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Associative rings R and R′ are said to be lattice-isomorphic if their subring lattices
L(R) and L(R′) are isomorphic. An isomorphism of the lattice L(R) onto the lattice
L(R′) is called a projection (or a lattice isomorphism) of the ring R onto the ring R′.
A ring R′ is called the projective image of a ring R. We study lattice isomorphisms of
finite commutative rings with identity. The objective is to specify sufficient conditions
subject to which rings under lattice homomorphisms preserve the following properties:
to be a commutative ring, to be a ring with identity, to be decomposable into a direct
sum of ideals. We look into the question about the projective image of the Jacobson
radical of a ring. In the first part, the previously obtained results on projections of
finite commutative semiprime rings are supplemented with new information. Lattice
isomorphisms of finite commutative rings decomposable into direct sums of fields and
nilpotent ideals are taken up in the second part. Rings definable by their subring lattices
are exemplified. Projections of finite commutative rings decomposable into direct sums
of Galois rings and nilpotent ideals are considered in the third part. It is proved that
the presence in a ring of a direct summand definable by its subring lattice (i.e., the
Galois ring GR(pn,m), where n > 1 and m > 1) leads to strong connections between
the properties of R and R′.

INTRODUCTION

Associative rings R and R′ are said to be lattice-isomorphic if their subring lattices L(R) and
L(R′) are isomorphic. An isomorphism of the lattice L(R) onto the lattice L(R′) is denoted ϕ and
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is called a lattice isomorphism (or a projection) of the ring R onto the ring R′. For convenience, a
ring R′ is denoted Rϕ and is called the projective image of a ring R.

Let R be a finite commutative ring with identity and ϕ a lattice isomorphism of R onto
Rϕ. There are examples showing that the projective image Rϕ is not always commutative. The
objective of our research is to specify sufficient conditions subject to which rings under lattice
homomorphisms preserve the following properties: to be a commutative ring, to be a ring with
identity, to be decomposable into a direct sum of ideals. Of importance is the question about the
projective image of the Jacobson radical of a ring R. This is explained by the fact that whenever
the equality (Rad R)ϕ = Rad Rϕ holds, the factor rings R = R/Rad R and Rϕ = Rϕ/Rad Rϕ are
lattice-isomorphic, and so their common properties, in particular, commutativity, follow from the
previously obtained results [1].

The projective image of a ring R is not always a ring with identity [1, Lemma 1.2]. However,
if R and Rϕ contain identity elements (e.g., e and e′, resp.), then the question arises whether it is
true that

〈e〉ϕ = 〈e′〉, (1)

where 〈e〉 and 〈e′〉 are subrings generated by the elements e and e′. The satisfiability of (1) is closely
connected with another question: Will projective images of direct summands of a ring R be direct
summands in Rϕ?

Yet another important problem in studying projections of rings is searching for lattice-definable
rings, i.e, rings isomorpic to their projective images. Such rings being unique objects are interesting
in their own right.

The study of lattice isomorphisms of finite commutative rings with identity was started in [1]
and continued in [2, 3]. According to [1, Prop. 3.1], the projective image of a ring decomposable into
a direct sum of finite fields, which is not isomorphic to the sum GF (p)⊕GF (p), is a commutative
ring. Furthermore, in [1, Thm. 4.1], necessary and sufficient conditions were found under which
projective images of direct sums of finite fields are direct sums of projective images of summands.
However, whether (1) is satisfiable was not explored in that case. In [2], it was proved that the
Galois ring GR(pn,m) is lattice-definable for n > 1 and m > 1. Lattice isomorphisms of finite
rings decomposable into direct sums of Galois rings of different types were dealt with in [3]. The
results obtained in [2, 3] imply that the projective image of a finite ring with identity which is
decomposable into a direct sum of Galois rings is (with some exceptions) a commutative ring with
identity.

The basic content of the paper is presented in three sections. In Sec. 1, the previously
obtained results on projections of finite commutative semiprime rings are supplemented with
new information. Lattice isomorphisms of finite commutative rings decomposable into direct sums
of fields and nilpotent ideals are taken up in Sec. 2. The presence in R of a proper nilpotent
ideal leads to a more close relationship between the rings R and Rϕ: both R and Rϕ have equal
characteristics, (Rad R)ϕ = Rad Rϕ, Eq. (1) is satisfied, decomposability into a direct sum of ideals
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is preserved (Thm. 4), while the commutative property may fail to be respected (Example 2).
Lemma 3 and Theorem 3 contain examples of rings definable by their subring lattices. Projections
of finite commutative rings decomposable into direct sums of Galois rings and nilpotent ideals are
considered in Sec. 3. The presence in a ring of a direct summand definable by its subring lattice
(namely, the Galois ring GR(pn,m), where n > 1 and m > 1) also leads to strong connections
between the properties of R and Rϕ. This is confirmed by Theorem 5.

We specify the notation used in the paper. Let S and T be subgroups of the additive group R+

of a ring R. The situation where R = {s + t | s ∈ S and t ∈ T} is denoted R = S + T . We write
R = S �T whenever R = S +T and S ∩T = {0}. The equality R = S⊕T signifies that R = S �T

and S and T are two-sided ideals in R. In this case we say that a ring R is decomposable into a
direct sum of rings S and T . By M(R) we denote the intersection of all maximal subrings of a
finite ring R. Other designations are standard: S∨T is a subring generated by subrings S and T in
R; Rad R is the Jacobson radical of a ring R; GR(pn,m) is a Galois ring; GF (pm) = GR(p,m) is
a Galois field; Z and N are the sets of integers and natural numbers, respectively; 〈a1, a2, . . . , an〉
is a ring generated by elements a1, a2, . . . , an; (r) is a principal ideal generated by an element r

in R, i.e., (r) =
{

αr + br + rc +
n∑

i=1
xiryi

∣∣∣∣ α ∈ Z, b, c, xi, yi ∈ R

}
; o(r) is the additive order of an

element r; ind r is the nilpotency index of an element r; the letters k, l,m, n, p, q with or without
indices stand for natural numbers, and p and q stand for prime numbers. Lower-case Greek letters,
except ϕ, denote integers. The letter ϕ is used to denote a lattice isomorphism of the ring R onto
the ring Rϕ. In the cases where the projective image of a ring generated by an element r is a
one-generated ring, 〈r〉ϕ is denoted by 〈r′〉; in particular, 〈0〉ϕ = 〈0′〉.

