MAXIMALITY OF THE COUNTABLE SPECTRUM IN SMALL QUITE *o*-MINIMAL THEORIES

B. Sh. Kulpeshov^{*}

UDC 510.67

Keywords: weak o-minimality, quite o-minimality, countable spectrum, convexity rank.

We give a criterion for the countable spectrum to be maximal in small binary quite o-minimal theories of finite convexity rank.

The present paper deals with the notion of weak o-minimality, which was initially deeply investigated in [1]. A subset A of a linearly ordered structure M is said to be convex if $c \in M$ whenever a < c < b for any $a, b \in A$ and any $c \in A$. A weakly o-minimal structure is a linearly ordered structure $M = \langle M, =, <, ... \rangle$ such that every definable (with parameters) subset of M is the union of finitely many convex sets in M. Real closed fields with a proper convex valuation ring furnish an important example of weakly o-minimal structures.

In the definitions below, M is a weakly o-minimal structure, $A, B \subseteq M, M$ is $|A|^+$ -saturated, and $p, q \in S_1(A)$ are nonalgebraic.

Definition 1 [2]. We say that a type p is not weakly orthogonal to a type q ($p \not\perp^w q$) if there is an A-definable formula H(x, y) and there are $\alpha \in p(M)$ and $\beta_1, \beta_2 \in q(M)$ such that $\beta_1 \in H(M, \alpha)$ and $\beta_2 \notin H(M, \alpha)$.

Definition 2 [3]. We say that a type p is not quite orthogonal to a type q ($p \not\perp^q q$) if there exists an A-definable bijection $f: p(M) \to q(M)$. We also say that a weakly o-minimal theory is quite o-minimal if the notions of weak orthogonality and quite orthogonality coincide for 1-types.

Quite *o*-minimal theories are a subclass of the class of weakly *o*-minimal theories which inherits many properties of *o*-minimal theories. The Vaught problem for quite *o*-minimal theories was solved in [4]: it was proved that every countable quite *o*-minimal theory either is countably categorical, or

*Supported by KN MON RK, project No. AP 05132546.

International Information Technologies University, Manas str. 34/1, Alma-Ata, 050040 Kazakhstan. Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science RK, ul. Pushkina 125, Alma-Ata, 050010 Kazakhstan. Kazakh-British Technical University, ul. Tole bi 59, Alma-Ata, 050000 Kazakhstan; b.kulpeshov@iitu.kz. Translated from *Algebra i Logika*, Vol. 58, No. 2, pp. 200-209, March-April, 2019. Original article submitted November 27, 2017; accepted July 9, 2019.

0002-5232/19/5802-0137 © 2019 Springer Science+Business Media, LLC

is an Ehrenfeucht theory, or has the maximum number of countable models. This result generalizes a theorem of L. Mayer [5], which is a solution to the Vaught problem for *o*-minimal theories. Here we give a criterion for the number of countable models to be maximal in small binary quite *o*-minimal theories of finite convexity rank (Thm. 11).

Definition 3 [6]. Let M be a weakly *o*-minimal structure, $A \subseteq M$, M be $|A|^+$ -saturated, and $p \in S_1(A)$ be nonalgebraic.

(1) An A-definable formula F(x, y) is *p*-stable if there are $\alpha, \gamma_1, \gamma_2 \in p(M)$ such that $F(M, \alpha) \setminus \{\alpha\} \neq \emptyset$ and $\gamma_1 < F(M, \alpha) < \gamma_2$.

(2) A p-stable formula F(x, y) is convex to the right (left) if there exists $\alpha \in p(M)$ such that $F(M, \alpha)$ is convex, α is a left (right) endpoint of the set $F(M, \alpha)$, and $\alpha \in F(M, \alpha)$.

If $F_1(x, y)$ and $F_2(x, y)$ are *p*-stable convex to the right (left) formulas, then we say that $F_2(x, y)$ is bigger than $F_1(x, y)$ if there exists $\alpha \in p(M)$ for which $F_1(M, \alpha) \subset F_2(M, \alpha)$.

