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Let G be a group and S ⊆ G a subset such that S = S−1, where S−1 = {s−1 | s ∈ S}.
Then a Cayley graph Cay(G,S) is an undirected graph Γ with vertex set V (Γ) = G

and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. For a normal subset S of a finite group
G such that s ∈ S ⇒ sk ∈ S for every k ∈ Z which is coprime to the order of s, we
prove that all eigenvalues of the adjacency matrix of Cay(G,S) are integers. Using this
fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka
Notebook.

INTRODUCTION

We assume that all groups and graphs under consideration are finite. The symbols G and Γ
denote some group and some graph, respectively. Furthermore, V = V (Γ) and E = E(Γ) are the
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set of vertices and the set of edges of Γ. The adjacency matrix of a graph Γ with vertex set V and
edge set E is a matrix (aij) ∈ M|V |(C), whose rows and columns are indexed by elements of the
set V , and

aij =

{
1, (i, j) ∈ E,

0, (i, j) /∈ E
for all i, j ∈ V.

A graph Γ is said to be integral if its spectrum, i.e., the spectrum of its adjacency matrix, consists
of integers.

Suppose S ⊆ G. A Cayley graph Cay (G,S) of a group G associated with a set S is a graph Γ
with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. Below we assume that the
set S with which the graph Cay (G,S) is associated satisfies the following conditions:

S does not contain 1, which is equivalent to having no loops in Cay (G,S);
S is symmetric, i.e., S = S−1, where S−1 = {s−1 | s ∈ S}.
The latter condition allows us to think of the graph Cay (G,S) as being undirected.
We consider only undirected graphs with no loops. The adjacency matrix of such a graph is

symmetric, and therefore its spectrum consists of real numbers.
We need another two definitions to state our main results.
A subset S ⊆ G is said to be normal if S = SG = {sg | g ∈ G} (here sg = g−1sg is an element

conjugate to s with respect to g ∈ G).
It is known that for an element s ∈ G of order m, the set of generating elements of a cyclic

group 〈s〉 coincides with the set

{sk | k ∈ Z, (k,m) = 1} = {sk | 0 ≤ k ≤ m − 1, (k,m) = 1},

and its cardinality equals φ(m), where φ is Euler’s totient function which, for a natural number m

with a canonical prime factorization m = pα1
1 . . . pαt

t , takes the value

φ(m) = pα1−1
1 (p1 − 1) . . . pαt−1

t (pt − 1).

A subset S ⊆ G is said to be Eulerian if the set

{x ∈ G | 〈x〉 = 〈s〉} = {sk | 0 ≤ k ≤ |s| − 1, (k, |s|) = 1}

is contained in S for any s ∈ S. Every Eulerian set is symmetric since 〈s〉 = 〈s−1〉 for any s ∈ G.
If a symmetric set S ⊆ G is such that φ(|s|) ≤ 2, or, which is equivalent, |s| ∈ {2, 3, 4, 6} for every
s ∈ S, then it is Eulerian.

We look into the following two questions.

Question 1 [1, Quest. 19.50(a)]. Is it true that if S ⊆ G is a normal set of elements of order
2, then the graph Cay (G,S) is integral?

Question 2 [1, Quest. 19.50(b)]. Is it true that if An is the alternating group of degree n and
S = {(12i)±1 | i = 3, . . . , n}, then the graph Cay (An, S) is integral?
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In the present paper, both of the questions will be answered in the affirmative.
Answers to these questions will follow from the following theorem.

THEOREM. If S is an Eulerian normal subset of a group G, then the graph Cay (G,S) is
integral.

The proof of this theorem uses character-theoretic methods and does not depend on any other
results on integral graphs.

A particular case of the theorem is [2, Thm. 1] with the additional assumption that G is
nilpotent.

An affirmative answer to Question 1 is given by

COROLLARY 1. If orders of elements of a normal symmetric subset S in a group G belong
to the set {2, 3, 4, 6}, then the graph Cay (G,S) is integral.