In the paper we use the concept of length for rings. We clarify it. A nonnegative integer n is
called the length of a lattice L if L contains a chain of length n and the length of any chain in L

does not exceed n. By the length of a finite ring R we mean the length of its subring lattice L(R).
The length of a ring R is denoted by l(R).

A ring R is called a p-ring if its additive group R+ is a p-group. It is well known that every finite
ring decomposes into a finite direct sum of rings with primary additive groups, R = Rp1⊕· · ·⊕Rpn ,
and its subring lattice L(R) decomposes into a direct product of lattices L(Rpi), L(R) ∼= L(Rp1)×
· · · × L(Rpn). Therefore, the study of projections of finite rings reduces to treating projections of
rings with primary additive groups.

1. PRELIMINARIES

A subring 〈e〉 generated by an identity e of a ring R plays an important part in the paper. We
give a description of rings that are lattice-isomorphic to the ring 〈e〉.

PROPOSITION 1 [4, Thm. 1.6]. Let R = 〈e〉, where e2 = e and o(e) = pn, and ϕ be a
projection of the ring R onto the ring Rϕ. Then Rϕ is isomorphic to one of the following rings:

K1 = 〈v〉, where v2 = v and o(v) = qn;
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K2 = GF (ppn−1
2

1 );
K3 = 〈r〉, where r2 �= 0, r3 = 0, and o(r) = q;
K4 = 〈r〉, where r2 = qkr, k = 1, n, and o(r) = qn.

PROPOSITION 2. Let R = 〈e1〉⊕ · · · ⊕ 〈en〉, where n � 2, e2
i = ei, o(ei) = pki , i = 1, n, and

k1 � k2 � . . . � kn, and any of the following two conditions be satisfied:
k1 = . . . = kn = 1 and n > 2;
k1 > 1.

Suppose also that ϕ is a projection of R onto Rϕ. Then:
(a) Rϕ = 〈e′1〉 ⊕ · · · ⊕ 〈e′n〉, where (e′i)

2 = e′i and o(e′i) = qki , i = 1, n;
(b) Rϕ is a ring with identity;
(c) if k2 > 1, then Rϕ ∼= R.
Proof. Statement (b) follows from (a), and (c) derives from [2, Thm. 2]. We prove statement (a).

If k1 = . . . = kn = 1 and n > 2, then (a) results from [1, Lemma 3].
Let n � 2, k1 > 1, and k2 = . . . = kn = 1. We use induction on the variable n. For n = 2,

the truth of (a) follows from [2, Lemma 6]. Suppose that the statement is true for n = m � 2.
Let n = m + 1. Consider a subring V = 〈e1〉 ⊕ · · · ⊕ 〈em〉 in R. By the induction hypothesis,
V ϕ = 〈v′1〉 ⊕ · · · ⊕ 〈v′m〉, where (v′i)

2 = v′i and o(v′i) = qki , i = 1,m. The element v′ = v′1 + · · ·+ v′m
is an identity in the ring V ϕ. The ring V contains an idempotent element v such that 〈v〉ϕ = 〈v′〉.
Clearly, o(v) = pk1 . In view of k1 > 1 and [2, Lemma 6], we obtain (〈v〉⊕〈em+1〉)ϕ = 〈v′〉� 〈e′m+1〉,
where (e′m+1)

2 = e′m+1, and either v′e′m+1 = e′m+1v
′ = 0′ or v′e′m+1 = e′m+1v

′ = e′m+1.
If v′e′m+1 = 0′, then e′ie

′
m+1 = (e′iv

′)e′m+1 = e′i(v
′e′m+1) = e′i0

′ = 0′ hold for any i = 1,m. These
equalities imply that Rϕ = 〈v′1〉⊕· · ·⊕〈v′m〉⊕〈e′m+1〉. If v′e′m+1 = e′m+1, then there exists a number
j ∈ {1, . . . ,m} such that v′je

′
m+1 = e′m+1. Consider an element w′

j = (v′ − e′m+1)v
′
j = v′j − e′m+1.

Obviously, (w′
j)

2 = w′
j , o(w′

j) = o(v′j), and w′
je

′
m+1 = 0′. In addition, if i ∈ {1, . . . ,m} and

i �= j, then w′
jv

′
i = 0′. Replacing the elements v′j for which v′je

′
m+1 �= 0′ by elements w′

j and
denoting the remaining elements v′i by w′

i, we obtain a system of orthogonal idempotent elements
w′

1, w
′
2, . . . , w

′
m+1, in which case Rϕ = 〈w′

1〉 ⊕ · · · ⊕ 〈w′
m+1〉.

Remark 1. If R satisfies the conditions of Proposition 2, then the rings R and Rϕ contain
identity elements e and e′, respectively. However, as follows from [2, Lemmas 6, 8], Eq. (1) does
not always hold.