Definition 4 [7]. We say that a *p*-stable convex to the right (left) formula F(x, y) is equivalence generating if, for any $\alpha, \beta \in p(M)$ such that $M \models F(\beta, \alpha)$, the following holds:

$$M \models \forall x [x \ge \beta \to [F(x, \alpha) \leftrightarrow F(x, \beta)]]$$
$$(M \models \forall x [x \le \beta \to [F(x, \alpha) \leftrightarrow F(x, \beta)]]).$$

LEMMA 5 [7]. Let M be a weakly o-minimal structure, $A \subseteq M$, $p \in S_1(A)$ be nonalgebraic, and M be $|A|^+$ -saturated. Suppose that F(x, y) is a p-stable convex to the right (left) formula, which is equivalence generating. Then:

(1) G(x,y) := F(y,x) is a *p*-stable convex to the left (right) formula, which is also equivalence generating;

(2) $E(x,y) := F(x,y) \lor F(y,x)$ is an equivalence relation partitioning p(M) into infinitely many infinite convex classes.

Definition 6 [8]. Let T be a weakly o-minimal theory, M a sufficiently saturated model of T, and $\phi(x)$ an arbitrary M-definable formula with one free variable. The convexity rank of a formula $\phi(x)$ ($RC(\phi(x))$) is defined as follows:

(1) $RC(\phi(x)) \ge 1$ if $\phi(M)$ is infinite;

(2) $RC(\phi(x)) \ge \alpha + 1$ if there exist a parametrically definable equivalence relation E(x, y) and infinitely many elements b_i , $i \in \omega$, such that:

for any $i, j \in \omega$, $M \models \neg E(b_i, b_j)$ whenever $i \neq j$;

for every $i \in \omega$, $RC(E(x, b_i)) \ge \alpha$ and $E(M, b_i)$ is a convex subset of $\phi(M)$;

(3) $RC(\phi(x)) \ge \delta$ if $RC(\phi(x)) \ge \alpha$ for all $\alpha < \delta$ (δ is a limit ordinal).

If $RC(\phi(x)) = \alpha$ for some α , then we say that $RC(\phi(x))$ is defined; otherwise (i.e., $RC(\phi(x)) \ge \alpha$ for all α), we put $RC(\phi(x)) = \infty$.

For a 1-type p, we define the *convexity rank*

$$RC(p) := \inf\{RC(\phi(x)) \mid \phi(x) \in p\}.$$

Definition 7 [1]. Let \mathcal{M} be a weakly *o*-minimal structure, $D \subseteq M$ be an infinite set, and $f: D \to K$ be a function. We say that f is *locally increasing* (*locally decreasing, locally constant*) on D if for any $x \in D$ there exists an infinite interval $J \subseteq D$ which contains x and is such that f is strictly increasing (strictly decreasing, constant) on J.

We also say that a function f is *locally monotone* on a set $D \subseteq M$ if f is either locally increasing or locally decreasing on D.

Let f be an A-definable function on $D \subseteq M$ and E an A-definable equivalence relation on D. We say that f is *strictly increasing* (*decreasing*) on D/E if f(a) < f(b) (f(a) > f(b)) for any $a, b \in D$ with a < b and $\neg E(a, b)$.

PROPOSITION 8 [9]. Let \mathcal{M} be a weakly *o*-minimal structure, $A \subseteq M$, and $p \in S_1(A)$ be a nonalgebraic type. Then every A-definable function whose domain contains a set $p(\mathcal{M})$ is locally monotone or locally constant on $p(\mathcal{M})$.

Below we need the concept of a (p,q)-splitting formula introduced in [10]. Let $A \subseteq M$, $p,q \in S_1(A)$ be nonalgebraic types, and $p \not\perp^w q$. An A-definable formula $\phi(x,y)$ is called a (p,q)-splitting formula if there exists an element $a \in p(M)$ for which $\phi(a,M) \subset q(M)$, $\phi(a,M)$ is convex, and $\phi(a,M)^- = q(M)^-$, where $\phi(a,M)^- := \{b \in M \mid b < \phi(a,M)\}$. Let $\phi_1(x,y)$ and $\phi_2(x,y)$ be (p,q)-splitting formulas; then we say that $\phi_1(x,y)$ is smaller than $\phi_2(x,y)$ if there exists an element $a \in p(M)$ such that $\phi_1(a,M) \subset \phi_2(a,M)$.