Note that Question 1 was independently answered by A. Abdollahi who also used character
theory and results of [3, 4] (see [1, commentary to Quest. 19.50(a)]).

A particular case of a normal set of elements of order 2 (which is automatically symmetric) is
the set of all transpositions in the symmetric group. Therefore, we give an independent proof of the
following result obtained in [2, Thm. 2] by using the property of being integral for the so-called star
graph Cay (G,S), where G = Sn is the symmetric group of degree n, and S = {(1i) | 1 < i ≤ n}
[5, Thm. 1; 6, Cor. 2.1].

COROLLARY 2. The graph Cay (G,S), where G = Sn and S = {(ij) | 1 ≤ i < j ≤ n}, is
integral.

The proof that a star graph is integral which does not depend on [5, Thm. 1; 6, Cor. 2.1] follows
from Corollary 2 and

COROLLARY 3. Assume that R is an Eulerian normal subset in a group G, and H is a
subgroup of G. Set S = R \ (R ∩ H). Then the graph Cay (G,S) is integral.

COROLLARY 4. The graph Cay (G,S), where G = Sn and S = {(1i) | 1 < i ≤ n}, is
integral.

Similar considerations allow us to answer Question 2 in the affirmative. Namely, the following
holds:

COROLLARY 5. The graph Cay (G,S), where G = An is the alternating group of degree n

and S = R ∪ R−1 for R = {(12i) | i = 3, . . . , n}, is integral.
We were informed by M. Muzychuk that he had independently answered Question 2 by using

analogous methods. Moreover, the subsequent detailed use of results in the representation theory
of the symmetric groups allowed him to identify an explicit form of eigenvalues of a corresponding
graph.

A combination of Corollaries 1 and 3 might be useful for obtaining new integral Cayley graphs.
Note that not every symmetric set S of elements of a group G for which the graph Cay (G,S) is
integral can be found with the help of the method given in Corollary 3. For example, if a group
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G has a normal Eulerian subset R and a family H1, . . . ,Hn of subgroups satisfying the condition
[Hi,Hj] = 1 for i �= j, then Cay (G,S) will be integral for a set S = R \ ∪(R ∩ Hi). The set
S = {(12i)±1 | i = 3, . . . , n} in Corollary 5 whose elements are conjugate in the alternating group
An for n > 3 also cannot be obtained from the class R of all cycles of length 3 by eliminating those
elements that belong to some subgroup and even to a family of elementwise commuting subgroups.
This follows from the fact that the difference R \S contains all cycles of the form (34i) generating
the group An.

1. NOTATION

We will use standard facts, notions, and designations from the representation and character
theory:

CG is the complex group algebra of a group G [7];
Irr (G) is the set of common irreducible characters of a group G [7];
Vχ is a CG-module corresponding to a (not necessarily irreducible) character χ of a group G;
aV for a CG-module V and an element a ∈ CG is a linear transformation of a space V given

by the rule v �→ va [7];
aχ for an element a ∈ CG is a linear transformation aVχ of a space Vχ;
[ϕ]B for a linear transformation ϕ of a vector space V with basis B is a matrix of the

transformation ϕ relative to B;
[ϕ] for a linear transformation ϕ of a vector space V is a matrix of the transformation ϕ relative

to some basis of the space V ;
ωχ for χ ∈ Irr (G) is a homomorphism of complex algebras Z(CG) → C such that [aχ] = ωχ(a)I

for every a ∈ Z(CG) [7, p. 35]; here I is a χ(1) × χ(1) identity matrix;
S for a set S of elements of a group G is the element

∑
s∈S

s ∈ CG.

By the spectrum of an element a ∈ CG on a CG-module V we mean the spectrum of a linear
transformation aV .

We identify every element a ∈ CG with right multiplication of elements of a regular module by
a. In particular, unless specified otherwise, the spectrum of an element a ∈ CG is the spectrum of
a on a regular module.