[1, Prop. 2.1] gives rise to

PROPOSITION 3. Let R ∼= GF (pn), n = pα1
1 · · · pαk

k be the canonical decomposition of the
number n, k > 1, and ϕ be a projection of the ring R onto the ring Rϕ. Then Rϕ is isomorphic to
one of the following rings:

K5 = GF (qn′
), where n′ = qα1

1 · · · qαk
k ;

K6 = 〈e, r〉, e2 = e, o(e) = q2, o(r) = q, er = re = r, r2 = γqe, and either γ = 1 or γ is not a
square in GF (q).

If Rϕ ∼= K6, then the number n is a product of two distinct primes.
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Remark 2. Let the rings R and Rϕ be finite fields with identities e and e′, respectively. Then
Eq. (1) holds.

Indeed, the subrings 〈e〉 and 〈e′〉 are unique minimal subrings in R and Rϕ, respectively; so
〈e〉ϕ = 〈e′〉.

THEOREM 1. Let R = F1 ⊕ · · · ⊕ Fn, where n > 1, and Fi
∼= GF (pli), i = 1, n. Suppose

also that li > 1, li = pα1
1 · · · pαki

ki
, i = 1, n, and ϕ is a projection of the ring R onto the ring Rϕ.

Then Rϕ = Fϕ
1 ⊕ · · · ⊕ Fϕ

n , where Fϕ
i
∼= GF (qmi) and mi = qα1

1 · · · qαki
ki

, i � n, and if e and e′ are
identity elements of R and Rϕ, respectively, then 〈e〉ϕ = 〈e′〉.

Proof. The first part of the conclusion of the theorem was proved in [1, Thm. 4.2]. We argue
for the satisfiability of Eq. (1).

Let ei and e′i be identities of the fields Fi and Fϕ
i , i = 1, n, respectively. Then e = e1 + · · ·+ en

and e′ = e′1 + · · ·+ e′n are identity elements in the rings R and Rϕ, respectively. By Remark 2, the
equality

〈ei〉ϕ = 〈e′i〉 (2)

holds for all i = 1, n. We use induction on the number n. For n = 2, the subrings 〈e1〉, 〈e2〉, and
〈e1 + e2〉 are unique minimal subrings in R. Similarly, 〈e′1〉, 〈e′2〉, and 〈e′1 + e′2〉 are unique minimal
subrings in Rϕ. With Eq. (2) in mind, we conclude that 〈e1 + e2〉ϕ = 〈e′1 + e′2〉.

Suppose that Eq. (1) holds for n = k � 2. Let n = k + 1. Put v = e1 + · · · + en and
v′ = e′1 + · · · + e′n. By the induction hypothesis, 〈v〉ϕ = 〈v′〉. The subring 〈v〉 ⊕ 〈en〉 contains no
more than three proper subrings: 〈v〉, 〈en〉, and 〈v + en〉. Since 〈v〉ϕ = 〈v′〉 and 〈en〉ϕ = 〈e′n〉, we
have 〈v + en〉ϕ = 〈v′ + e′n〉. The theorem is proved.

2. PROJECTIONS OF RINGS CONTAINING FINITE FIELDS

In this section we consider lattice isomorphisms of finite commutative rings with identity that
are decomposable into direct sums of fields and nilpotent ideals.

LEMMA 1. Let R be a p-nil-ring containing more than four elements, and let the lattice L(R)
not be a chain. Suppose that ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then Rϕ

is a p-ring, and if it is commutative then it is also a nil-ring.
Proof. By hypothesis, R contains more than four elements and is therefore not a direct sum of

two nilpotent rings of order 2. Furthermore, L(R) is not a chain. Applying [5, Thm. 1] to a subring
of R, we see that Rϕ is a p-ring. If Rϕ is commutative, then it is a nil-ring; otherwise, in view of
[5, Thm. 1], Rϕ would contain elements e′ and s′ for which e′s′ �= s′e′.

LEMMA 2. Let a finite commutative ring R of prime characteristic p be defined thus: R =
〈e〉 � N , where e is an identity element of the ring R, N is a nil-ring of order greater than 4, and
the lattice L(N) is not a chain. Then the following statements hold:

(a) Rϕ = 〈e〉ϕ � Nϕ;
(b) 〈e〉ϕ = 〈e′〉, o(e′) = q, and (e′)2 = e′ for q = p;

190



(c) Nϕ is a p-nil-ring;
(d) either e′ is the identity in Rϕ and then q = p, or the equalitites e′r′ = r′e′ = 0′ hold for any

element r′ ∈ Nϕ.
Proof. According to [6, Thm. 1], the subring lattice L(R) decomposes into a direct product of

lattices, and L(R) ∼= L(〈e〉)×L(N) holds by virtue of [6, Cor. 6]. Hence L(Rϕ) ∼= L(〈e〉ϕ)×L(Nϕ)
with o(e′) = p, and by [6, Cor. 6], one of the subrings 〈e〉ϕ or Nϕ does not contain nonzero nilpotent
elements, while the other is a nil-ring. By Lemma 1, Nϕ is a p-ring. If Nϕ is not a nil-ring, then
it follows by [5, Thm. 1] that it contains nonzero idempotent and nilpotent elements, which is
impossible. Consequently, Nϕ is a p-nil-ring. Then the subring 〈e〉ϕ does not contain nonzero
nilpotent elements; hence 〈e〉ϕ = 〈e′〉, (e′)2 = e′, and o(e′) = q. According to [6, Thm. 1], either e′

is the identity in Rϕ and then q = p, or e′r′ = r′e′ = 0′ for any element r′ ∈ Nϕ. The lemma is
proved.

We give an example showing that for |N | � 4, not all statements of Lemma 2 hold.