Obviously, if $p, q \in S_1(A)$ are nonalgebraic types and $p \not\perp^w q$, then there exists a (p, q)-splitting formula, and the set of all (p, q)-splitting formulas is linearly ordered. It is also clear that for any (p, q)-splitting formula $\phi(x, y)$, the function $f(x) := \sup \phi(x, M)$ is not constant on p(M).

LEMMA 9. Let T be a binary quite o-minimal theory, $p, q \in S_1(\emptyset)$ be nonalgebraic, and RC(p) = n. Suppose that every p-stable convex to the right (left) formula is equivalence generating. The relation $p \not\perp^w q$ holds if and only if there exists a unique \emptyset -definable bijection $f : p(M) \rightarrow q(M)$, and there are precisely 2n (p, q)-splitting formulas.

Proof. Since RC(p) = n, there exist \emptyset -definable equivalence relations $E_1(x, y), \ldots, E_{n-1}(x, y)$ partitioning p(M) into infinitely many infinite convex classes, so that for every $1 \le i \le n-2$ the equivalence E_i partitions each E_{i+1} -class into infinitely many E_i -subclasses, and $E_1(a, M) \subset \ldots \subset$ $E_{n-1}(a, M)$ for any $a \in p(M)$.

Suppose $p \not\perp^w q$. Then, in view of quite *o*-minimality, there exists a \emptyset -definable bijection $f: p(M) \to q(M)$. Consider the following formulas:

$$\begin{split} \phi^0_-(x,y) &:= y < f(x), \\ \phi^0_+(x,y) &:= y \le f(x), \\ \phi^i_-(x,y) &:= \forall t [E_i(x,t) \to y < f(t)], \ 1 \le i \le n-1, \\ \phi^i_+(x,y) &:= \exists t [E_i(x,t) \land y < f(t)], \ 1 \le i \le n-1. \end{split}$$

Obviously, these are (p, q)-splitting formulas, and

$$\phi_{-}^{n-1}(a,M) \subset \ldots \subset \phi_{-}^{1}(a,M) \subset \phi_{-}^{0}(a,M)$$
$$\subset \phi_{+}^{0}(a,M) \subset \phi_{+}^{1}(a,M) \subset \ldots \subset \phi_{+}^{n-1}(a,M).$$

We claim that there are no other (p,q)-splitting formulas. In particular, there exist no other \varnothing definable functions mapping p(M) into q(M). Assume to the contrary that there exists a (p,q)splitting formula $\Phi(x,y)$ distinct from these 2n (p,q)-separating formulas. The following cases are possible:

$$\phi_{-}^{i+1}(a, M) \subset \Phi(a, M) \subset \phi_{-}^{i}(a, M) \text{ for some } 0 \le i \le n-2,$$

$$\phi_{+}^{i}(a, M) \subset \Phi(a, M) \subset \phi_{+}^{i+1}(a, M) \text{ for some } 0 \le i \le n-2,$$

$$\Phi(a, M) \subset \phi_{-}^{n-1}(a, M) \text{ or } \phi_{+}^{n-1}(a, M) \subset \Phi(a, M).$$

There is no loss of generality in assuming that $\phi_{-}^{i+1}(a, M) \subset \Phi(a, M) \subset \phi_{-}^{i}(a, M)$ for some $0 \leq i \leq n-2$ (the other cases can be treated analogously). Since f is \emptyset -definable, f is locally monotone on p(M), and f should be strictly increasing or strictly decreasing on each $E_{i+1}(a, M)/E_i$ for any $a \in p(M)$. For definiteness, suppose that f is strictly increasing. Consider the formula

$$G^{\Phi}(z,a) := z \le a \land \forall y [\neg \phi_{-}^{i+1}(a,y) \land \phi_{+}^{i}(a,y) \land y < f(z) \to \Phi(a,y)].$$

