DOI 10.1007/s10469-019-09532-4
Algebra and Logic, Vol. 58, No. 2, May, 2019

(Russian Original Vol. 58, No. 2, March-April, 2019)

MAXIMALITY OF THE COUNTABLE SPECTRUM
IN SMALL QUITE o-MINIMAL THEORIES
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We give a criterion for the countable spectrum to be mazimal in small binary quite

o-minimal theories of finite convexity rank.

The present paper deals with the notion of weak o-minimality, which was initially deeply
investigated in [1]. A subset A of a linearly ordered structure M is said to be convez if ¢ € M
whenever a < ¢ < b for any a,b € A and any ¢ € A. A weakly o-minimal structure is a linearly
ordered structure M = (M, =, <,...) such that every definable (with parameters) subset of M is
the union of finitely many convex sets in M. Real closed fields with a proper convex valuation ring
furnish an important example of weakly o-minimal structures.

In the definitions below, M is a weakly o-minimal structure, A, B C M, M is |A|"-saturated,
and p, q € S1(A) are nonalgebraic.

Definition 1 [2]. We say that a type p is not weakly orthogonal to a type ¢q (p L q) if there is
an A-definable formula H(z,y) and there are o € p(M) and (31, 32 € q(M) such that 8, € H(M, «)
and B & H(M, «).

Definition 2 [3]. We say that a type p is not quite orthogonal to a type ¢ (p L7 q) if there
exists an A-definable bijection f : p(M) — q(M). We also say that a weakly o-minimal theory is
quite o-minimal if the notions of weak orthogonality and quite orthogonality coincide for 1-types.

Quite o-minimal theories are a subclass of the class of weakly o-minimal theories which inherits
many properties of o-minimal theories. The Vaught problem for quite o-minimal theories was solved

in [4]: it was proved that every countable quite o-minimal theory either is countably categorical, or
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is an Ehrenfeucht theory, or has the maximum number of countable models. This result generalizes
a theorem of L. Mayer [5], which is a solution to the Vaught problem for o-minimal theories.
Here we give a criterion for the number of countable models to be maximal in small binary quite

o-minimal theories of finite convexity rank (Thm. 11).

Definition 3 [6]. Let M be a weakly o-minimal structure, A C M, M be |A|*-saturated, and
p € S1(A) be nonalgebraic.

(1) An A-definable formula F(x,y) is p-stable if there are o, vy1,v2 € p(M) such that F(M,a)\
{a} # @ and vy < F(M,a) < 2.

(2) A p-stable formula F(z,y) is convex to the right (left) if there exists a € p(M) such that
F(M,«) is convex, « is a left (right) endpoint of the set F(M,«), and o € F(M, o).

If Fi(z,y) and Fy(x,y) are p-stable convex to the right (left) formulas, then we say that Fs(x,y)
is bigger than Fy(z,y) if there exists o € p(M) for which Fy(M,«a) C Fo(M, ).

Definition 4 [7]. We say that a p-stable convex to the right (left) formula F'(x,y) is equivalence
generating if, for any «, 8 € p(M) such that M | F(f3, a), the following holds:

M Vafe > 8 — [F(x,a) < F(z, B)]
(M = Vafe < 8 — [F(z,) < F(z, A)])).

LEMMA 5 [7]. Let M be a weakly o-minimal structure, A C M, p € S1(A) be nonalgebraic,
and M be |A|"-saturated. Suppose that F(x,y) is a p-stable convex to the right (left) formula,
which is equivalence generating. Then:

(1) G(z,y) := F(y,z) is a p-stable convex to the left (right) formula, which is also equivalence
generating;

(2) E(z,y) := F(x,y)V F(y,x) is an equivalence relation partitioning p(M/) into infinitely many
infinite convex classes.