Example 1. Consider a commutative ring K7 = 〈e〉 � N , where e is an identity element,
o(e) = 2, and N = 〈r1〉 ⊕ 〈r2〉 is a ring with zero multiplication. The ring K7 has 10 subrings and
contains 8 elements: 0, e, r1, r2, e+ r1, e+ r2, r1 + r2, e+ r1 + r2. The diagram of the subring lattice
of K7 is presented in Fig. 1.

We define another commutative ring: K8 = 〈r〉 ⊕ 〈e1〉 ⊕ 〈e2〉, where r2 = pr = 0, e2
i = ei, and

o(ei) = p, i � 2. The ring K8 contains p3 elements and has 10 subrings. The diagram of the subring
lattice of K8 is shown in Fig. 2.

Clearly, the rings K7 and K8 are lattice-isomorphic. In this case statements (b)-(d) of Lemma 3
do not hold. In addition, K7 is not a one-generated ring, while K8 for p �= 2 is generated by one
element (r + e1 − e2).

LEMMA 3. Let a finite commutative ring R be defined thus: R = F �N , where F ∼= GF (pn),
n > 1, an identity element e of the field F is the identity in R, N is a principal ideal in R generated
by a nonzero nilpotent element. Suppose ϕ is a lattice isomorphism of the ring R onto the ring Rϕ.

Fig. 1.
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Fig. 2.

Then the following statements hold:
(a) Rϕ = Fϕ � Nϕ;
(b) Fϕ ∼= F and Nϕ ∼= N ;
(c) (Rad R)ϕ = Rad Rϕ;
(d) 〈e〉ϕ = 〈e′〉, where e′ is the identity element in Rϕ;
(e) Rϕ ∼= R.
Proof. In view of [3, Prop. 2], the ring R is one-generated. An identity of the field F is the

identity in R, so R is a ring of prime characteristic p. Let F = 〈x〉, N = (r), and ind r = m. Since
R is a commutative ring with identity, we have N = {sr | s ∈ R}, in which case N is additively
generated by elements of the form xirj, where i = 0, n − 1 and j = 1,m − 1. Clearly, these elements
are linearly independent over GF (p), and so |N | = pn(m−1). It is easy to see that |N | � 4 and
N = Rad R. Thus the ring R is uniquely defined by specifying three natural numbers p, n, and m.

Consider separately the case where |N | = 4. Then p = n = m = 2, and so the ring R consists
of 16 elements. According to [7, Table 3, ring R14], the maximal subrings of R are two subrings:
F and 〈e〉 � (〈r〉 ⊕ 〈xr〉). In addition, F ∼= GF (22) and 〈e〉 � (〈r〉 ⊕ 〈xr〉) ∼=∼= K7. The diagram of
the subring lattice of R is presented in Fig. 3.

We now turn to examine a projective image Rϕ. Since the lattice L(F ) is a chain, a projective
image Fϕ is generated by one element. Let Fϕ = 〈x′〉, 〈e〉ϕ = 〈e′〉, 〈r〉ϕ = 〈r′〉, o(e′) = q1,
and o(r′) = q2. If q1 �= q2, then, in view of the equality Rϕ = Fϕ ∨ 〈r′〉, we obtain L(Rϕ) ∼=
L(F ′) × L(〈r′〉), whence L(Rϕ) � L(R). Consequently, the additive group (Rϕ)+ is primary with
respect to some prime number q1. It is clear that 〈e, r〉ϕ = 〈e′, r′〉, and so the subring 〈e′, r′〉
contains no more than two proper subrings. Hence one of the elements e′ and r′ is idempotent,
while the other is nilpotent. Below we use the description of finite rings having exactly two maximal
subrings [7, Thm. 3] and the description of their maximal subrings [7, Table 3]. First note that the
ring R itself does not contain Galois subrings of the form GR(pk, ql), where k, l ∈ N, k > 1, which
are lattice-definable according to [2, Thm. 3]. Therefore, the ring Rϕ cannot be isomorphic to the
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Fig. 3.

rings R7, R10, R11, R13 in the list of rings R5-R14 contained in [7, Thm. 3], since these rings contain
Galois subrings of the specified type. We will exclude from further consideration the rings R9 and
R12, for they do not contain nonzero nilpotent elements, while the ring Rϕ contains such. Using
[7, Table 3], in the remaining rings R5, R6, R8, R14 we distinguish those one of the two maximal
subrings of which has a subring lattice, a chain of length 2, and the other has order q3

1. These
conditions are satisfied only by one ring, namely, the ring R14

∼= GF (qp1) + (s1), where p1 is some
prime number, s1 is a nilpotent element, and q1s1 = s2

1 = 0. Clearly, Rad Rϕ ∼= (s1), and so
(s1) ∼= 〈r, xr〉ϕ. This implies that q1 = p and p1 = 2. Hence Rϕ ∼= R and statements (a)-(d) of the
present lemma hold as well.

Let |N | > 4. The subring lattice L(N) is not a chain since, for instance, 〈xrm−1〉∩〈rm−1〉 = {0}.
The subring T = 〈e〉 � N satisfies the conditions of Lemma 2, so Nϕ is a p-nil-ring, 〈e〉ϕ = 〈e′〉,
and e′ is an idempotent element. Since r ∈ N , and 〈r〉ϕ = 〈r′〉 by [5, Remark 1], r′ is a nilpotent
element. In view of Lemma 2, one of the following holds:

e′r′ = r′e′ = r′, (3)

e′r′ = r′e′ = 0′. (4)

Consider the projective image Fϕ of a field F . Applying Propositions 1 and 3 and keeping in
mind that 〈e′〉 is the unique minimal subring in the ring Fϕ, we conclude that Fϕ is a finite field. If
(4) holds, then Rϕ = Fϕ ⊕〈r′〉ϕ, whence Nϕ ⊆ 〈r′〉, which clashes with 〈r〉 being a proper subring
of N . Hence (3) holds true. Then Fϕ is a field of characteristic p and e′ is the identity in the
ring Rϕ. Let n = pα1

1 · · · pαk
k be the canonical decomposition of the number n. By Proposition 3,

Fϕ ∼= GF (pn′
) and n′ = qα1

1 · · · qαk
k .

