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MAXIMALITY OF THE COUNTABLE SPECTRUM
IN SMALL QUITE o-MINIMAL THEORIES
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We give a criterion for the countable spectrum to be maximal in small binary quite
o-minimal theories of finite convexity rank.

The present paper deals with the notion of weak o-minimality, which was initially deeply
investigated in [1]. A subset A of a linearly ordered structure M is said to be convex if c ∈ M

whenever a < c < b for any a, b ∈ A and any c ∈ A. A weakly o-minimal structure is a linearly
ordered structure M = 〈M,=, <, . . .〉 such that every definable (with parameters) subset of M is
the union of finitely many convex sets in M . Real closed fields with a proper convex valuation ring
furnish an important example of weakly o-minimal structures.

In the definitions below, M is a weakly o-minimal structure, A,B ⊆ M , M is |A|+-saturated,
and p, q ∈ S1(A) are nonalgebraic.

Definition 1 [2]. We say that a type p is not weakly orthogonal to a type q (p �⊥w q) if there is
an A-definable formula H(x, y) and there are α ∈ p(M) and β1, β2 ∈ q(M) such that β1 ∈ H(M,α)
and β2 �∈ H(M,α).

Definition 2 [3]. We say that a type p is not quite orthogonal to a type q (p �⊥q q) if there
exists an A-definable bijection f : p(M) → q(M). We also say that a weakly o-minimal theory is
quite o-minimal if the notions of weak orthogonality and quite orthogonality coincide for 1-types.

Quite o-minimal theories are a subclass of the class of weakly o-minimal theories which inherits
many properties of o-minimal theories. The Vaught problem for quite o-minimal theories was solved
in [4]: it was proved that every countable quite o-minimal theory either is countably categorical, or
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is an Ehrenfeucht theory, or has the maximum number of countable models. This result generalizes
a theorem of L. Mayer [5], which is a solution to the Vaught problem for o-minimal theories.
Here we give a criterion for the number of countable models to be maximal in small binary quite
o-minimal theories of finite convexity rank (Thm. 11).

Definition 3 [6]. Let M be a weakly o-minimal structure, A ⊆ M , M be |A|+-saturated, and
p ∈ S1(A) be nonalgebraic.

(1) An A-definable formula F (x, y) is p-stable if there are α, γ1, γ2 ∈ p(M) such that F (M,α)\
{α} �= ∅ and γ1 < F (M,α) < γ2.

(2) A p-stable formula F (x, y) is convex to the right (left) if there exists α ∈ p(M) such that
F (M,α) is convex, α is a left (right) endpoint of the set F (M,α), and α ∈ F (M,α).

If F1(x, y) and F2(x, y) are p-stable convex to the right (left) formulas, then we say that F2(x, y)
is bigger than F1(x, y) if there exists α ∈ p(M) for which F1(M,α) ⊂ F2(M,α).

Definition 4 [7]. We say that a p-stable convex to the right (left) formula F (x, y) is equivalence
generating if, for any α, β ∈ p(M) such that M |= F (β, α), the following holds:

M |= ∀x[x ≥ β → [F (x, α) ↔ F (x, β)]]

(M |= ∀x[x ≤ β → [F (x, α) ↔ F (x, β)]]).

LEMMA 5 [7]. Let M be a weakly o-minimal structure, A ⊆ M , p ∈ S1(A) be nonalgebraic,
and M be |A|+-saturated. Suppose that F (x, y) is a p-stable convex to the right (left) formula,
which is equivalence generating. Then:

(1) G(x, y) := F (y, x) is a p-stable convex to the left (right) formula, which is also equivalence
generating;

(2) E(x, y) := F (x, y)∨F (y, x) is an equivalence relation partitioning p(M) into infinitely many
infinite convex classes.

Definition 6 [8]. Let T be a weakly o-minimal theory, M a sufficiently saturated model of T ,
and φ(x) an arbitrary M -definable formula with one free variable. The convexity rank of a formula
φ(x) (RC(φ(x))) is defined as follows:

(1) RC(φ(x)) ≥ 1 if φ(M) is infinite;
(2) RC(φ(x)) ≥ α + 1 if there exist a parametrically definable equivalence relation E(x, y) and

infinitely many elements bi, i ∈ ω, such that:
for any i, j ∈ ω, M |= ¬E(bi, bj) whenever i �= j;
for every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of φ(M);
(3) RC(φ(x)) ≥ δ if RC(φ(x)) ≥ α for all α < δ (δ is a limit ordinal).
If RC(φ(x)) = α for some α, then we say that RC(φ(x)) is defined; otherwise (i.e., RC(φ(x)) ≥

