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THE d-RANK OF A TOPOLOGICAL SPACE

Yu. L. Ershov∗ UDC 515.125
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It is shown that for any ordinal α, there exists a T0-space whose d-rank is equal to α.

1. PRELIMINARY INFORMATION

The concept of a d-space was introduced by O. Wyler [1]; in [2], such spaces were called
monotone convergence spaces. The concept of a d-completion was introduced in [1]. Different ways
of constructing d-completions were found in [1] and [3]. In the present paper, we point out yet
another way for constructing a d-completion. We cite relevant information on d-spaces from [3].

Definition 1.1. A topological T0-space X is called a d-space if, for any nonempty upward
directed set D ⊆ X under the specialization order ≤T(X), there exists supD, and supD ∈ clXD.

Definition 1.2. A d-space Y is called a d-completion of a space X if there exists a homeomorphic
embedding λ : X → Y, and for any d-space Z and any continuous map f : X → Z, there is a unique
continuous map g : Y → Z such that gλ = f .

Obviously, every d-space is its d-completion. If a d-completion of a space X exists, then we
denote it by Hd(X).

Let X = 〈X,T〉 be an arbitrary T0-space. Denote by D(X) the family of all nonempty upward
directed subspaces under the specialization order ≤ in X. Consider an equivalence relation ∼ on
D(X) defined as follows:

S0 ∼ S1 if and only if S0 ∩ U �= ∅ is equivalent to S1 ∩ U �= ∅ for any U ∈ T.

Put

[S] = {S′ ∈ D(X) | S ∼ S′}, S ∈ D(X),
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D(X) = {[S] | S ∈ D(X)},
U∗ = {[S] | S ∩ U �= ∅}, U ∈ T,

T∗ = {U∗ | U ∈ T}.

For arbitrary open sets U0, U1 ∈ T, we have U∗
0 ∩ U∗

1 = (U0 ∩ U1)∗ ∈ T∗. It is easy to verify
that

⋃
{U∗

i | i ∈ I} =
(⋃

{Ui | i ∈ I}
)∗ ∈ T∗ for any family {Ui ∈ T | i ∈ I} of open sets.

Since ∅
∗ = ∅ and X∗ = D(X), T∗ is a topology. Moreover, the topology T∗ is T0-separable. Put

D(X) = 〈D(X),T∗〉.
Define a map λ : X → D(X) using the rule

λ(x) =
[
{x}

]
.

It is not hard to see that the map λ is a homeomorphic embedding.
A transfinite sequence of extensions is constructed thus:
D0(X) = X,
Dα+1(X) = D(Xα),
Dα(X) = lim−→〈α, Xβ , eβγ〉 if α is a limit ordinal,

where eβγ is a natural embedding of Dβ(X) in Dγ(X) for any β � γ < α, whose continuity
was established in [3]. Without loss of generality, we may identify Dβ(X) with the corresponding
subspace of Dγ(X) for all ordinals β � γ.

THEOREM 1.3 [3]. For every T0-space X, there exists its d-completion—namely, there exists
an ordinal α such that Hd(X) ∼= Dα(X) = Dα+1(X).

Definition 1.4. The d-rank of a topological T0-space X is the least ordinal α such that Dα(X) =
Dα+1(X).

A basic result of the present paper, Theorem 3.6, says that every ordinal is the d-rank of some
T0-space.

2. BASIC CONSTRUCTION AND ITS PROPERTIES

Consider the following construction. Let topological spaces X and Yx, x ∈ X, be given. Put

Z =
⋃

x∈X

Yx × {x},

T = {U ⊆ Z | Ux ∈ T(Yx) for any x ∈ X and UX ∈ T(X)},

where Ux = {y ∈ Yx | (y, x) ∈ U} for any x ∈ X and UX = {x ∈ X | Ux �= ∅}.
LEMMA 2.1. Let X be a T0-space and Yx be an irreducible T0-space for every x ∈ X. Then:
(i) T is a T0-separable topology on Z;
(ii) the map y �→ (y, x) determines a homeomorphic embedding of Yx in Z = 〈Z,T〉 for any

x ∈ X;
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(iii) if the space X is irreducible, then the space Z = 〈Z,T〉 is also irreducible.
Proof. (i) It is straightforward to verify that T is closed under arbitrary unions and finite

intersections; i.e., it is a topology on Z. Let z0 �= z1 in Z. If z0, z1 ∈ Yx × {x} for some x ∈ X,
then, in view of T(Yx) being T0-separable, there exists U ∈ T(Yx) such that zi ∈ U × {x} and
z1−i /∈ U ×{x} for some i < 2. In this case zi ∈ V = U ×{x}∪

⋃

x′ �=x

Yx′ ×{x′} ∈ T(Z) and z1−i /∈ V .