2. PRELIMINARY RESULTS

We remind that a complex number is called an algebraic integer if it is a root of a monic
polynomial with integer coefficients. It is known that algebraic integers form a subring of C [7,
Cor. 3.5], and a number α ∈ Q is an algebraic integer iff α ∈ Z [7, Lemma 3.2].

LEMMA 1. Suppose that X : G → GLn(C) is a representation of a group G with a character
χ and g ∈ G is an element of order m. Then:
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(1) the matrix X(g) is similar to a diagonal matrix diag (ζ1, . . . , ζn) such that ζm
i = 1 for all

i = 1, . . . , n;
(2) χ(g) = ζ1 + · · · + ζn is an algebraic integer.
Proof. Statement (1) was proved in [7, Lemma 2.15]. Statement (2) follows from (1) and the

fact that algebraic integers form a subring of C. �

LEMMA 2. Let g ∈ G be an element whose order divides m ∈ Z, χ a character of the group
G, and ζ a complex primitive mth root of unity. Then:

(1) χ(g) ∈ Q(ζ);
(2) Q(ζ)/Q is a normal extension;
(3) for every automorphism σ of the field Q(ζ), there exists k ∈ Z such that (k,m) = 1 and

ζσ = ζk;
(4) χ(g)σ = χ(gk) for such σ and k.
Proof. Statement (1) follows from Lemma 1(1) and the fact that ζ is a primitive mth root of

unity. Statement (2) follows from the fact that Q(ζ) is the splitting field of the polynomial xm − 1.
Statement (3) is true since an automorphism of the field Q(ζ) should map ζ to some primitive mth
root of unity, i.e., to a number of the form ζk, where (k,m) = 1. If χ(g) = ζ1 + · · · + ζn with ζi

chosen as in Lemma 1(1), then they are mth roots of unity, and every ζi is a power of ζ. Therefore,
ζσ
i = ζk

i . Now it follows from Lemma 1 that

χ(g)σ = ζk
1 + · · · + ζk

n = χ(gk).

Statement (4) is proved. �

LEMMA 3. Let χ ∈ Irr (G). Then, for any x ∈ G, the number ωχ(xG) is an algebraic integer,
and

ωχ(xG) =
χ(x)|xG|

χ(1)
.

Proof. See [7, p. 36]. �

LEMMA 4. Suppose that S ⊆ G is a symmetric set, H = 〈S〉, and |G : H| = n. Let
Γ = Cay (G,S) and Δ = Cay (H,S). Denote by fG and fH the respective characteristic polynomials
of the adjacency matrices of the graphs Γ and Δ. The following statements hold:

(1) the graph Γ is connected iff G = H;
(2) if H �= G, then every connected component of the graph Γ is isomorphic to Δ, and the

number of components is equal to n;
(3) fG = fn

H ; in particular, the spectra of the graphs Γ and Δ coincide.
Proof. Statement (2) was proved in [2, Lemma 1]. Statement (2) implies both statement (3)

and the property of Γ being disconnected for G �= H in statement (1). To complete the proof of
(1), it suffices to note that every element g ∈ G can be written as a product of elements of the set
S if the graph Γ is connected. The connectivity of Γ implies that there exists a path

(x0, x1), (x1, x2), . . . , (xm−1, xm) ∈ E(Γ), where x0 = 1 and xm = g.
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By the definition of a Cayley graph, for any i = 1, . . . ,m there is an element si ∈ S such that
xi = xi−1si. Therefore,

g = xm = x0s1s2 . . . sm = s1s2 . . . sm. �

3. SPECTRA OF ELEMENTS OF THE GROUP ALGEBRA

PROPOSITION 1. Suppose that G is a finite group and S ⊆ G is a subset such that S = S−1.
Then the following statements hold:

(1) The adjacency matrix of the graph Cay (G,S) coincides with a matrix [S]G; the spectrum
of Cay (G,S) coincides with the spectrum of an element S on a regular module.