It is not hard to see that $G^{\Phi}(z, x)$ is a *p*-stable convex to the left formula, and $G^{\Phi}(z, x)$ is smaller than $G_{i+1}(z, x)$ and is bigger than $G_i(z, x)$, where $G_{i+1}(z, x) := E_{i+1}(z, x) \land z \leq x$ and $G_i(z, x) := E_i(z, x) \land z \leq x$ are also *p*-stable convex to the left formulas. By the hypotheses of the lemma, $G^{\Phi}(z, x)$ should be equivalence generating, and by virtue of Lemma 5, we obtain $RC(p) \geq n + 1$, a contradiction. Thus other (p, q)-splitting formulas are missing. \Box

Definition 10 [11-13]. Let $p_1(x_1), \ldots, p_n(x_n) \in S_1(T)$. A type $q(x_1, \ldots, x_n) \in S(T)$ is called a (p_1, \ldots, p_n) -type if $q(x_1, \ldots, x_n) \supseteq \bigcup_{i=1}^n p_i(x_i)$. The set of all (p_1, \ldots, p_n) -types of T is denoted by $S_{p_1,\ldots,p_n}(T)$. A countable theory T is said to be *almost* ω -categorical if for any types $p_1(x_1), \ldots, p_n(x_n) \in S(T)$ there exist only finitely many types $q(x_1, \ldots, x_n) \in S_{p_1,\ldots,p_n}(T)$.

Recall some of the notions considered in [5, 14]. We say that $\Gamma \subseteq S_1(\emptyset)$ is independent if, for every set Γ' consisting of exactly one realization of each type in Γ , $c' \notin dcl(\Gamma' \setminus \{c'\})$ holds with any $c' \in \Gamma'$. We say that $p \in S_1(\emptyset)$ depends on Γ (or p and Γ are dependent) if $\Gamma \cup \{p\}$ is not independent. The dimension of a set Γ (denoted dim (Γ)) is the cardinality of a maximally independent subset of the set Γ .

THEOREM 11. Let T be a small binary quite o-minimal theory of finite convexity rank and Γ be the set of all nonisolated types from $S_1(\emptyset)$. The theory T has 2^{ω} countable models if and only if at least one of the following conditions holds:

(1) $\dim(\Gamma) = \omega;$

(2) there exist a nonalgebraic type $p \in S_1(\emptyset)$ and a *p*-stable convex to the right (left) formula F(x, y) which is not equivalence generating.

Proof. If dim(Γ) = ω , then there exist countably many pairwise weakly orthogonal nonisolated 1-types ensuring the maximality of a countable spectrum. If (2) holds, then the conclusion follows from [4, Prop. 2.8].

Suppose now that T has 2^{ω} countable models and $\dim(\Gamma) < \omega$. Assume to the contrary that every p-stable convex to the right (left) formula F(x, y) is equivalence generating for any nonalgebraic type $p \in S_1(\emptyset)$. We claim that in this case T is almost ω -categorical. By induction on $k \geq 2$, we show that for any family of nonalgebraic types $p_1, \ldots, p_k \in S_1(\emptyset)$ there exist only finitely many (p_1, \ldots, p_k) -types.

Step k = 2.

Case 1. Let $p_1 \perp^w p_2$. Then the set $p_1(x) \cup p_2(y)$ defines a complete 2-type over \emptyset .

Case 2. Let $p_1 \not\perp^w p_2$. In view of quite *o*-minimality, there exists a \varnothing -definable bijection $f_{1,2}$: $p_1(M) \to p_2(M)$, whence $RC(p_1) = RC(p_2)$ (their convexity rank is denoted n_p). Taking into account Lemma 9, we see that no other \varnothing -definable functions from $p_1(M)$ are in $p_2(M)$, and there exist precisely 2n (p,q)-splitting formulas. Possible extensions of the set $p_1(x) \cup p_2(y)$ are formed by joining to it the following $2n_p + 1$ formulas:

$$\begin{split} f_{1,2}(x) &= y, \\ f_{1,2}(x) &< y \wedge E_1^{p_2}(f_{1,2}(x), y), \\ f_{1,2}(x) &< y \wedge E_{i+1}^{p_2}(f_{1,2}(x), y) \wedge \neg E_i^{p_2}(f_{1,2}(x), y), \ 1 \leq i \leq n_p - 2, \\ f_{1,2}(x) &< y \wedge \neg E_{n_p-1}^{p_2}(f_{1,2}(x), y) \text{ (and similarly with } f_{1,2}(x) > y). \end{split}$$

Thus there exist exactly $2n_p + 1$ (p_1, p_2) -types.