If, however, z0 ∈ Yx0 × {x0} and z1 ∈ Yx1 × {x1} for some distinct x0, x1 ∈ X, then there exists
U ∈ T(X) such that xi ∈ U and x1−i /∈ U for some i < 2, since the topology T(X) is T0-separable.
In this case zi ∈ V =

⋃

x∈U
Yx × {x} ∈ T and z1−i /∈ V .

(ii) Is obvious.
(iii) Let sets U, V ∈ T be nonempty. Then the sets UX , VX ∈ T(X) are also nonempty. The

irreducibility of X entails UX ∩ VX �= ∅. Moreover, Ux ∩ Vx �= ∅ for any x ∈ U ∩ V in view of Yx

being irreducible. Therefore, (U ∩V )X = UX ∩VX �= ∅. Consequently, Z is an irreducible space. �

The space Z = 〈Z,T〉 dealt with in Lemma 2.1 is denoted also by
∑

X

Yx. The specialization

order ≤Z is described by the following:

LEMMA 2.2. Let X be a T0-space, Yx an irreducible T0-space for any x ∈ X, and Z =
∑

X

Yx.

For all (y0, x0), (y1, x1) ∈ Z, we have (y0, x0) ≤Z (y1, x1) if and only if one of the following two
alternatives holds:

(i) x0 = x1 and y0 ≤Yx0
y1;

(ii) x0 <X x1 and y1 = �x1 is the greatest element in Yx1 .
Proof. Sufficiency. Suppose that condition (i) is satisfied and (y0, x0) ∈ U ∈ T(Z). Then

y0 ∈ Ux0 ∈ T(Yx0). Therefore, y1 ∈ Ux0 , i.e., (y1, x1) ∈ U . Now let condition (ii) be satisfied and
(y0, x0) ∈ U ∈ T(Z). In this event x0 ∈ UX ∈ T(X), and x1 ∈ UX . Consequently, there exists
y ∈ Ux1 ∈ T(Yx1). The equality y1 = �x1 entails y1 ∈ Ux1 , hence (y1, x1) ∈ U .

Necessity. Let (y0, x0) ≤Z (y1, x1). There are two cases to consider:
Case 1. Let x0 = x1. We show that in this event y0 ≤Yx0

y1. Indeed, let y0 ∈ V ∈ T(Yx0). Then
(y0, x0) ∈ U = (V × {x0}) ∪

⋃

x �=x0

Yx × {x} ∈ T(Z). Consequently, (y1, x1) ∈ U , i.e., y1 ∈ Ux0 = V .

Case 2. Let x0 �= x1. First we show that y1 is the greatest element in Yx1 . Indeed, let y ∈ Yx1

be an arbitrary element, and y ∈ V ∈ T(Yx1). Then x0 �= x1, and so (y0, x0) ∈ U = (V × {x1}) ∪
⋃

x �=x1

Yx × {x} ∈ T(Z). Hence (y1, x1) ∈ U , i.e., y1 ∈ Ux1 = V , which proves that y ≤Yx1
y1 for

any y ∈ Yx1 . Now we show that x0 <X x1. Indeed, let x0 ∈ W ∈ T(X). Then (y0, x0) ∈ U =
⋃

x∈W
Yx × {x} ∈ T(Z), and so (y1, x1) ∈ U , i.e., x1 ∈ UX = W , as required. �

Put X̃ = {x ∈ X | Yx has the greatest element �x}. Obviously, the space X̃ with the induced
topology is a subspace of X.

LEMMA 2.3. Let X be a T0-space, Yx an irreducible T0-space for any x ∈ X, and Z =
∑

X

Yx.