(2) For every element a ∈ CG, the matrix [a]G is similar to a block diagonal matrix with blocks
[aχ] on the diagonal, where χ ∈ Irr (G), and every block [aχ] appears χ(1) times.

(3) For every element a ∈ CG, the spectrum of the matrix [a]G is the union of the spectra of
the matrices [aχ] taken over all χ ∈ Irr (G).

(4) For every element a ∈ CG, the following statements are equivalent:
(i) the spectrum of a is integral on a regular CG-module;
(ii) the spectrum of a is integral on every irreducible CG-module;
(iii) the spectrum of a is integral on every CG-module.
(5) If λ is an eigenvalue of [a]G, then the multiplicity of λ is∑

χ∈Irr (G)

χ(1)mχ(λ),

where mχ(λ) is a (possibly zero) multiplicity of λ as an eigenvalue of the transformation aχ.
(6) For a normal set S of G, the element S lies in the center of the algebra CG.
(7) For every element a ∈ Z(CG), the spectrum of the matrix [a]G is equal to

{ωχ(a) | χ ∈ Irr (G)}.

(8) If x1, . . . , xt ∈ G are pairwise nonconjugate elements and

S =
t⋃

i=1

Ki, where Ki = xG
i ,

then the spectrum of the matrix [S]G is equal to{
t∑

i=1

ωχ(Ki)

∣∣∣∣∣ χ ∈ Irr (G)

}
=

{
t∑

i=1

χ(xi)|Ki|
χ(1)

∣∣∣∣∣ χ ∈ Irr (G)

}
.

Proof. Statement (1) is verified by direct calculations. Statement (2) follows from Maschke’s
theorem [7, Thm. 1.9] and from a well-known decomposition of a regular module of a semisimple
algebra into a direct sum of irreducible modules [7, Cor. 1.17]. Statements (3)-(5) follow from
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(2). Statement (6) is a consequence of [7, Thm. 2.4]. It is known that [aχ] is a scalar matrix for
every χ ∈ Irr (G) and equals ωχ(a)I (see [7, p. 35]). Therefore, (7) follows from (3). Since the
transformation

ωχ : Z(CG) → CG

is a homomorphism of algebras [7, p. 35], statements (3), (6), (7) and Lemma 3 imply (8). �

An exact expression for the spectrum of Cay (G,S) in the case where S ⊆ G is normal, which
follows directly from statements (1) and (8) of Proposition 1, is also pointed out in [4, Thm. 9]:
the spectrum consists of numbers

λχ =
1

χ(1)

∑
x∈S

χ(x)

over all χ ∈ Irr (G). There is an inaccuracy in the formulation of [4, Thm. 9], where it is stated that
the multiplicity of λχ is equal to χ(1)2. It may so happen that λχ = λψ for distinct χ,ψ ∈ Irr (G).
As follows from statement (5) of Proposition 1, the multiplicity of an eigenvalue λ of Cay (G,S) is
equal to

∑
χ∈Irr (G)

λχ=λ

χ(1)2.

4. PROOF OF THEOREM 1

Let S be a normal Eulerian subset in G and

a = S ∈ CG.

In view of statements (1), (3), (6), and (7) of Proposition 1, it suffices to show that ωχ(a) ∈ Z for
every χ ∈ Irr (G). Suppose that x1, . . . , xt are representatives of all conjugacy classes whose union
is S. As in statement (8) of Proposition 1,

ωχ(a) =
t∑

i=1

χ(xi)|xG
i |

χ(1)
. (∗)

Lemma 2 implies that ωχ(a) ∈ Q(ζ), where ζ is a primitive mth root of unity, and m is a least
common multiple of the numbers |xi|. Take an arbitrary automorphism σ of the field Q(ζ). By virtue
of Lemma 2, there is a number k such that (m,k) = 1 and χ(xi)σ = χ(xk

i ) for all i = 1, . . . , t. Since
S is Eulerian, xk

i ∈ S for every i. The set S is normal, so the element xk
i is conjugate to some xj.