Step n + 1. Take arbitrary nonalgebraic types $p_1, \ldots, p_n, p_{n+1} \in S_1(\emptyset)$.

Case 1. Let $p_{n+1} \perp^w p_i$ for every $1 \le i \le n$. In this case the number of $(p_1, \ldots, p_n, p_{n+1})$ -types coincides with the number of (p_1, \ldots, p_n) -types.

Case 2. Let $p_{n+1} \not\perp^w p_i$ for every $1 \leq i \leq n$. Then $RC(p_1) = \ldots = RC(p_{n+1})$ (their convexity rank is denoted n_p) and there exists a unique \emptyset -definable bijection $f_{n,n+1} : p_n(M) \to p_{n+1}(M)$. Possible extensions of the set $p_1(x_1) \cup \ldots \cup p_n(x_n) \cup p_{n+1}(x_{n+1})$ are formed by joining to it the following $2n_p + 1$ formulas:

$$\begin{split} f_{n,n+1}(x_n) &= x_{n+1}, \\ f_{n,n+1}(x_n) &< x_{n+1} \wedge E_1^{p_{n+1}}(f_{n,n+1}(x_n), x_{n+1}), \\ f_{n,n+1}(x_n) &< x_{n+1} \wedge E_{i+1}^{p_{n+1}}(f_{n,n+1}(x_n), x_{n+1}) \wedge \neg E_i^{p_{n+1}}(f_{n,n+1}(x_n), x_{n+1}), \\ \text{where } 1 &\leq i \leq n_p - 2, \\ f_{n,n+1}(x_n) &< x_{n+1} \wedge \neg E_{n_p-1}^{p_{n+1}}(f_{n,n+1}(x_n), x_{n+1}) \\ \text{(and similarly with } f_{n,n+1}(x_n) > x_{n+1}). \end{split}$$

141

By the inductive assumption, the number of (p_1, \ldots, p_n) -types is finite (denote it by S_{p_1,\ldots,p_n}). Then the number of (p_1, \ldots, p_{n+1}) -types is equal to the product of S_{p_1,\ldots,p_n} and $2n_p + 1$.

Case 3. Let $p_{n+1} \not\perp^w p_i$ and $p_{n+1} \perp^w p_j$ for some $1 \leq i, j \leq n, i \neq j$. Then (if necessary) there exist a renumbering of types p_i and an element k with the condition $1 \leq k < n$ such that $p_{n+1} \perp^w p_j$, for all $1 \leq j \leq k$, and $p_{n+1} \not\perp^w p_l$ for all $k+1 \leq l \leq n$. By the inductive assumption, both the number of $(p_1, \ldots, p_k, p_{n+1})$ -types and the number of $(p_{k+1}, \ldots, p_n, p_{n+1})$ types are finite, in which case the number of $(p_1, \ldots, p_k, p_{n+1})$ -types coincides with the number of (p_1, \ldots, p_k) -types. Denote these numbers by S_{p_1, \ldots, p_k} and $S_{p_{k+1}, \ldots, p_n, p_{n+1}}$.

Thus the theory T is almost ω -categorical, and by virtue of [14, Cor. 3.10], it will be an Ehrenfeucht theory, which is a contradiction with T having 2^{ω} countable models. \Box

Note that the condition of being finite for the convexity rank is essential in the following:

Example 12. Let $M = \langle \mathbb{Q}, \langle E_i^2 \rangle_{i \in \omega}$ be a dense linear order structure on the set \mathbb{Q} of rational numbers, and let it be enriched with equivalence relations E_i , $i \in \omega$, where each relation E_{i+1} , $i \geq 2$, consists of infinitely many open convex E_i -classes, which are densely ordered.