Definition 6 [8]. Let T' be a weakly o-minimal theory, M a sufficiently saturated model of T,
and ¢(z) an arbitrary M-definable formula with one free variable. The convezity rank of a formula
od(z) (RC(¢p(x))) is defined as follows:

(1) RC(¢(z)) > 1 if ¢(M) is infinite;

(2) RC(¢(x)) > a+ 1 if there exist a parametrically definable equivalence relation F(z,y) and
infinitely many elements b;, ¢ € w, such that:

for any 4,j € w, M |= ~E(b;, b;) whenever i # j;

for every i € w, RC(E(x,b;)) > o and E(M,b;) is a convex subset of ¢(M);

(3) RC(¢(x)) > § if RC(p(x)) > « for all a < ¢ (§ is a limit ordinal).

If RC(¢(x)) = a for some «, then we say that RC(¢(z)) is defined; otherwise (i.e., RC(¢(z)) >
a for all a), we put RC(¢p(x)) = oo.

For a 1-type p, we define the convezity rank
RC(p) := inf{ RC(¢(x)) | p(x) € p}-
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Definition 7 [1]. Let M be a weakly o-minimal structure, D C M be an infinite set, and
f: D — K be a function. We say that f is locally increasing (locally decreasing, locally constant)
on D if for any x € D there exists an infinite interval J C D which contains = and is such that f
is strictly increasing (strictly decreasing, constant) on J.

We also say that a function f is locally monotone on a set D C M if f is either locally increasing
or locally decreasing on D.

Let f be an A-definable function on D C M and E an A-definable equivalence relation on
D. We say that f is strictly increasing (decreasing) on D/E if f(a) < f(b) (f(a) > f(b)) for any
a,b € D with a < b and —FE(a,b).

PROPOSITION 8 [9]. Let M be a weakly o-minimal structure, A C M, and p € S1(A4) be
a nonalgebraic type. Then every A-definable function whose domain contains a set p(M) is locally
monotone or locally constant on p(M).

Below we need the concept of a (p, ¢)-splitting formula introduced in [10]. Let A C M, p,q €
S1(A) be nonalgebraic types, and p " q. An A-definable formula ¢(z,y) is called a (p, q)-splitting
formula if there exists an element a € p(M) for which ¢(a, M) C q(M), ¢(a, M) is convex, and
¢(a, M)~ = q(M)~, where ¢(a, M)~ :={be€ M | b < ¢(a, M)}. Let ¢1(z,y) and ¢2(z,y) be (p, q)-
splitting formulas; then we say that ¢1(x,y) is smaller than ¢o(x,y) if there exists an element
a € p(M) such that ¢1(a, M) C ¢o(a, M).

Obviously, if p,q € S1(A) are nonalgebraic types and p £ ¢, then there exists a (p, ¢)-splitting
formula, and the set of all (p, ¢)-splitting formulas is linearly ordered. It is also clear that for any

(p, q)-splitting formula ¢(z,y), the function f(z) := sup ¢(x, M) is not constant on p(M).

LEMMA 9. Let T be a binary quite o-minimal theory, p,q € S1(&) be nonalgebraic, and
RC(p) = n. Suppose that every p-stable convex to the right (left) formula is equivalence generating.
The relation p f% ¢ holds if and only if there exists a unique @-definable bijection f : p(M) —
q(M), and there are precisely 2n (p, ¢)-splitting formulas.

Proof. Since RC(p) = n, there exist @-definable equivalence relations Ei(x,y),..., E,—1(z,y)
partitioning p(M) into infinitely many infinite convex classes, so that for every 1 < i < n — 2 the
equivalence F; partitions each E;i-class into infinitely many F;-subclasses, and Eyi(a, M) C ... C
En_1(a, M) for any a € p(M).

Suppose p Y™ q. Then, in view of quite o-minimality, there exists a @-definable bijection
f:p(M) — q(M). Consider the following formulas:

¢ (z,y) =y < f(2),

$%(z,y) =y < f(x),

O (z,y) == Vt[Ei(z,t) —y < f(t)], 1<i<n-—1,
(bi(a:,y) = [Ei(z,t) Ny < f(t)], 1 <i<n-—1.
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Obviously, these are (p, ¢)-splitting formulas, and

" Na, M) C...C ¢ (a, M) C ¢° (a, M)
C qbg]r(a,M) C gbi(a,M) C...C qbfffl(a,M).