In view of [5, Cor. 3], 〈r′〉 ∼= 〈r〉. Hence ind r′ = ind r = m. Clearly, Rad Rϕ = (r′) = Nϕ.
According to [5, Lemma 7], |Rad R| = |Rad Rϕ| = pn(m−1). This implies that |Fϕ| = |F | = pn
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and Fϕ ∼= F . As noted above, the ring R is uniquely defined by specifying numbers p, n, and m.
Therefore, Rϕ ∼= R.

THEOREM 2. Let a finite commutative ring R be defined thus: R = F � N , where F ∼=
GF (pn) (n > 1), an identity element e of the field F is the identity in R, and N is a nonzero
nilpotent ideal. Suppose also that ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then
the following statements hold:

(a) Rϕ = Fϕ � Nϕ;
(b) Fϕ ∼= F ;
(c) Rad Rϕ = Nϕ = (Rad R)ϕ;
(d) 〈e〉ϕ = 〈e′〉, where e′ is the identity element in Rϕ;
(e) Rϕ is commutative if and only if Nϕ is commutative.
Proof. Consider the subring Nϕ. Obviously, |N | � 4 and L(N) is not a chain. By virtue of [5,

Thm. 1], Nϕ is a p-ring. Suppose Nϕ is not a nil-ring and take in it a nonzero idempotent element
u′. Let u ∈ N and 〈u〉ϕ = 〈u′〉. Applying Lemma 3 to a subring S = F � (u), we conclude that
(u)ϕ is a nil-ring, a contradiction. Therefore, Nϕ is a p-nil-ring.

Let r′ be an arbitrary nonzero element in Nϕ, r ∈ N , and 〈r〉ϕ = 〈r′〉. Applying Lemma 3 to a
subring T = F � (r), where (r) is a principal ideal in T generated by the element r, we conclude
that Nϕ is a two-sided ideal in the ring Rϕ. Statements (a), (b), and (d) of the present theorem
follow from Lemma 3. Since Rϕ/Nϕ ∼= Fϕ ∼= F , we have Rad Rϕ = Nϕ = (Rad R)ϕ, and so
statement (c) holds as well.

Suppose that Nϕ is a commutative subring and w′
1 and w′

2 are arbitrary elements of the ring
Rϕ. Let w′

i = x′
i + r′i, where x′

i ∈ Fϕ and r′i ∈ Nϕ (i = 1, 2). Then w′
1w

′
2 = (x′

1 + r′1)(x
′
2 + r′2) =

x′
1x

′
2 +x′

1r
′
2 + r′1x

′
2 + r′1r

′
2 = x′

2x
′
1 + r′2x

′
1 +x′

2r
′
1 + r′2r

′
1 = w′

2w
′
1. If the ring Rϕ is commutative, then

the subring Nϕ is commutative. Consequently, statement (d) holds true.
Below is an example showing that the presence of an identity in a commutative ring is not

sufficient for a projective image to be commutative.

Example 2. First we define two lattice-isomorphic nilpotent rings N and N ′ of prime
characteristic p > 2 by setting N = 〈r1〉 ⊕ 〈r2〉, ind r1 = 3, ind r2 = 2; N ′ = 〈r′1〉 � 〈r′2〉,
ind r′1 = ind r′2 = 3, (r′2)

2 = (r′1)
2, r′1r

′
2 = −(r′1)

2, r′2r
′
1 = 0′. Both rings N and N ′ have order

p3. The diagrams of the subring lattices of N and N ′ are shown in Fig. 4. The letters α and β used
in the designations in Fig. 4 assume the following values: α = 0, p − 1, β = 0, p − 2. It is easy to
see that L(N) ∼= L(N ′).

Now we define two rings R and R′ by setting R = 〈e〉 � N and R′ = 〈e′〉 � N ′, where e and
e′ are identity elements in the rings R and R′, respectively. According to [6, Thm. 1], the subring
lattices L(R) and L(R′) are isomorphic to direct products of their subring lattices L(〈e〉), L(N)
and L(〈e′〉), L(N ′), respectively. Since L(N) ∼= L(N ′) and L(〈e〉) ∼= L(〈e′〉), we have L(R) ∼= L(R′).
In this case R is commutative, whereas R′ is not commutative.

THEOREM 3. Let a finite commutative ring R be defined as follows: R = F � N , where
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Fig. 4.

F ∼= GF (pn), n > 1, an identity element e of the field F is the identity in R, and N is a nilpotent
ideal of nilpotency index 2. Suppose ϕ is a lattice isomorphism of the ring R onto the ring Rϕ.
Then Rϕ ∼= R.

Proof. Recall that the Frattini subring Φ(K) of an arbitrary ring K is the intersection of all
maximal right ideals in K. If K is a nilpotent ring, then the subring Φ(K) coincides with the
intersection of all maximal subrings in K. According to [8, Assert. 4.1.3], if K is a nilpotent p-ring,
then Φ(K) = K2 + pK. As applied to the ring N , this means that Φ(N) = {0}. Passing to a
projective image Nϕ, which is a nilpotent p-ring by Theorem 2, we derive (Nϕ)2 = pNϕ = {0′}.
Thus N and Nϕ are lattice-isomorphic finite rings of characteristic p with zero multiplication.
According to [5, Lemma 7], we have |Nϕ| = |N |, whence Nϕ ∼= N . In view of Theorem 2, we
obtain Fϕ ∼= F , and hence Rϕ ∼= R.