We also have
χ(xi)σ = χ(xk

i ) = χ(xj).

The mapping x �→ xk is a bijection between the classes xG
i and xG

j , hence

|xG
i | = |xG

j |.

Thus σ permutes terms in the right part of equation (∗). Consequently, ωχ(a)σ = ωχ(a) for every
automorphism σ of the field Q(ζ), and ωχ(a) ∈ Q. The number ωχ(a) is a sum of algebraic integers
by Lemma 3, so it is itself an algebraic integer and, hence, just an integer. �
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5. PROOFS OF THE COROLLARIES

The proof of Corollaries 1 and 2. Since the symmetric set S for which {|s| | s ∈ S} ⊆
{2, 3, 4, 6} is Eulerian, the conclusion of Corollary 1 follows directly from the theorem. Corollary 2
is a particular case of Corollary 1. �

The proof of Corollary 3. In the group algebra CG, we consider the following elements:

a = S, b = R, and c = H ∩ R.

It is clear that a = b − c. By virtue of Proposition 1(6), b ∈ Z(CG). Hence the elements a, b, and
c commute pairwise. Their matrices are symmetric; therefore, the regular module V of the group
algebra has a basis of common eigenvectors for a, b, and c. It follows that every eigenvalue α of a

is the difference β − γ of some eigenvalues β and γ of b and c, respectively. The spectrum of the
element b on V is integral by the theorem. The set H ∩R is a normal Eulerian subset in H. In view
of the theorem, the element c has an integral spectrum on a regular module of the group algebra
CH. Any CG-module, in particular, V , can be treated as a CH-module with compatible action,
so the element c has an integral spectrum on V by Prop. 1(4). Hence the spectrum of a on V is
also integral, and the graph Cay (G,S) is integral by Prop. 1(1). �

The proof of Corollary 4. Suppose that G = Sn, R = {(ij) | 1 ≤ i < j ≤ n}, and H ∼= Sn−1 is
the set of all permutations of G = Sn that fix point 1. It is easy to see that

S = {(1i) | 1 < i ≤ n} = R \ (R ∩ H).

As in Corollary 2, R is a normal Eulerian subset in G. Corollary 3 implies that the graph Cay (G,S)
is integral. �

The proof of Corollary 5. By virtue of Lemma 4, it suffices to show that the graph Cay (G∗, S),
where G∗ = Sn, will be integral. In the group algebra CG∗, consider the following elements:

a = S =
n∑

i=3

(
(12i) + (21i)

)
, b =

∑
1≤i<j≤n

(ij),

c =
∑

3≤i<j≤n

(ij), d = (12).

By Proposition 1, we need only show that the spectrum of a on a regular CG∗-module is
integral. The elements c and d commute. The element b, which is the sum of all transpositions, is
central in the algebra CG∗; therefore, b, c, and d commute pairwise. It is straightforward to verify
that

a = (12)

(
n∑

i=3

(1i) +
n∑

i=3

(2i)

)
= d(b − c − d).
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The regular CG∗-module has a basis of common eigenvectors of the elements b, c, and d, which is
also a basis of eigenvectors of the element a. In this case if, for such a vector v and for numbers
β, γ, δ ∈ C, we have

vb = βv, vc = γv, and vd = δv,

then it is obvious that
va = δ(β − γ − δ)v.

To complete the proof, it suffices to show that the spectra of the elements b, c, and d are integral.
The spectrum of b is integral by Corollary 1 and Proposition 1(1), since b = T , where T is the

set of all transpositions in G∗. The element d has order 2, so its spectrum lies in the set of roots
of the polynomial x2 − 1 and consists of numbers ±1. Finally, suppose that H is a subgroup of G∗

which is isomorphic to Sn−2 and consists of all permutations that fix points 1 and 2. Then H ∩ T

is a normal Eulerian subset in H, c = H ∩ T , and as in the proof of Corollary 3, we conclude that
the spectrum of c is integral. Hence the element a also has an integral spectrum. �
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