We claim that there are no other (p, q)-splitting formulas. In particular, there exist no other &-
definable functions mapping p(M) into g(M). Assume to the contrary that there exists a (p, q)-
splitting formula ®(x,y) distinct from these 2n (p, ¢)-separating formulas. The following cases are

possible:

¢ a, M) C ®(a, M) C ¢" (a, M) for some 0 < i < n — 2,
¢' (a, M) C ®(a, M) C ¢! (a, M) for some 0 < i <n—2,
®(a, M) C ¢" (a, M) or ¢t (a, M) C ®(a, M).

There is no loss of generality in assuming that ¢"*(a, M) C ®(a, M) C ¢ (a, M) for some
0 < i < n — 2 (the other cases can be treated analogously). Since f is @-definable, f is locally
monotone on p(M ), and f should be strictly increasing or strictly decreasing on each E; 1 (a, M)/E;

for any a € p(M). For definiteness, suppose that f is strictly increasing. Consider the formula
G?(z,0) =2 < a AVY[~¢™ (a,y) A ¢y (a,9) Ay < f(z) = D(a,y)]-

It is not hard to see that G®(z,z) is a p-stable convex to the left formula, and G®(z,z) is
smaller than G;y1(z,z) and is bigger than G;(z,z), where G;i11(z,2) := Eiy1(z,2) A z < x and
Gi(z,x) = Ei(z,x) A z < x are also p-stable convex to the left formulas. By the hypotheses
of the lemma, G®(z,z) should be equivalence generating, and by virtue of Lemma 5, we obtain

RC(p) > n+ 1, a contradiction. Thus other (p, ¢)-splitting formulas are missing. O
Definition 10 [11-13]. Let pi(z1),...,pn(zs) € Si(T). A type q(x1,...,2,) € S(T) is called
n
a (p1,...,pn)-type if q(x1,...,2,) 2 | pi(z;). The set of all (p1,...,pn)-types of T is denoted by
=1

Spr...pn(T). A countable theory T i;;aid to be almost w-categorical if for any types pi(x1),...,
Pn(xyn) € S(T) there exist only finitely many types g(z1,...,2,) € Sy, p. (T).

Recall some of the notions considered in [5, 14]. We say that I' C S1(@) is independent if,
for every set I' consisting of exactly one realization of each type in T, ¢ & dcl (I \ {¢'}) holds
with any ¢ € T'. We say that p € S1(@) depends on T (or p and T' are dependent) if T' U {p} is
not independent. The dimension of a set I' (denoted dim(I")) is the cardinality of a maximally

independent subset of the set T'.

THEOREM 11. Let T be a small binary quite o-minimal theory of finite convexity rank and
I be the set of all nonisolated types from S;(&). The theory T has 2“ countable models if and

only if at least one of the following conditions holds:
(1) dim(I") = w;
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(2) there exist a nonalgebraic type p € S1(&) and a p-stable convex to the right (left) formula
F(x,y) which is not equivalence generating.

Proof. If dim(I") = w, then there exist countably many pairwise weakly orthogonal nonisolated
1-types ensuring the maximality of a countable spectrum. If (2) holds, then the conclusion follows
from [4, Prop. 2.8|.

Suppose now that 7" has 2* countable models and dim(I') < w. Assume to the contrary
that every p-stable convex to the right (left) formula F'(z,y) is equivalence generating for any
nonalgebraic type p € S1(@). We claim that in this case T is almost w-categorical. By induction
on k > 2, we show that for any family of nonalgebraic types pi,...,pr € S1(@) there exist only
finitely many (p1,...,pg)-types.

Step k = 2.

Case 1. Let p; L% pa. Then the set p1(z) U p2(y) defines a complete 2-type over &.

Case 2. Let p1 £" pa. In view of quite o-minimality, there exists a @-definable bijection f o :
p1(M) — pa(M), whence RC(p1) = RC(p2) (their convexity rank is denoted n,). Taking into
account Lemma 9, we see that no other @-definable functions from p; (M) are in pa(M ), and there
exist precisely 2n (p, q)-splitting formulas. Possible extensions of the set p1(z) U pa(y) are formed
by joining to it the following 2n, + 1 formulas:

f1,2 xr)=1Y,

(z)

() <y A EP*(fr2(2),p),

fl,Z(x) <yAN Ezpjl(fl,Z(Q:)vy) A _‘EZPQ(fl,Z(l‘)vy% 1<i< np — 2,
(x)

fia(x) <yA ﬂEgi_l(ng(x),y) (and similarly with fio(x) > y).