Then an arbitrary set S′ ∈ D(Z) contains a cofinal subset S ⊆ S′ having one of the following
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forms:
(I) S = {(y, x) | y ∈ Sx} for some fixed x ∈ X and Sx ∈ D(Yx);
(II) S = {(�x, x) | x ∈ S∗} for some S∗ ∈ D(X̃).
Proof. For a nonempty upward directed set S′ ⊆ Z under the specialization order, one of the

following cases holds:
Case 1. There exists x ∈ X such that for any s ∈ S′ there exists y ∈ Yx with the condition that

s ≤ (y, x). Put S = {(y, x) ∈ Z | (y, x) ∈ S′}. According to Lemma 2.2 and our hypothesis, the set
Sx = {y ∈ Yx | (y, x) ∈ S} is nonempty and upward directed under the specialization order in Yx;
so S has form (I).

Case 2. Suppose that the hypothesis of Case 1 does not hold. This means that whatever element
(y, x) ∈ S′ we choose, there exists an element (y′, x′) ∈ S′ for which (y′, x′) � (y, x) with any y ∈ Yx.
Since the set S′ is upward directed, there is an element (ỹ, x̃) ∈ S′ such that (y, x) ≤ (ỹ, x̃) and
(y′, x′) ≤ (ỹ, x̃). The inequality (y′, x′) ≤ (ỹ, x̃) means that x̃ �= x. If we apply Lemma 2.2 to
(y, x) ≤ (ỹ, x̃) we obtain ỹ = �x̃ and x < x̃ ∈ X̃ . Thus, whatever element (y, x) ∈ S′ we choose,
there exists an element x̃ ∈ X̃ for which x < x̃ and (y, x) ≤ (�x̃, x̃) ∈ S′. Put S = {(�x, x) ∈ S′ |
x ∈ X̃} and S∗ = {x ∈ X̃ | (�x, x) ∈ S}. Since S′ �= ∅, what has been stated above implies that
S∗ �= ∅ and the set S∗ is upward directed under the specialization order. Thus S has form (II). �

An immediate consequence of Lemmas 2.2 and 2.3 is the following:

COROLLARY 2.4. Let X be a T0 space, Yx an irreducible T0-space for any x ∈ X, and
Z =

∑

X

Yx. If the set S ∈ D(Z) simultaneously contains a cofinal subset of type (I) and a cofinal

subset of type (II), then [S∗] = x in D(X) and [Sx] = �x in D(Yx) for some x ∈ X̃ .
Proof. Suppose that for some x0 ∈ X, Sx0 ∈ D(Yx0), and S∗ ∈ D(X̃), the sets S0 = {(y, x0) |

y ∈ Sx0} and S1 = {(�x, x) | x ∈ S∗} are cofinal in S. Hence, for any y0 ∈ Sx0 , there is x ∈ S∗

such that (y0, x0) ≤ (�x, x), and for any x ∈ S∗, there is y1 ∈ Sx0 such that (�x, x) ≤ (y1, x0).
Summing up the above, we have

(y0, x0) ≤ (�x, x) ≤ (y1, x0).

By virtue of Lemma 2.1, we obtain [S∗] = x0 and y1 = �x0 . �

For any irreducible topological space Y, put

Y
� =

⎧
⎨

⎩

Y if Y has a greatest element,
〈
Y ∪ {�},T(Y)�

〉
otherwise,

where T(Y)� = {∅} ∪
{
U ∪ {�} | ∅ �= U ∈ T(Y)

}
. According to our definition, for any irreducible

T0-space Y, Y
� is a T0-separable topological space and has a greatest element. Also put

S∗ =
{
x ∈ X̃ | (�x, x) ∈ S} for any set S ⊆ Z,

Sx =
{
y ∈ Yx | (y, x) ∈ S} for any x ∈ X,
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X ′ = X ∪ D(X̃) ⊆ D(X).

Then X
′ with the induced topology is obviously a subspace of D(X). Let x ∈ X, and let sets U0

and U1 ∈ T(Yx) be such that U∗
0 , U∗

1 �= ∅ in D(Yx). This means that U0, U1 �= ∅ in Yx, i.e.,
U0 ∩U1 �= ∅. Thus U∗

0 ∩U∗
1 = (U0 ∩U1)∗ �= ∅ in D(Yx). Therefore, the space D(Yx) is irreducible

for any x ∈ X. Furthermore, for every x′ ∈ X ′ we put

Y
′
x′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(Yx) if x′ = x ∈ X̃,

D(Yx)� if x′ = x ∈ X\X̃,

T if x′ ∈ D(X̃)\X,

where T =
〈
{�},

{
∅, {�}

}〉
.

