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It is proved that the universal equivalence of general or special linear groups of orders
greater than 2 over local commutative rings with 1/2 is equivalent to the coincidence of
orders of groups and universal equivalence of respective rings.

INTRODUCTION

This paper is a continuation of [1]. We will look into universal equivalence of linear groups over
local rings. Our objective is to prove an analog of Mal’tsev’s theorem [2] stating that general and
special linear groups over commutative local rings with 1/2 are universally equivalent iff the order
of groups is at least 3.

A. I. Mal’tsev in [2] proved the theorem in which necessary and sufficient conditions are specified
under which linear groups over fields are elementarily equivalent. Namely, the groups G n(K) and
G m(L) (G = GL ,SL ,PGL ,PSL ; K and L are fields characteristic 0) are elementarily equivalent
iff m = n and the fields K and L are elementarily equivalent. Logical properties of linear groups may
be studied not only in the frames of an elementary theory, but also in the frames of a restricted—
universal—theory, when formulas admit only one kind of quantifiers. For the case of linear groups
over fields, a universal equivalence criterion, similar to the elementary equivalence criterion, holds;
this result was expounded in [1]. A natural generalization of this case—universal equivalence of
linear groups over local rings—is the subject of the present investigation.
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1. PRELIMINARIES

We assume that all rings are associative, commutative and contain an identity element.

Definition 1. A commutative associative ring with 1 is local if it contains only one maximal
ideal.

The above definition implies that if R is a local ring and I is its maximal ideal, then I coincides
with the set of all noninvertible elements of the ring R. Note also that if the sum of two elements is
invertible in such a ring, then at least one of the two elements is invertible. For more information
concerning local commutative rings, see [1].

We briefly recall basic notions associated with universal equivalence. For a more detailed
presentation of definitions and auxiliary statements, see [3].

Definition 2. A formula ϕ of a signature Σ is universal (existential) if its prenex normal form
is the following:

Q1x1 . . . Qnxnψ(x1, . . . , xn),

where Q1 = . . . = Qn = ∀ (Q1 = . . . = Qn = ∃), and ψ is quantifier-free.

Definition 3. Two algebraic systems A and B of a signature Σ are said to be universally
equivalent (existentially equivalent) if, for every universal (existential) sentence ϕ in the signature
Σ, the following condition holds:

A |= ϕ ⇐⇒ B |= ϕ.

A set of universal (existential) sentences {ϕ | A |= ϕ} of the signature Σ is called a universal
(existential) theory of the system A and is denoted by Th∀(A) (Th∃(A)). Thus A ≡∀ B ⇔ Th∀(A) =
Th∀(B) ⇔ Th∃(A) = Th∃(B) ⇔ A ≡∃ B. The last two relations hold in view of quantifier
dependence.

We will use the following criterion for universal equivalence: two algebraic systems of the same
finite signature are universally equivalent iff every finite submodel of one system has an isomorphic
submodel in the other system and vice versa.

In the present paper, we prove the following:

THEOREM. Let R1 and R2 be local commutative rings with 1/2. Groups G n(R1) and
G m(R2) (G = GL , SL , m,n � 3) are universally equivalent if and only if n = m and the rings
R1 and R2 are universally equivalent.

Proving the simpler implication that universal equivalence of rings implies universal equivalence
of linear groups is similar to the proof for the field case given in [1]. Note that the statement is
also true for n = m < 3.

Now we turn to a more difficult implication: universal equivalence of linear groups implies
universal equivalence of respective rings and coincidence of sizes.

Note that if linear groups are universally equivalent, then the rings R1 and R2 are either
both finite or both infinite. For finite systems, being universally equivalent coincides with being
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isomorphic. Hence the statement of the theorem follows immediately from [4], in which it was
proved that for natural n,m � 3, the following conditions are equivalent:

(1) n = m and R1
∼= R2;

(2) GL n(R1) ∼= GL m(R2),
(3) SL n(R1) ∼= SL m(R2),

where R1 and R2 are local commutative rings with 1/2.
Therefore, below we will assume that R1 and R2 are infinite.

2. PROOF OF THE THEOREM

The statement on coincidence of orders is a consequence of the fact that in a group G n(R)
(G = GL , SL ) over a local commutative ring R with 1/2, all pairwise commuting involutions are
diagonalizable in a common basis; for local rings, this fact was proved in [5].

Below we assume that n > 2.
Denote by MI a fixed maximal set of pairwise commuting involutions. In a common basis, all

involutions of MI are diagonal matrices with ±1 on the diagonals. Fix one of such bases. Note that
MI is partitioned into conjugacy classes, of which each consists of just those matrices that have
an equal number of −1’s on the diagonals in the basis chosen. We introduce the notation for some
subsets of MI.

