd and es
t1,...,tk,p =

∑

(s1,...,sk)∈I

fp
s1,...,skd

s1,...,sk
t1,...,tk

.

Assume that s � e and formula (7) holds for βs. Then

βs+1 = βsβ =
1
es

1�p<e∑

ti<ni

es
t1,...,tk,p−1α

t1
1 . . . αtk

k βp +
1
es

∑

t′i<ni

es
t′1,...,t′k,e−1α

t′1
1 . . . α

t′k
k βe.

Writing out the second summand, we obtain

1
esf

∑

t′i<ni

∑

p<e

∑

(s1,...,sk)∈I

es
t′1,...,t′k,e−1f

p
s1,...,sk

α
t′1+s1

1 . . . α
t′k+sk

k βp

=
1

esfd

p<e∑

ti<ni

[∑

t′i<ni

∑

(s1,...,sk)∈I

es
t′1,...,t′k,e−1f

p
s1,...,sk

d
t′1+s1,...,t′k+sk

t1,...,tk

]
αt1

1 . . . αtk
k βp.

Therefore, es+1 = esfd and

es+1
t1,...,tk,p = fdes

t1,...,tk,p−1 +
∑

t′i<ni

[
es
t′1,...,t′k,e−1 ·

∑

(s1,...,sk)∈I

fp
s1,...,sk

d
t′1+s1,...,t′k+sk

t1,...,tk

]
, (8)

where the first summand vanishes if p = 0.
We estimate the working time of the algorithm. Suppose that L(a) < F , where a is the

nominator or denominator of qp
s1,...,sk . To compute f , we go along the list t0(x̄), . . . , te−1(x̄) and

multiply denominators, whose number is |I0| + . . . + |Ie−1| � e|I|. Going along the list again,
we rewrite it replacing rational coefficients by integer ones. To obtain I = I1 ∪ . . . ∪ Ie−1, we
may write down all words b(s1) ∗ . . . ∗ b(sk), where (s1, . . . , sk) ∈ Ip, p < e, and sort them in
lexicographic order, removing repetitions. Then, for every (s1, . . . , sk) ∈ I, we go along the list of
polynomials and extract fp

s1,...,sk , replacing missing coefficients by zeros. As the result, we construct
a list {fp

s1,...,sk}
p<e
(s1,...,sk)∈I , ordered in lexicographic order on I, in polynomial time with respect to

L. Hence L(f), L(fp
s1,...,sk) < e|I|F and the length of the list does not exceed 2e2|I|2F .

Clearly, L(d) � k(m + n)M . The initial estimation given in Lemma 6 is L(ds1,...,sk
t1,...,tk

) � 3k(m +
n)(M + L(n)) for si � m + n, i � k. Here these coefficients should be multiplied by a number not
greater than d, and L(ds1,...,sk

t1,...,tk
) � 4k(m+n)(M +L(n)). Let R = 2e|I|F +5kmn(M +L(n)). Then

L(d),L(ds1,...,sk
t1,...,tk

) � R. Formula (8) easily implies that L(es
t1,...,tk,p) � sR for s � 1. The estimation

(s + 1)R also holds for all intermediate numbers appearing in the computation of (8) for es+1
t1,...,tk,p.

466

We show that one number es+1
t1,...,tk,p is computed in csn2u|I|R2 steps. First, we go along the

entire list {es
t1,...,tk,p}

p<e
ti<ni

, extracting es
t1,...,tk,p−1 for p �= 0 and the set {es

t′1,...,t′k,e−1}t′i<ni
in cseuR

steps. Next, we go through all tuples (t′1, . . . , t
′
k), where t′i < ni, whose number is u, compute the

sum
∑

(s1,...,sk)∈I

fp
s1,...,skd

t′1+s1,...,t′k+sk

t1,...,tk
for each, and multiply it by es

t′1,...,t′k,e−1. Since the lengths of all

values are known, it is easy to prove that most of the time is required for computing coefficients
d

t′1+s1,...,t′k+sk

t1,...,tk
, which should be done u|I| times, and for multiplying the sum by es

t′1,...,t′k,e−1, which
should be done u times. One coefficient can be computed in cn2R2 steps, and computation of one
product takes csR2 steps. The result fits in the general estimation.

We see that the transition from a decomposition for βs to a decomposition for βs+1 can be
effected in csen2u2|I|R2 steps.

Our further reasoning proceeds as in Theorem 4. Let ā be a column vector of length eu consisting
of numbers {αt1

1 . . . αtk
k βp}p<e

ti<ni
in a fixed order. Applying the previous algorithm, we find tuples

ē0, . . . , ēeu ∈ Q
eu such that βs = ēsā for s � eu. The initial equation can have many roots β,

but these tuples do not depend on the choice of β by construction. There exists a nonzero set
λ0, λ1, . . . , λeu ∈ Q for which λ0ē0 + . . . + λeuēeu = 0. Hence λ0 + λ1β + . . . + λeuβeu = 0, and we
have found a polynomial q(x) ∈ Q[x] of degree not greater than eu such that all roots of the initial
equation are its roots.

In order to find λ0, . . . , λeu, we consider a matrix A = [ē0ē1 . . . ēeu]. The total length of binary
representations of all elements in A has the form u3Ld, where d is a fixed power. Applying Gauss’s
polynomial method, we find q(x) in time ucLd1 .