THEOREM 2.5. Let X be a T0-space, Yx an irreducible T0-space for any x ∈ X, and Z =
∑

X

Yx. Then the spaces D(Z) and Z
′ =

∑

X′
Y
′
x′ are homeomorphic.

Proof. Define a map f : D(Z) → Z ′ setting

f([S]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
[Sx], x

)
if S has type (I) for some x ∈ X,

(�, x) if S has type (II) and [S∗] = x ∈ X,
(
�, [S∗]

)
if S has type (II) and [S∗] /∈ X.

In view of Lemmas 2.2, 2.3, Corollary 2.4, and the definition of a space Z
′, the map f is well defined

and is one-to-one.

Claim 1. The map f is continuous.
Proof. Suppose V ∈ T(Z′). Then VX′ ∈ T(X′), so U = VX′∩X ∈ T(X). For an arbitrary x ∈ U ,

put Wx = Vx ∩ Yx and W =
⋃

x∈U

Wx × {x}. Then Wx �= ∅ for any x ∈ U , and hence WX = U

and W ∈ T(Z), i.e., W ∗ ∈ T
(
D(Z)

)
. It suffices to state that W ∗ = f−1(V ). Indeed, let S ∈ D(Z)

be such that [S] ∈ W ∗, i.e., (y0, x0) ∈ S ∩ W for some x0 ∈ U and y0 ∈ Wx0 . According to the
definition of a map f , there are two cases to consider:

Case 1. S has type (I) for some x ∈ X. This means that there exists y ∈ Sx such that
(y0, x0) ≤Z (y, x); in particular, (y, x) ∈ W , i.e., y ∈ Wx ⊆ Vx ∈ T

(
D(Yx)

)
. Consequently,

y ≤D(Yx) [Sx] and [Sx] ∈ Vx. Thus f([S]) =
(
[Sx], x

)
∈ Vx × {x} ⊆ V , i.e., [S] ∈ f−1(V ).

Case 2. S has type (II). This means that there exists x1 ∈ S∗ with the condition that (y0, x0) ≤Z

(�x1, x1); in particular, x0 ≤X′ x1 ≤X′ [S∗]. Since x0 ∈ U ⊆ VX′ , we have [S∗] ∈ VX′ . Three options
are possible:

Case 2.1. [S∗] = x ∈ X̃ . The space Yx, and hence Y
′
x = D(Yx), has the greatest element �.

Thus x ∈ U , � ∈ Vx, and f([S]) =
(
�, x

)
∈ Vx × {x} ⊆ V , i.e., [S] ∈ f−1(V ).

Case 2.2. [S∗] = x ∈ X\X̃. This means that x ∈ U , Y
′
x = D(Yx)�, � ∈ Vx, and f([S]) =

(
�, x

)
∈ Vx × {x} ⊆ V .

Case 2.3. [S∗] /∈ X. Since [S∗] ∈ VX′ , it follows that f([S]) =
(
�, [S∗]

)
∈ V .
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In any case we have [S] ∈ f−1(V ). Conversely, let S ∈ D(Z) be such that f([S]) ∈ V . According
to the definition of a map f , there are again two cases to consider:

Case 1. S has type (I) for some x ∈ X. This means that f([S]) =
(
[Sx], x

)
∈ V , i.e., [Sx] ∈ Vx.

Therefore, there exists y ∈ Sx such that y ∈ Sx ∩ Vx ∩ Yx = Sx ∩ Wx, i.e., (y, x) ∈ S ∩ W .
Consequently, [S] ∈ W ∗.

Case 2. S has type (II). This means that f([S]) =
(
�, [S∗]

)
∈ V . Thus [S∗] ∈ VX′ . Therefore,

there exists x ∈ S∗ ∩ VX′ ∩ X̃ ⊆ S∗ ∩ U . Consequently, Vx �= ∅ and Wx �= ∅. Then �x ∈ Wx, i.e.,
(�x, x) ∈ S ∩ (Wx × {x}) ⊆ S ∩ W and [S] ∈ W ∗. �

Claim 2. The map f is open.
Proof. Let W ∈ T(Z). Then WX ∈ T(X), so W ′ = W ∗

X ∩X ′ ∈ T(X′). For an arbitrary x′ ∈ W ′,
put

Vx′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{�x′} if x′ ∈ W ′\X,

W ∗
x ∪ {�} if x′ = x ∈ X\X̃,

W ∗
x if x′ = x ∈ X̃,

and V =
⋃

x′∈W ′
Vx′ × {x′}; then V ∈ T(Z′). It suffices to state that f(W ∗) = V . By Claim 1,

f−1(V ) = W ∗, i.e., f(W ∗) = V since f is one-to-one. �

This completes the proof of the theorem. �

3. SPECIAL SPACES

Definition 3.1. Let α be an ordinal. A topological T0-space X is said to be α-special if its
d-rank is equal to α, the space Dα(X) has a greatest element, while the space Dβ(X) does not have
a greatest element for any ordinal β < α.