THEOREM 4. Let a finite commutative ring R with identity be decomposable into a direct
sum of rings Ti, i = 1, k, satisfying the following conditions: Ti = Fi � Ni, Fi

∼= GF (pni), ni > 1,
Ni is a nonzero nilpotent ideal of Ti, and an identity ei of the field Fi is the identity in Ti, i = 1, k.
Suppose also that ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then:

(a) Rϕ = Tϕ
1 ⊕ · · · ⊕ Tϕ

k ;
(b) Tϕ

i = Fϕ
i � Nϕ

i , Fϕ
i
∼= Fi, 〈ei〉ϕ = 〈e′i〉, e′i is the identity element in the ring Tϕ

i , and Nϕ
i is

a nonzero nilpotent ideal of Tϕ
i , i = 1, k;

(c) 〈e〉ϕ = 〈e′〉, where e and e′ are identity elements of R and Rϕ, respectively;
(d) (Rad R)ϕ = Rad Rϕ;
(e) the ring Rϕ is commutative if and only if every subring Nϕ

i , i = 1, k, is commutative.
Proof. Statement (b) follows from Theorem 2. Applying (b) and Theorem 1 to a subring

F = F1 ⊕ · · · ⊕ Fk, we derive (a) and (c). Statement (e) results from Theorem 2. It is clear
that Rad R = N1 ⊕ · · · ⊕ Nk. The equality (N1 ⊕ · · · ⊕ Nk)ϕ = Nϕ

1 ⊕ · · · ⊕ Nϕ
k follows from (a).

Statements (a) and (b) imply that Rad Rϕ = Nϕ
1 ⊕ · · · ⊕ Nϕ

k . Consequently, (d) holds true. The
theorem is proved.
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3. PROJECTIONS OF RINGS CONTAINING GALOIS RINGS

LEMMA 4. Let a finite p-ring R be defined as follows: R = 〈e〉 � 〈r〉, where e is an identity
element of R, o(e) = pn, n � 2, r is a nonzero nilpotent element, and |〈r〉| > 2. Suppose also that
ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then:

(a) Rϕ is a p-ring;
(b) 〈r〉ϕ = 〈r′〉 is a nil-ring;
(c) 〈e〉ϕ = 〈e′〉, (e′)2 = e′, and o(e′) = pn;
(d) Rϕ = 〈e′〉 � 〈r′〉, and either e′r′ = r′e′ = r′ or e′r′ = r′e′ = αpe′, where α ∈ Z.
Proof. (a), (b) According to [7, Thm. 3], R contains exactly two maximal subrings, and hence

Rϕ is generated by one element and is therefore commutative. Obviously, the subring lattice of a
ring T = 〈pe〉 � 〈r〉 is not a chain. In addition, |T | > 4 since o(e) � p2. By Lemma 1, Tϕ is a
p-nil-ring, and hence Rϕ is a p-ring.

(c) In the subring 〈r〉, we choose an element r1 such that r2
1 = pr1 = 0. Applying [2, Lemma 7]

to a subring S = 〈e〉� 〈r1〉 and keeping in mind that 〈r1〉ϕ is a nil-ring, we obtain Sϕ = 〈e′〉� 〈r′1〉,
where (e′)2 = e′. The subring lattices of rings 〈e〉 and 〈e′〉 are the unique chains of maximal length
in the lattices L(S) and L(Sϕ), respectively.

(d) Suppose that the element e′ is not an identity in Rϕ and consider the Pierce decomposition
Rϕ = e′Rϕ ⊕ (1 − e′)Rϕ. According to [7, Lemma 4], the subrings e′Rϕ and (1 − e′)ϕR each
contains one maximal subring. The ring e′Rϕ has a nonzero idempotent element e′ whose order
is not prime. By [7, Thm. 1], only one of the following two cases is possible: e′Rϕ = 〈e′〉 or
e′Rϕ ∼= GR(pn, qm). If the second case holds, then it follows by [2, Thm. 3] that R contains a
subring isomorphic to a ring GR(pn, qm). The ring R has no such subrings since any subring in R

containing an idempotent element e has the form 〈e〉⊕N , where N ⊆ 〈r〉, and cannot be isomorphic
to GR(pn, qm). Hence e′Rϕ = 〈e′〉. If the subring (1 − e′)ϕR is not nilpotent, then it contains a
nonzero idempotent element e′1, and consequently Rϕ has two orthogonal idempotent elements e′

and e′1. By [2, Lemmas 6, 8], the projective preimage of a subring 〈e′〉 ⊕ 〈e′1〉 should also contain
two nonzero orthogonal idempotent elements. It is easy to see that the ring R does not contain
such idempotent elements. Hence the subring (1 − e′)Rϕ is generated by a nilpotent element. Let
(1− e′)Rϕ = 〈v′〉. Then Rϕ = 〈e′〉 ⊕ 〈v′〉. We express an element r′ via generating elements e′ and
v′ by setting r′ = βe′ + w′, where β ∈ Z and w′ ∈ 〈v′〉. Since r′ is a nilpotent element, β should be
divisible by p. Let β = αp, where α ∈ Z. Then r′ = αpe′ + w′. Multiplying both parts of the last
equality by e′, we obtain e′r′ = αpe′. The lemma is proved.

LEMMA 5. Let a finite p-ring R be defined as follows: R = 〈e〉 � N , where e is an identity
element of R, o(e) = pn, n � 2, N is a nilpotent ring, the lattice L(N) is not a chain, and |N | �= 4.
Suppose also that ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then:

(a) Rϕ is a p-ring;
(b) 〈e〉ϕ = 〈e′〉, (e′)2 = e′, and o(e′) = pn;
(c) Nϕ is a nilpotent ring;
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(d) Rϕ = 〈e′〉 � Nϕ, and either e′ is the identity in Rϕ or there exists an integer α such that
e′r′ = r′e′ = αpe′ for every element r′ in Nϕ.