α for all α), we put RC(φ(x)) = ∞.
For a 1-type p, we define the convexity rank

RC(p) := inf{RC(φ(x)) | φ(x) ∈ p}.
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Definition 7 [1]. Let M be a weakly o-minimal structure, D ⊆ M be an infinite set, and
f : D → K be a function. We say that f is locally increasing (locally decreasing, locally constant)
on D if for any x ∈ D there exists an infinite interval J ⊆ D which contains x and is such that f

is strictly increasing (strictly decreasing, constant) on J .
We also say that a function f is locally monotone on a set D ⊆ M if f is either locally increasing

or locally decreasing on D.
Let f be an A-definable function on D ⊆ M and E an A-definable equivalence relation on

D. We say that f is strictly increasing (decreasing) on D/E if f(a) < f(b) (f(a) > f(b)) for any
a, b ∈ D with a < b and ¬E(a, b).

PROPOSITION 8 [9]. Let M be a weakly o-minimal structure, A ⊆ M , and p ∈ S1(A) be
a nonalgebraic type. Then every A-definable function whose domain contains a set p(M) is locally
monotone or locally constant on p(M).

Below we need the concept of a (p, q)-splitting formula introduced in [10]. Let A ⊆ M , p, q ∈
S1(A) be nonalgebraic types, and p �⊥w q. An A-definable formula φ(x, y) is called a (p, q)-splitting
formula if there exists an element a ∈ p(M) for which φ(a,M) ⊂ q(M), φ(a,M) is convex, and
φ(a,M)− = q(M)−, where φ(a,M)− := {b ∈ M | b < φ(a,M)}. Let φ1(x, y) and φ2(x, y) be (p, q)-
splitting formulas; then we say that φ1(x, y) is smaller than φ2(x, y) if there exists an element
a ∈ p(M) such that φ1(a,M) ⊂ φ2(a,M).

Obviously, if p, q ∈ S1(A) are nonalgebraic types and p �⊥w q, then there exists a (p, q)-splitting
formula, and the set of all (p, q)-splitting formulas is linearly ordered. It is also clear that for any
(p, q)-splitting formula φ(x, y), the function f(x) := supφ(x,M) is not constant on p(M).

LEMMA 9. Let T be a binary quite o-minimal theory, p, q ∈ S1(∅) be nonalgebraic, and
RC(p) = n. Suppose that every p-stable convex to the right (left) formula is equivalence generating.
The relation p �⊥w q holds if and only if there exists a unique ∅-definable bijection f : p(M) →
q(M), and there are precisely 2n (p, q)-splitting formulas.

Proof. Since RC(p) = n, there exist ∅-definable equivalence relations E1(x, y), . . . , En−1(x, y)
partitioning p(M) into infinitely many infinite convex classes, so that for every 1 ≤ i ≤ n − 2 the
equivalence Ei partitions each Ei+1-class into infinitely many Ei-subclasses, and E1(a,M) ⊂ . . . ⊂
En−1(a,M) for any a ∈ p(M).

Suppose p �⊥w q. Then, in view of quite o-minimality, there exists a ∅-definable bijection
f : p(M) → q(M). Consider the following formulas:

φ0
−(x, y) := y < f(x),

φ0
+(x, y) := y ≤ f(x),

φi
−(x, y) := ∀t[Ei(x, t) → y < f(t)], 1 ≤ i ≤ n− 1,

φi
+(x, y) := ∃t[Ei(x, t) ∧ y < f(t)], 1 ≤ i ≤ n − 1.
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Obviously, these are (p, q)-splitting formulas, and

φn−1
− (a,M) ⊂ . . . ⊂ φ1

−(a,M) ⊂ φ0
−(a,M)

⊂ φ0
+(a,M) ⊂ φ1

+(a,M) ⊂ . . . ⊂ φn−1
+ (a,M).

We claim that there are no other (p, q)-splitting formulas. In particular, there exist no other ∅-
definable functions mapping p(M) into q(M). Assume to the contrary that there exists a (p, q)-
splitting formula Φ(x, y) distinct from these 2n (p, q)-separating formulas. The following cases are
possible:

φi+1
− (a,M) ⊂ Φ(a,M) ⊂ φi

−(a,M) for some 0 ≤ i ≤ n − 2,

φi
+(a,M) ⊂ Φ(a,M) ⊂ φi+1

+ (a,M) for some 0 ≤ i ≤ n − 2,

Φ(a,M) ⊂ φn−1
− (a,M) or φn−1

+ (a,M) ⊂ Φ(a,M).