Remark 3.2. If X is an α-special space, then α will not be a limit ordinal by the definition of
Dα(X).

LEMMA 3.3. For any nonlimit ordinal α, every α-special space is irreducible.
Proof. Suppose that X is an α-special space, but there exist nonempty sets U0, U1 ∈ T(X) such

that U0 ∩ U1 = ∅. By induction on β, it is not hard to verify that for any ordinal β, there exist
(nonempty) sets Uβ

0 , Uβ
1 ∈ T

(
Dβ(X)

)
such that Uβ

0 ∩ X = U0, Uβ
1 ∩ X = U1, and Uβ

0 ∩ Uβ
1 = ∅.

In particular, the space Dα(X) is not irreducible. This is impossible since every space containing a
greatest element is irreducible. �

For an arbitrary ordinal α > 0, consider the topological T0-space

Oα =
〈
α, {∅} ∪ {↑β | β < α is not limit}

〉
.

For any nonlimit ordinals β0, β1 < α, we have ↑β0 ∩ ↑β1 = ↑β �= ∅, where β = max{β0, β1}. Thus
Oα is an irreducible T0-space.

PROPOSITION 3.4. Let α > 0 be an ordinal.
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(i) If α is limit, then Hd(Oα) = O
�
α = D(Oα), i.e., the space Oα is 1-special.

(ii) If α is not limit, then Hd(Oα) = Oα, i.e., the d-rank of Oα is equal to 0.
(iii) If Y is an (α + 1)-special space for some ordinal α, then Dβ(Y�) ∼= Dβ(Y)� for any β � α

and Dα+1(Y�) ∼= Dα+1(Y) = Hd(Y).
(iv) If α is limit, γ is not a limit ordinal, and a T0-space Yβ is γ-special for any β < α, then

the space Z =
∑

Oα

Yβ is (γ + 1)-special.

(v) If α is limit, and a T0-space Yβ is (β + 1)-special for any β < α, then the space Z =
∑

Oα

Yβ

is (α + 1)-special and the d-rank of a space Z
� is equal to α.

Proof. (i)-(iii) Are obvious.
(iv) First we show that the spaces Dδ(Z) and

∑

Oα

Dδ(Yβ) are homeomorphic for any ordinal

δ � γ. We use induction on δ. For δ = 0, the statement follows from the definition of a space Z. Let
δ be such that δ +1 � γ, and let Dδ(Z) and

∑

Oα

Dδ(Yβ) be homeomorphic. In view of the inequality

δ < γ and by the choice of Yβ, β < α, the space Dδ(Yβ) does not contain a greatest element for
any β < α. This means that α̃ = ∅, and so (Oα)′ = Oα; i.e., according to Theorem 2.5,

Dδ+1(Z) ∼= D

⎛

⎝
∑

Oα

Dδ(Yβ)

⎞

⎠ ∼=
∑

Oα

D
(
Dδ(Yβ)

)
=

∑

Oα

Dδ+1(Yβ).

Suppose now that δ � γ is a limit ordinal and that the required statement holds for any δ′ < δ.
Then

Dδ(Z) = lim−→δ′<δ Dδ′(Z) ∼= lim−→δ′<δ

∑

Oα

Dδ′(Yβ)

∼=
∑

Oα

lim−→δ′<δ Dδ′(Yβ) =
∑

Oα

Dδ(Yβ).