First consider SL n(R) with odd n and GL n(R). In the set MI, the smallest conjugacy classes,
except for a one-element one (if any), consist of n elements. These are conjugacy classes composed
of matrices with −1 occurring on the diagonal once or n−1 times. The classes are distinguished by
an existential formula. Note that a formula calculating the number of elements in two conjugacy
classes distinguishes each of the two classes, but does not say which. Denote by I1 one (no matter
which) of these classes.

For SL n(R) with even n � 4, we denote by I2 the following subset of MI: matrices with −1
occurring exactly twice on the diagonal. The subset I2 is distinguished by an existential formula,
as in [1, Lemma 26]. We give an appropriate argument. Subsets composed of matrices having n−2
or two −1 on the diagonal are conjugacy classes each of which consists of C2

n elements. The other
conjugacy classes, except one that consists of a single element −E, have more elements. If n = 4,
then the conjugacy class composed of C2

n elements is unique, and it is exactly the subset that we
are interested in.

Let n = 6. By multiplying all elements of a conjugacy class of matrices with two −1’s on the
diagonal, we obtain −E, since this class contains C1

5 = 5 matrices with −1 at a fixed place. If we
multiply all elements of a conjugacy class containing matrices with four −1’s, then we obtain an
identity matrix, since among matrices of that class there are exactly C3

5 matrices with −1 at a
fixed place. Thus, for n = 6, among matrices of the system MI we can distinguish those on the
diagonal of which −1 occurs exactly twice.
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Let n > 8. Among the matrices with two −1’s on the diagonal, there always exist three matrices
the product of the first two of which equals the third. However, if we multiply any two matrices
on the diagonal of which −1 occurs n − 2 times we obtain a matrix of another conjugacy class.

The fact that the set MI of matrices is distinguished by an existential formula implies that the
form of diagonal matrices is preserved under isomorphism of a submodel containing all matrices
of MI.

LEMMA 1. Let R1 and R2 be infinite local commutative rings with 1/2 and let G n(R1) ≡∀

G n(R2) (G = GL , SL ). Suppose also that M1 is an arbitrary finite submodel of G n(R1)
containing MI, and M2 is a finite submodel of G n(R2) isomorphic to M1 (its existence follows
from the universal equivalence criterion).

Then, for any isomorphism
Φ: M1 → M2,

the matrix σ12 = E − E11 − E22 − E12 + E21 is mapped to a matrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 . . . 0
1 0 0 . . . 0
0 0 ±1
...

...
. . .

0 0 ±1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

in a basis in which the form of matrices in MI will not be changed.
Proof. There are two cases to consider:
Case 1. Let G = GL or G = SL for odd n. We make use of the fact that σ12 commutes with

all but two matrices in the set I1. Denote the two matrices by I1 and I2, assuming that the jth
place on the diagonal in Ij is occupied by an element that differs from all other diagonal elements.
Below, in dealing with this case, we will use the notation Iij = IiIj, i �= j.

Case 2. Let G = SL and n be even. First, among matrices of the system I2, we choose one,
say, I12, assuming that the first and second places on the diagonal are occupied by (−1). Then we
consider matrices in I2 whose product with I12 yields a matrix not in I2. All of these matrices, as
well as I12, commute with σ12. In any case we will have an image of the following form:

Φ(σ12) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d11 d12 0 . . . 0
d21 d22 0 . . . 0
0 0 d33 . . . 0
...

...
...

. . .
...

0 0 0 . . . dnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Next we use the relations σ2
12 = I12. For images, we obtain⎛

⎜⎜⎜⎜⎜⎜⎜⎝

d2
11 + d12d21 d11d12 + d12d22 0 . . . 0

d21d11 + d22d21 d21d12 + d2
22 0 . . . 0

0 0 d2
33 . . . 0

...
...

...
. . .

...
0 0 0 . . . d2

nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which, in view of the fact that a local ring contains 1/2, immediately implies that dii = ±1 for
2 < i � n.

Now consider the first case. We make use of yet another relation σ12I1σ12 = I1. Using this, for
images we derive the following (writing out only the corner block):(

d11 d12

d21 d22

) (
−1 0
0 1

)(
d11 d12

d21 d22

)
=

(
−d2

11 + d12d21 −d11d12 + d12d22

−d21d11 + d22d21 −d21d12 + d2
22

)

=

(
−1 0
0 1

)
.

Adding and subtracting the respective elements of the matrices in the second and third relations,
we conclude that 2d12d21 = −2; i.e., d12d21 = −1, 2d22d21 = 0, and 2d11d12 = 0, which, in view of
d12 and d21 being invertible, implies that d11 = d22 = 0.