Proof. (a), (b) The subring lattice of a ring 〈e〉 is a chain of length n. Suppose that the
projective image 〈e〉ϕ is not generated by an idempotent element. Let u′ ∈ Nϕ, l(〈u′〉) = 1, u ∈ N ,
and 〈u〉ϕ = 〈u′〉. Obviously, u2 = pu = 0, and so the subring S = 〈e〉� 〈u〉 satisfies the hypotheses
of [2, Lemma 7]. Then 〈e〉ϕ = F ′ is a field of length 2, (u′)2 = u′, and p = 2 = n. This implies that
the ring Nϕ does not contain nonzero nilpotent elements and is therefore decomposable into a finite
direct sum of finite fields, Nϕ = F ′

1 ⊕ · · · ⊕ F ′
k. According to [2, Lemma 7], all fields F ′

i , i = 1, k,
have the same characteristic as the field F ′. The subring lattice of a finite field is distributive
[4, Thm. 1.2], and a distributive lattice of any p-nil-ring is a chain [4, Thm. 1.1]. Therefore, the
subring lattices of all fields F ′

i , i = 1, k, will be finite chains. Applying [5, Thm. 1] to a subring
N , we conclude that either L(N) is a chain or |N | = 4. In each of the two cases we arrive at
a contradiction with the hypothesis. Thus the assumption that the projective image 〈e〉ϕ is not
generated by an idempotent element is invalid.

Let 〈e〉ϕ = 〈e′〉, where (e′)2 = e′. Applying again [2, Lemma 7] to a subring S, we conclude that
o(e′) = o(e) = pn, (u′)2 = pu′ = 0′, and either e′ is the identity in the ring Sϕ or there exists an
element w′ such that (w′)2 = pw′ = 0′ and Sϕ = 〈e〉ϕ ⊕〈w′〉. According to [6, Thm. 1], the subring
lattice of a ring R is not decomposable into a direct product of lattices, and so the additive group
of a ring Rϕ is primary with respect to a prime number p.

(c) Suppose that Nϕ is not a nilpotent ring, and let v′ be a nonzero idempotent element in
Nϕ. The subring lattice of a ring 〈v′〉 is a chain, so the ring N contains a nilpotent element v such
that 〈v〉ϕ = 〈v′〉. The above argument implies that l(〈v〉) > 1. Applying Lemma 4 to a subring
T = 〈e〉 � 〈v〉, we conclude that 〈v′〉 is a nil-ring, which contradicts the assumption.

(d) Let r′ be an arbitrary element of the ring Nϕ, r ∈ N , and 〈r〉ϕ = 〈r′〉. If l(〈r′〉) = 1, then
by [2, Lemma 7] (and if l(〈r′〉) > 1 then by Lemma 4) one of the following options is true:

e′r′ = r′e′ = r′, (5)

e′r′ = r′e′ = αpe′, (6)

where α ∈ Z.
Suppose that there exist two nonzero elements r′1 and r′2 in Nϕ having the properties

e′r′1 = r′1 and e′r′2 = αpe′. (7)

Then e′(r′1 + r′2) = r′1 +αpe′. The equality r′1 +αpe′ = r′1 + r′2 should follow from (5), and (6) must
give rise to r′1 + αpe′ = βpe for some integer β. It is easy to see that the last two equalities lead to
a contradiction. Consequently, (5) or (6) holds for all elements r′ ∈ Nϕ.

LEMMA 6. Let a finite commutative p-ring R with identity e be defined thus: R = S + N ,
where S ∼= GR(pn,m), n > 1, m > 1, and N is a nonzero nilpotent ideal of R. Suppose also that
ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then the following statements hold:
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(a) Rϕ is a p-ring;
(b) Sϕ ∼= S;
(c) 〈e〉ϕ = 〈e′〉, (e′)2 = e′, and o(e′) = o(e);
(d) Nϕ is a nilpotent subring;
(e) Rϕ = Sϕ + N ′, where N ′ is a two-sided nilpotent ideal of Rϕ generated by the subring Nϕ,

e′ is the identity in Rϕ, and s′r′ = r′s′ for all s′ ∈ Sϕ and all r′ ∈ N ′;
(f) (Rad R)ϕ = Rad Rϕ;
(g) the ring Rϕ is commutative if and only if the ring Nϕ is commutative.
Proof. (a), (b) According to [3, Cor. 2], the projective image of a p-ring containing a Galois

ring GR(pn,m), where n > 1 and m > 1, is a p-ring. Consequently, (a) holds true. The truth of
(b) follows from the property of being lattice-definable for a Galois ring [2, Thm. 3].

(c) By [3, Lemma 14], the identity e of the ring R belongs to a subring S. In view of [2,
Property 9], 〈e〉ϕ = 〈e′〉 and e′ is the identity in the ring Sϕ. The isomorphism Sϕ ∼= S implies
o(e′) = o(e).

(d) Suppose that the ring Nϕ is not a nil-ring and choose in it a nonzero idempotent element v′.
The subring N contains an element v such that 〈v〉 = 〈v′〉. Consider a subring V = S + (v), where
(v) is a principal ideal in V generated by the element v. According to [3, Prop. 2], the subring V

is generated by one element, and by [3, Lemma 17], the element v′ is nilpotent, which contradicts
the assumption. Consequently, Nϕ is a nil-ring, and hence it is a nilpotent ring.