There is no loss of generality in assuming that φi+1
− (a,M) ⊂ Φ(a,M) ⊂ φi

−(a,M) for some
0 ≤ i ≤ n − 2 (the other cases can be treated analogously). Since f is ∅-definable, f is locally
monotone on p(M), and f should be strictly increasing or strictly decreasing on each Ei+1(a,M)/Ei

for any a ∈ p(M). For definiteness, suppose that f is strictly increasing. Consider the formula

GΦ(z, a) := z ≤ a ∧ ∀y[¬φi+1
− (a, y) ∧ φi

+(a, y) ∧ y < f(z) → Φ(a, y)].

It is not hard to see that GΦ(z, x) is a p-stable convex to the left formula, and GΦ(z, x) is
smaller than Gi+1(z, x) and is bigger than Gi(z, x), where Gi+1(z, x) := Ei+1(z, x) ∧ z ≤ x and
Gi(z, x) := Ei(z, x) ∧ z ≤ x are also p-stable convex to the left formulas. By the hypotheses
of the lemma, GΦ(z, x) should be equivalence generating, and by virtue of Lemma 5, we obtain
RC(p) ≥ n + 1, a contradiction. Thus other (p, q)-splitting formulas are missing. �

Definition 10 [11-13]. Let p1(x1), . . . , pn(xn) ∈ S1(T ). A type q(x1, . . . , xn) ∈ S(T ) is called

a (p1, . . . , pn)-type if q(x1, . . . , xn) ⊇
n⋃

i=1
pi(xi). The set of all (p1, . . . , pn)-types of T is denoted by

Sp1,...,pn(T ). A countable theory T is said to be almost ω-categorical if for any types p1(x1), . . . ,
pn(xn) ∈ S(T ) there exist only finitely many types q(x1, . . . , xn) ∈ Sp1,...,pn(T ).

Recall some of the notions considered in [5, 14]. We say that Γ ⊆ S1(∅) is independent if,
for every set Γ′ consisting of exactly one realization of each type in Γ, c′ �∈ dcl (Γ′ \ {c′}) holds
with any c′ ∈ Γ′. We say that p ∈ S1(∅) depends on Γ (or p and Γ are dependent) if Γ ∪ {p} is
not independent. The dimension of a set Γ (denoted dim(Γ)) is the cardinality of a maximally
independent subset of the set Γ.

THEOREM 11. Let T be a small binary quite o-minimal theory of finite convexity rank and
Γ be the set of all nonisolated types from S1(∅). The theory T has 2ω countable models if and
only if at least one of the following conditions holds:

(1) dim(Γ) = ω;
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(2) there exist a nonalgebraic type p ∈ S1(∅) and a p-stable convex to the right (left) formula
F (x, y) which is not equivalence generating.

Proof. If dim(Γ) = ω, then there exist countably many pairwise weakly orthogonal nonisolated
1-types ensuring the maximality of a countable spectrum. If (2) holds, then the conclusion follows
from [4, Prop. 2.8].

Suppose now that T has 2ω countable models and dim(Γ) < ω. Assume to the contrary
that every p-stable convex to the right (left) formula F (x, y) is equivalence generating for any
nonalgebraic type p ∈ S1(∅). We claim that in this case T is almost ω-categorical. By induction
on k ≥ 2, we show that for any family of nonalgebraic types p1, . . . , pk ∈ S1(∅) there exist only
finitely many (p1, . . . , pk)-types.

Step k = 2.
Case 1. Let p1 ⊥w p2. Then the set p1(x) ∪ p2(y) defines a complete 2-type over ∅.
Case 2. Let p1 �⊥w p2. In view of quite o-minimality, there exists a ∅-definable bijection f1,2 :

p1(M) → p2(M), whence RC(p1) = RC(p2) (their convexity rank is denoted np). Taking into
account Lemma 9, we see that no other ∅-definable functions from p1(M) are in p2(M), and there
exist precisely 2n (p, q)-splitting formulas. Possible extensions of the set p1(x) ∪ p2(y) are formed
by joining to it the following 2np + 1 formulas:

f1,2(x) = y,

f1,2(x) < y ∧ Ep2
1 (f1,2(x), y),

f1,2(x) < y ∧ Ep2

i+1(f1,2(x), y) ∧ ¬Ep2

i (f1,2(x), y), 1 ≤ i ≤ np − 2,

f1,2(x) < y ∧ ¬Ep2
np−1(f1,2(x), y) (and similarly with f1,2(x) > y).