We can prove that Th (M) is a small binary quite *o*-minimal theory of infinite convexity rank having 2^{ω} countable models, $p(x) := \{x = x\} \in S_1(\emptyset)$ is a unique nonalgebraic type, and every *p*-stable convex to the right (left) formula is equivalence generating.

Note also that there exists a small quite *o*-minimal theory of finite convexity rank that is not binary.

Example 13. Let $\mathcal{M} = \langle M; \langle P_1^1, P_2^1, P_3^1, f^2 \rangle$ be a linearly ordered structure whose universe M is a disjoint union of interpretations of unary predicates P_1 , P_2 , and P_3 , with $P_1(\mathcal{M}) \langle P_2(\mathcal{M}) \rangle$ $P_3(\mathcal{M})$. We identify each interpretation of P_i $(1 \leq i \leq 3)$ with the set \mathbb{Q} of rational numbers ordered in the usual way. A symbol f is interpreted by a partial binary function with Dom $(f) = P_1(\mathcal{M}) \times P_2(\mathcal{M})$ and Range $(f) = P_3(\mathcal{M})$ and is defined by the equality f(a, b) = a + b for all $(a, b) \in \mathbb{Q} \times \mathbb{Q}$.

Obviously, Th(M) has convexity rank 1.

REFERENCES

- D. Macpherson, D. Marker, and Ch. Steinhorn, "Weakly o-minimal structures and real closed fields," *Trans. Am. Math. Soc.*, **352**, No. 12, 5435-5483 (2000).
- B. S. Baizhanov, "Expansion of a model of a weakly o-minimal theory by a family of unary predicates," J. Symb. Log., 66, No. 3, 1382-1414 (2001).
- B. Sh. Kulpeshov, "The convexity rank and orthogonality in weakly o-minimal theories," Izv. NAN RK, Ser. Fiz.-Mat., No. 227, 26-31 (2003).
- B. Sh. Kulpeshov and S. V. Sudoplatov, "Vaught's conjecture for quite o-minimal theories," Ann. Pure Appl. Log., 168, No. 1, 129-149 (2017).

- L. L. Mayer, "Vaught's conjecture for *o*-minimal theories," J. Symb. Log., 53, No. 1, 146-159 (1988).
- B. S. Baizhanov, "One-types in weakly o-minimal theories," in Proc. Inf. Control Problems Inst., Almaty, 75-88 (1996).
- B. S. Baizhanov and B. Sh. Kulpeshov, "On behaviour of 2-formulas in weakly o-minimal theories," in *Mathematical Logic in Asia, Proc. 9th Asian Logic Conf.* (Novosibirsk, Russia, August 16-19, 2005), S. S. Goncharov et al. (eds.), World Scientific, Hackensack, NJ (2006), pp. 31-40.
- B. Sh. Kulpeshov, "Weakly o-minimal structures and some of their properties," J. Symb. Log., 63, No. 4, 1511-1528 (1998).
- B. Sh. Kulpeshov, "Countably categorical quite o-minimal theories," Vestnik NGU, Mat., Mekh., Inf., 11, No. 1, 45-57 (2011).
- B. Sh. Kulpeshov, "Criterion for binarity of ℵ₀-categorical weakly *o*-minimal theories," Ann. Pure Appl. Log., **145**, No. 3, 354-367 (2007).
- K. Ikeda, A. Pillay, and A. Tsuboi, "On theories having three countable models," *Math. Log.* Q., 44, No. 2, 161-166 (1998).
- S. V. Sudoplatov, Classification of Countable Models of Complete Theories, Part 1, Novosibirsk, Novosibirsk State Tech. Univ. (2014).
- S. V. Sudoplatov, Classification of Countable Models of Complete Theories, Part 2, Novosibirsk, Novosibirsk State Tech. Univ. (2014).
- 14. B. Sh. Kulpeshov and S. V. Sudoplatov, "Linearly ordered theories which are nearly countably categorical," *Mat. Zametki*, **101**, No. 3, 413-424 (2017).