(e) Let r′ ∈ Nϕ, r ∈ N , and 〈r〉ϕ = 〈r′〉. Consider a subring T = S + (r), where (r) is a
principal ideal in T generated by the element r. By [3, Prop. 2], the subring T is generated by one
element, and by virtue of [3, Lemma 17], Tϕ is a one-generated ring. Therefore,

(∀s′ ∈ Sϕ)(∀r′ ∈ Nϕ)(s′r′ = r′s′). (8)

According to [3, Lemma 17], the element e′ is an identity in the ring Rϕ. Let N ′ be a two-sided
ideal in Rϕ generated by the subring Nϕ. Since Rϕ = Sϕ ∨ Nϕ, we have Rϕ = S + N ′. The ideal
N ′ is additively generated by elements of the form s′r′, where r′ ∈ Nϕ and s′ ∈ Sϕ; so Eqs. (8)
imply that the subring N ′ is nilpotent. It is also clear that Eqs. (8) hold for all s′ ∈ Sϕ and all
r′ ∈ N ′.

(f) Obviously, Rad R = pS + N . In the ring Rϕ, the set of all nilpotent elements is contained
in the subring pSϕ + N ′. In view of [2, Property 10], (pS)ϕ = pSϕ and (Rad R)ϕ ⊆ pSϕ + N ′. The
projective preimage W of the ring pSϕ+N ′ is a nil-ring, since otherwise it would contain a nonzero
idempotent element, namely, the identity e, which is impossible. Consequently, W ⊆ pS + N and
(Rad R)ϕ = Rad Rϕ.

(g) Follows from (e). The lemma is proved.

THEOREM 5. Let a finite commutative ring R with identity be decomposable into a direct
sum of rings Ti, i = 1, k, satisfying the following conditions: Ti = Si + Ni, Si

∼= GR(pni ,mi),
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ni > 1, mi > 1, Ni, is a nonzero nilpotent ideal of Ti, an identity ei of the ring Si is the identity
in Ti, i = 1, k. Suppose that ϕ is a lattice isomorphism of the ring R onto the ring Rϕ. Then:

(a) Tϕ
i = Sϕ

i + N ′
i , Sϕ

i
∼= Si, 〈ei〉ϕ = 〈e′i〉, e′i is the identity element in the ring Tϕ

i , N ′
i is a

two-sided nilpotent ideal of Tϕ
i generated by the subring Nϕ

i , and s′r′ = r′s′ for all s′ ∈ Sϕ
i and all

r′ ∈ N ′
i , i = 1, k;

(b) Rϕ = Tϕ
1 ⊕ · · · ⊕ Tϕ

k ;
(c) 〈e〉ϕ = 〈e′〉, where e and e′ are the identity elements of R and Rϕ, respectively;
(d) (Rad R)ϕ = Rad Rϕ;
(e) the ring Rϕ is commutative if and only if every subring Nϕ

i , i = 1, k, is commutative.
Proof. (a) Follows from Lemma 6.
(b) Consider a subring R1 = S1 ⊕ · · · ⊕ Sk. By [2, Thm. 9],

Rϕ
1 = Sϕ

1 ⊕ · · · ⊕ Sϕ
k . (9)

Since identity elements of subrings Sϕ
i are identities in rings Tϕ

i , i = 1, k, Eq. (9) implies Rϕ =
Tϕ

1 ⊕ · · · ⊕ Tϕ
k .

(c) The elements e = e1 + · · · + ek and e′ = e′1 + · · · + e′k are the identities in R and Rϕ,
respectively. The subring lattice L(〈e〉) is a chain, so 〈e〉ϕ = 〈u′〉 for some element u′ ∈ Rϕ. We
prove that 〈u′〉 = 〈e′〉. Let E = 〈e1〉 ⊕ · · · ⊕ 〈ek〉. Equalities 〈ei〉ϕ = 〈e′i〉, i = 1, k, combined
with (9), imply that Eϕ = 〈e′1〉 ⊕ · · · ⊕ 〈e′k〉. Clearly, u′ ∈ Eϕ. By hypothesis, L(〈e′1〉) is a finite
chain of length greater than 1. The ring Eϕ contains no fields, and by [7, Thm. 1], the element
u′ may be thought of as being either nilpotent or idempotent. For any number i ∈ {1, . . . , k},
o(e) � o(ei), and in view of o(u′) = o(e), it is clear that u′ is an element of maximal additive order
in the ring Eϕ. Every nilpotent element in Eϕ belongs to a subring pEϕ and cannot have maximal
additive order in Eϕ. Therefore, u′ is an idempotent element. Let u′ = e′i1 + · · ·+ e′il . If l �= k, then
u′ ∈ Sϕ

i1
⊕ · · · ⊕ Sϕ

il
�= Sϕ. Consequently, e ∈ Si1 ⊕ · · · ⊕ Sil , which is impossible. Hence l = k, and

so u′ = e′1 + · · · + e′k = e′ is the identity in Rϕ.
(d) It is easy to see that Rad R = Rad T1 ⊕ · · · ⊕ Rad Tk = (pS1 + N1) ⊕ · · · ⊕ (pSk + Nk),

whence (Rad R)ϕ = (pS1 + N1)ϕ ⊕ · · · ⊕ (pSk + Nk)ϕ = (pSϕ
1 + N ′

1)⊕ · · · ⊕ (pSϕ
k + N ′

k) = Rad Rϕ.
(e) It follows from (a) that the ring Rϕ is commutative iff every subring Tϕ

i , i = 1, k, is
commutative. By Lemma 6(g), the subring Tϕ

i is commutative iff every subring Nϕ
i , i = 1, k, is

commutative. The theorem is proved.
Acknowledgments. I am grateful to an anonymous referee for important comments which helped

me improve the text of the paper.
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