Thus there exist exactly 2np + 1 (p1, p2)-types.
Step n + 1. Take arbitrary nonalgebraic types p1, . . . , pn, pn+1 ∈ S1(∅).
Case 1. Let pn+1 ⊥w pi for every 1 ≤ i ≤ n. In this case the number of (p1, . . . , pn, pn+1)-types

coincides with the number of (p1, . . . , pn)-types.
Case 2. Let pn+1 �⊥w pi for every 1 ≤ i ≤ n. Then RC(p1) = . . . = RC(pn+1) (their convexity

rank is denoted np) and there exists a unique ∅-definable bijection fn,n+1 : pn(M) → pn+1(M).
Possible extensions of the set p1(x1) ∪ . . . ∪ pn(xn) ∪ pn+1(xn+1) are formed by joining to it the
following 2np + 1 formulas:

fn,n+1(xn) = xn+1,

fn,n+1(xn) < xn+1 ∧ E
pn+1

1 (fn,n+1(xn), xn+1),

fn,n+1(xn) < xn+1 ∧ E
pn+1

i+1 (fn,n+1(xn), xn+1) ∧ ¬E
pn+1

i (fn,n+1(xn), xn+1),

where 1 ≤ i ≤ np − 2,

fn,n+1(xn) < xn+1 ∧ ¬E
pn+1

np−1(fn,n+1(xn), xn+1)

(and similarly with fn,n+1(xn) > xn+1).
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By the inductive assumption, the number of (p1, . . . , pn)-types is finite (denote it by Sp1,...,pn).
Then the number of (p1, . . . , pn+1)-types is equal to the product of Sp1,...,pn and 2np + 1.

Case 3. Let pn+1 �⊥w pi and pn+1 ⊥w pj for some 1 ≤ i, j ≤ n, i �= j. Then (if necessary)
there exist a renumbering of types pi and an element k with the condition 1 ≤ k < n such
that pn+1 ⊥w pj, for all 1 ≤ j ≤ k, and pn+1 �⊥w pl for all k + 1 ≤ l ≤ n. By the inductive
assumption, both the number of (p1, . . . , pk, pn+1)-types and the number of (pk+1, . . . , pn, pn+1)-
types are finite, in which case the number of (p1, . . . , pk, pn+1)-types coincides with the number
of (p1, . . . , pk)-types. Denote these numbers by Sp1,...,pk

and Spk+1,...,pn,pn+1 , respectively. Then the
number of (p1, . . . , pn+1)-types is equal to the product of Sp1,...,pk

and Spk+1,...,pn,pn+1 .
Thus the theory T is almost ω-categorical, and by virtue of [14, Cor. 3.10], it will be an

Ehrenfeucht theory, which is a contradiction with T having 2ω countable models. �

Note that the condition of being finite for the convexity rank is essential in the following:

Example 12. Let M = 〈Q, < E2
i 〉i∈ω be a dense linear order structure on the set Q of rational

numbers, and let it be enriched with equivalence relations Ei, i ∈ ω, where each relation Ei+1,
i ≥ 2, consists of infinitely many open convex Ei-classes, which are densely ordered.

We can prove that Th (M) is a small binary quite o-minimal theory of infinite convexity rank
having 2ω countable models, p(x) := {x = x} ∈ S1(∅) is a unique nonalgebraic type, and every
p-stable convex to the right (left) formula is equivalence generating.

Note also that there exists a small quite o-minimal theory of finite convexity rank that is not
binary.

Example 13. Let M = 〈M ;<,P 1
1 , P 1

2 , P 1
3 , f2〉 be a linearly ordered structure whose universe M

is a disjoint union of interpretations of unary predicates P1, P2, and P3, with P1(M) < P2(M) <

P3(M). We identify each interpretation of Pi (1 ≤ i ≤ 3) with the set Q of rational numbers
ordered in the usual way. A symbol f is interpreted by a partial binary function with Dom (f) =
P1(M) × P2(M) and Range (f) = P3(M) and is defined by the equality f(a, b) = a + b for all
(a, b) ∈ Q × Q.

Obviously, Th (M) has convexity rank 1.
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