Consider the second case. Here we use the relation σ12I13σ
−1
12 = I23. (In system I2, we fixed

a matrix which under multiplication by I12 yields a matrix in I2 and denoted it by I13; then
I23 = I12I13.) For images, we have the following (again we write out only the corner block):

1
d11d22 − d12d21

(
d11 d12

d21 d22

)(
−1 0
0 1

)(
d22 −d12

−d21 d11

)

=
1

d11d22 − d12d21

(
−d2

11 − d12d21 d11d12 + d12d22

−d11d21 − d22d21 d12d21 + d2
22

)
=

(
1 0
0 −1

)
.

Notice first that d11d22−d12d21 = ±1 (which follows from the second relation). If d11d22−d12d21 =
1, then similarly we derive 2d12d21 = −2 and d22 = d11 = 0. If d11d22−d12d21 = −1, then we obtain
a contradiction. In fact, consequences of the second and third relations hold, i.e., d2

11 = d2
22 = 1

and d11d12 = d22d21 = 0, while the invertibility of d11 and d22 yields d12 = d21 = 0. Then Φ(σ12)
commutes with all matrices in MI, which is not true in our case.

Thus

Φ(σ12) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −α 0 . . . 0
1
α 0 0 . . . 0
0 0 ±1
...

...
. . .

0 0 ±1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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where α is an invertible element of the ring. It remains to make a change of basis generated by the
matrix diag [1/α, 1, . . . , 1], commuting with all elements of MI. �

Remark. In exactly the same way, we can prove that a matrix σ23 with a block −E12 + E21

at the intersection of the second and third rows with the second and third columns preserves its
form. Arguing as in Lemma 1, first we see that

Φ(σ23) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±1 0 0 0 . . . 0
0 0 −β 0 . . . 0
0 1

β 0 0 . . . 0

0 0 0 ±1
...

...
...

. . .
0 0 0 ±1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and then make a change of basis generated by the matrix diag [1, 1, β, 1, . . . , 1], which commutes
with all elements of MI and with σ12.

LEMMA 2. Let R1 and R2 be infinite local commutative rings with 1/2 and let G n(R1) ≡∀

G n(R2) (G = GL , SL ). Suppose also that M1 is an arbitrary finite submodel of G n(R1)
containing a finite set of matrices such as in the previous lemma and the matrix diag [2, 1, 1/2,
1, . . . , 1], and M2 is a finite submodel of G n(R2) isomorphic to M1. Then, for any isomorphism

Φ: M1 → M2,

the matrix E + E12 is mapped into a matrix of the same form in a basis in which the matrices σ12

and σ23 in MI are form preserving.
Proof. As in the proof of Lemma 1,

Φ(E + αE12) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t11 t12 0 . . . 0
t21 t22 0 . . . 0
0 0 t33 . . . 0
...

...
...

. . .
...

0 0 0 . . . tnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix diag [2, 1, 1/2, 1, . . . , 1] commutes with all matrices in MI, and so Φ(diag [2, 1, 1/2,
1, . . . , 1]) = diag [α1, . . . , αn], where all αi are invertible. From the relation diag [2, 1, 1/2,
1, . . . , 1](E +αE12)(diag [2, 1, 1/2, 1, . . . , 1])−1 = (E +αE12)2, for images we conclude that t2ii = tii

with all 3 � i � n. All tii with 3 � i � n are invertible and, consequently, are equal to 1.
Now we can confine ourselves to just corner blocks of dimension 2 or (wherever necessary) 3.

Use will be made of the following three relations:

((E + E12)I23)2 = E,

(σ12(E + E12))3 = I12,
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E + E12 commutes with σ23(E + E12)σ−1
23 .

(The second relation implies that all diagonal elements of Φ(σ12) except the first and second ones
equal 1.)

We will write these relations for images with due regard for the fact that some matrices are
form preserving, as proved above. Since σ12 and σ23 are conjugate, the first diagonal element of
Φ(σ23) equals 1. Indeed,((

t11 t12

t21 t22

)(
1 0
0 −1

))2

=

(
t211 − t12t21 t12(−t11 + t22)

t21(t11 − t22) t222 − t12t21

)
= E,

((
0 −1
1 0

)(
t11 t12

t21 t22

))3

=

(
−t21 −t22

t11 t12

)3

=

(
−t321 + 2t11t21t22 − t11t12t22 −t221t22 + t11t

2
22 + t12t21t22 − t212t22

∗ t11t21t22 − 2t11t12t22 + t312

)
= −E,

⎛
⎜⎝

t11 t12 0
t21 t22 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 0 −1
0 1 0

⎞
⎟⎠

⎛
⎜⎝

t11 t12 0
t21 t22 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 0 1
0 −1 0

⎞
⎟⎠

=

⎛
⎜⎝

1 0 0
0 0 −1
0 1 0

⎞
⎟⎠

⎛
⎜⎝

t11 t12 0
t21 t22 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 0 1
0 −1 0

⎞
⎟⎠

⎛
⎜⎝

t11 t12 0
t21 t22 0
0 0 1

⎞
⎟⎠ .