Thus there exist exactly 2n, + 1 (p1, p2)-types.

Step n + 1. Take arbitrary nonalgebraic types p1,...,Pn,Pnt1 € S1(9).

Case 1. Let p, 41 LY p; for every 1 <i < n. In this case the number of (p1,...,pn, Pnt1)-types
coincides with the number of (p1,...,p,)-types.

Case 2. Let py 1 LY p; for every 1 < i < n. Then RC(p;) = ... = RC(pp+1) (their convexity
rank is denoted n,) and there exists a unique @-definable bijection fy 41 : (M) — Py (M).
Possible extensions of the set py(z1) U ... Upp(zn) U ppt1(zns1) are formed by joining to it the

following 2n, + 1 formulas:

fn,n-l-l(xn) = Tn+1;
fn,nJrl(Q:n) < Zpy1 A Efn-‘_l (fn,nJrl(Q:n)y $n+1)u
fn,nJrl(Q:n) < Tpp1 A Ef_:irl (fn,nJrl(Q:n)y $n+1) A _‘E;‘pwrl (fn,nJrl(xn)u anrl)y

where 1 <i < n, — 2,
fn,n-l—l(xn) < Tn+1 A _‘Eg;ltll(fn,n—i—l(xn)a xn-{—l)

(and similarly with f, ,41(zn) > Tpt1).
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By the inductive assumption, the number of (p1,...,pp)-types is finite (denote it by Sp, . ,.)-
Then the number of (p1,...,pnt1)-types is equal to the product of Sy, .. and 2n, + 1.

Case 3. Let pp41 LY pi and ppyq1 LY pj for some 1 < 4,5 < n, i # j. Then (if necessary)
there exist a renumbering of types p; and an element k with the condition 1 < k < n such
that p,11 LY pj, for all 1 < j < k, and pyy1 LY p; for all £ +1 < I < n. By the inductive
assumption, both the number of (pi,...,pk, Pn+1)-types and the number of (pgi1,. .-, PnsPnt1)-
types are finite, in which case the number of (pi,..., Pk, Pnt1)-types coincides with the number
,,,,, p, and S

of (p1,...,pk)-types. Denote these numbers by S, Pl 1y sPnsPnt1

respectively. Then the
number of (p1,...,ppy1)-types is equal to the product of Sy, ., and Sy, .1 vy poss-

Thus the theory T is almost w-categorical, and by virtue of [14, Cor. 3.10], it will be an
Ehrenfeucht theory, which is a contradiction with T" having 2“ countable models. O

Note that the condition of being finite for the convexity rank is essential in the following:

Example 12. Let M = (Q, < E?);e,, be a dense linear order structure on the set Q of rational
numbers, and let it be enriched with equivalence relations F;, ¢ € w, where each relation F;, 1,
1 > 2, consists of infinitely many open convex FE;-classes, which are densely ordered.

We can prove that Th (M) is a small binary quite o-minimal theory of infinite convexity rank
having 2* countable models, p(z) := {x = x} € S1(&) is a unique nonalgebraic type, and every
p-stable convex to the right (left) formula is equivalence generating.

Note also that there exists a small quite o-minimal theory of finite convexity rank that is not
binary.

Example 13. Let M = (M; <, P}, P}, P}, f?) be a linearly ordered structure whose universe M
is a disjoint union of interpretations of unary predicates Pj, P, and P3, with P;(M) < P,(M) <
P3;(M). We identify each interpretation of P; (1 < i < 3) with the set Q of rational numbers
ordered in the usual way. A symbol f is interpreted by a partial binary function with Dom (f) =
P (M) x P,(M) and Range (f) = P3(M) and is defined by the equality f(a,b) = a + b for all
(a,b) € Q x Q.

Obviously, Th (M) has convexity rank 1.
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