Again we proceed as in Theorem 4: given q(x), we construct polynomials q1(x), q2(x) ∈ Z[x]\{0}
such that if β = β′ + iβ′′, where β′, β′′ ∈ R, then q1(β′) = q2(β′′) = 0. Going through all real roots
of q1(x) and q2(x), we create a list z1, . . . , zh ∈ Calg that includes all roots of q(x). This operation
can be effected in polynomial time with respect to q(x).

It remains to check which zj are roots of the initial equation. To do this, for each j � h, we
compute the expression

ze
j − te−1(α1, . . . , αk)zk−1

j − . . . − t0(α1, . . . , αk),

which can be treated as a polynomial in zj , α1, . . . , αk. The coefficients of the polynomial are
computed from coefficients of tp(x̄), p < e, in polynomial time. The number h does not exceed
deg[q1(x)] · deg[q2(x)] � e4u4, deg[zj] � eu, deg[αi] = ni for i � k, and the total number of steps
for computing roots can be again estimated via an expression of the form (n1n2 . . . nk)cLd.

Now we consider the general case where te(α1, . . . , αk) is an arbitrary polynomial. First,
compute the value te(α1, . . . , αk) using Theorem 4. If it is equal to 0, then the problem is reduced
to an equation of smaller degree, and further we can proceed by induction.

Suppose te(α1, . . . , αk) �= 0. Let αk+1 = −1/te(α1, . . . , αk). Then the problem is reduced to the
equation

xe = αk+1te−1(α1, . . . , αk)xe−1 + . . . + αk+1t0(α1, . . . , αk).

467

Here deg[αk+1] � u, and L(αk+1) � ucLd for some constants c and d. Considering the coefficients
of the equation as polynomials in α1, . . . , αk+1, we can apply the previous algorithm and obtain a
list of roots in uc1Ld1 steps, with new constants c1 and d1.

The estimation of the degree of a root follows from the observation that the extension degree
[Q(α1, . . . , αk) : Q] does not exceed u, and each root β is a root of an equation of degree e with
coefficients in Q(α1, . . . , αk). Hence [Q(β) : Q] � [Q(α1, . . . , αk, β) : Q] � eu. �

COROLLARY 5. There exists a polynomial algorithm that, given α0, . . . , αe ∈ Calg lying in
Q[i], finds a list β1, . . . , βg ∈ Calg of all complex roots of the equation

αex
e + αe−1x

e−1 + . . . + α1x + α0 = 0.

Proof. If we set α = i we can consider every αp as a polynomial tp(α) for p � e. �

Acknowledgments. We are grateful to S. S. Goncharov for discussing the results of the paper,
which allowed us to improve their formulations.

REFERENCES

1. D. Cenzer and J. B. Remmel, “Complexity theoretic model theory and algebra,” in Handbook
of Recursive Mathematics, Vol. 1, Recursive Model Theory, Y. L. Ershov, S. S. Goncharov,
A. Nerode, and J. B. Remmel (Eds.), Stud. Log. Found. Math., 138, Elsevier, Amsterdam
(1998), pp. 381-513.

2. G. E. Collins and R. Loos, “Real zeroes of polynomials,” in Computer Algebra. Symbolic and
Algebraic Computations, Comput. Suppl., 4, Springer-Verlag, New York (1982), pp. 83-94.

3. R. Loos, “Computing in algebraic extensions,” in Computer Algebra: Symbolic and Algebraic
Computations, Comput. Suppl., 4, Springer-Verlag, New York (1982), 173-187.

4. A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Math. Ann., 261, 515-534 (1982).

5. M. O. Rabin, “Computable algebra, general theory and theory of computable fields,” Trans.
Am. Math. Soc., 95, 341-360 (1960).

6. Yu. L. Eršov, “Theorie der Numerierungen. III,” Z. Math. Logik Grundl. Math., 23, No. 4,
289-371 (1977).

7. S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian],
Nauch. Kniga, Novosibirsk (1999).

8. G. E. Collins, “The calculation of multivariate polynomial resultants,” J. Assoc. Comput.
Mach., 18, No. 4, 515-532 (1971).

9. F. Winkler, Polynomial Algorithms in Computer Algebra, Texts Monogr. Symb. Comput.,
Springer, Wien (1996).

468

10. H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts Math., 138,
Springer-Verlag, Berlin (1993).

11. C. K. Yap, Fundamental Problems of Algorithmic Algebra, Oxford Univ. Press, Oxford (2000).

12. G. E. Collins, “Quantifier elimination for real closed fields by cylindrical decomposition,” in
Lect. Notes Comput. Sci., 33 (1975), pp. 134-183.

13. P. E. Alaev, “Existence and uniqueness of structures computable in polynomial time,” Algebra
and Logic, 55, No. 1, 72-76 (2016).

14. P. E. Alaev, “Structures computable in polynomial time. I,” Algebra and Logic, 55, No. 6,
421-435 (2016).

15. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA (1974).

16. A. Akritas, Elements of Computer Algebra with Applications, Wiley (1989).

17. A. Schrijver, Theory of Linear and Integer Programming, Wiley (1998).

18. Jianping Zhou, “On the degree of extensions generated by finitely many algebraic numbers,”
J. Number Th., 34, No. 2, 133-141 (1990).

469

	INTRODUCTION
	1. BASIC ARITHMETIC ALGORITHMS
	2. ENCODING ALGEBRAIC NUMBERS
	3. PSEUDO-DIVISION OF POLYNOMIALS
	4. COMPUTING VALUES OF POLYNOMIALS
	5. POLYNOMIAL PRESENTATIONS FOR Ralg AND Calg
	6. SOLVING EQUATIONS WITH ONE VARIABLE
	REFERENCES