Or, which is the same, ⎛
⎜⎝

t211 t12 t11t12

t11t21 t22 t12t21

t21 0 t22

⎞
⎟⎠ =

⎛
⎜⎝

t211 t11t12 t12

t21 t22 0
t11t21 t12t21 t22

⎞
⎟⎠ .

The last relation implies t12t21 = 0, while the first one entails t211 = t222 = 1. Computing the
determinant in the second relation, we obtain 1 = (t11t22 − t12t21)3 = (t11t22)3 = t211t

2
22t11t22 =

t11t22. The same relation yields t221t22 − t12t21t22 + t212t22 = t11t
2
22. In view of t12t21 = 0 and the

invertibility of t22, we see that t212 + t221 = t11t22. Since the ring is local, one of the elements t12 and
t21 is invertible, and the other equals zero.

If t21 = 0, then t11t12t22 = 1 (which follows from the second relation), and hence t12 = 1.
Furthermore, t12 = t11t12 (which follows from the third) yields t11 = 1 and t22 = 1, as required.

If t12 = 0, then again the second relation implies t11t21t22 = −1. Hence t21 = −1 and t11 = 1 =
t22. It remains to apply a contragradient automorphism which assigns (AT )−1 to each element of
A such that all elements of MI, as well as σ12 and σ23, are left fixed. �

LEMMA 3. Let R1 and R2 be infinite local commutative rings with 1/2 and let G n(R1) ≡∀

G n(R2) (G = GL ,SL ). Suppose also that M1 is an arbitrary finite submodel of G n(R1)
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containing a finite set of matrices such as in the previous lemmas and the matrix diag [2, 1,
1/2, 1, . . . , 1], and M2 is a finite submodel of G n(R2) isomorphic to M1. Then, for any isomorphism

Φ: M1 → M2,

every finite set of matrices of the form E + αiE12, i = 1, . . . , k, is mapped to a set of matrices of
the form E + βiE12, i = 1, . . . , k, in a basis in which the form of the matrices from the previous
lemmas will not be changed.

Proof. As in Lemma 2, it is easy to show that

Φ(E + αiE12) =

⎛
⎜⎝

si
11 si

12 0
si
21 si

22 0
0 0 E

⎞
⎟⎠ .

Since the matrices E + E12 and E + αiE12 commute, we obtain si
21 = 0 and si

11 = si
22.

It remains to show that the first two places on the diagonal are occupied by 1’s. We write
the relations with a diagonal matrix for a corner block, taking into account that Φ(diag [2, 1, 1/2,
1, . . . , 1]) = diag [d1, . . . , dn]: (

si
11

d1
d2

si
12

0 si
22

)
=

(
(si

11)
2 2si

12

0 (si
22)

2

)
.

Now the invertibility of si
11 and si

22 implies that both of these elements are equal to 1. �

We make to remarks on a connection between multiplication of elements in a local ring R and
operations over elements of G n(R) (G = GL ,SL ). First,

[E + αE12, E + βE23] = E + αβE13.

Second,

E + αE23 = σ12σ
−1
23 (E + αE12)−1σ23σ

−1
12 ,

E + αE13 = [E + E12, E + αE23].

Now the theorem follows from the previous lemmas, as in [1]. More precisely, let S1 ⊂ R1

be a finite submodel of the ring R1. Our goal is to find a submodel S2 isomorphic to S1 in
R2. Let M1 ⊂ G n(R1) (G = GL ,SL ) be a finite submodel containing all matrices of the form
E+αE12 for all α ∈ S1 and finitely many auxiliary matrices from the previous lemmas. The groups
are universally equivalent; therefore, for M1 there exists an isomorphic submodel M2 ⊂ G n(R2)
(G = GL ,SL ) such that any isomorphism Φ: M1 → M2 preserves the form of the matrices.
Therefore, the images of E + αE12, E + αE13, and E + αE23 will be E + β1E12, E + β2E13, and
E + β3E23, respectively, in some common basis, with β1 = β2 = β3 ∈ R2. Then S2 is the set of
all elements of R2 that correspond to image triplets of E + αE12, E + αE13, and E + αE23 for all
elements α ∈ S1.
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