Thus Dγ(Z) ∼=
∑

Oα

Dγ(Yβ) ∼=
∑

Oα

Hd(Yβ). Since Hd(Yβ) contains a greatest element for any β < α,

we have α̃ = α and (Oα)′ ∼= O
�
α
∼= Oα+1. By Theorem 2.5, we obtain

Dγ+1(Z) ∼= D

⎛

⎝
∑

Oα

Hd(Yβ)

⎞

⎠ ∼=
∑

Oα+1

D(Wβ) ∼=
∑

Oα+1

Wβ

∼=

⎛

⎝
∑

Oα

Hd(Yβ)

⎞

⎠

�

∼= Dγ(Z)�,

Dγ+2(Z) = D (Dγ+1(Z)) ∼= D

⎛

⎝
∑

Oα+1

Wβ

⎞

⎠ ∼=
∑

Oα+1

D(Wβ)

=
∑

Oα+1

Wβ = Dγ+1(Z),
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where Wβ = Hd(Yβ) if β < α, and Wα = T. Furthermore, the space Dδ(Z) does not contain a
greatest element for any δ � γ. This proves that the space Z is (γ + 1)-special.

(v) Using induction on δ, we state that for any ordinal δ < α, the spaces Dδ(Z) and
∑

Oα

W
δ
β are

homeomorphic, where

W
δ
β =

⎧
⎨

⎩

Dδ(Yβ) if δ � β < α,

Hd(Yβ) if β < δ < α.

For δ = 0, the statement follows from the definition of a space Z. Let δ be such that δ + 1 < α,
and Dδ(Z) ∼=

∑

Oα

W
δ
β. In view of the inequality δ < α and by the choice of Yβ, β < α, the space

Dδ(Yβ) does not contain a greatest element for any ordinal β such that δ � β < α. This means
that α̃ = δ and (Oα)′ = Oα; i.e., in view of Theorem 2.5 and the induction hypothesis, we have

Dδ+1(Z) ∼= D
(
Zδ

) ∼= D

⎛

⎝
∑

Oα

W
δ
β

⎞

⎠ ∼=
∑

Oα

D
(
W

δ
β

)
=

∑

Oα

W
δ+1
β .

Suppose now that δ < α is a limit ordinal and that the required statement holds for any ordinal
δ′ < δ. By Theorem 2.5 and the induction hypothesis, we have

Dδ(Z) = lim−→δ′<δ Dδ′(Z) ∼= lim−→δ′<δ

∑

Oα

W
δ′
β
∼=

∑

Oα

lim−→δ′<δ W
δ′
β =

∑

Oα

W
δ
β.

Thus
Dα(Z) = lim−→δ<α Dδ(Z) ∼= lim−→δ<α

∑

Oα

W
δ
β
∼=

∑

Oα

lim−→δ<α W
δ
β =

∑

Oα

Hd(Yβ).

Furthermore, the space Hd(Yβ) contains a greatest element for any β < α. Then α̃ = α and
(Oα)′ ∼= O

�
α
∼= Oα+1. In view of Theorem 2.5, we obtain

Dα+1(Z) ∼= D (Dα(Z)) ∼= D

⎛

⎝
∑

Oα

Hd(Yβ)

⎞

⎠ ∼=
∑

Oα+1

D(Wβ)

∼=
∑

Oα+1

Wβ
∼= Dα(Z)�,

Dα+2(Z) ∼= D (Dα+1(Z)) ∼= D

⎛

⎝
∑

Oα+1

Wβ

⎞

⎠ ∼=
∑

Oα+1

D(Wβ)

∼=
∑

Oα+1

Wβ
∼= Dα+1(Z),

where Wβ = Hd(Yβ) if β < α, and Wα = T. By Lemma 2.2, the space Dβ(Z) does not contain
a greatest element, and hence Dβ(Z) < Dα+1(Z) for any ordinal β � α. Thus the space Z is
(α + 1)-special.
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Assertion 1. For any ordinal γ with the condition that γ � α, the space Dγ(Z�) is
homeomorphic to a space

∑

Oα+1

W
γ
β, where

W
γ
β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dγ(Yβ) if γ � β < α,

Hd(Yβ) if β < γ � α,

T if β = α.

The proof is by induction on γ. If γ = 0, then Z
� ∼=

∑

Oα+1

Yβ, where Yα = T. Suppose now

that the required assertion holds for an ordinal γ < α. In this case we have ˜(α + 1) = γ ∪ {α} and
(Oα+1)′ = Oα+1. By Theorem 2.5 and the induction hypothesis, we obtain

Dγ+1(Z�) ∼= D(Dγ(Z�)) ∼= D

⎛

⎝
∑

Oα+1

W
γ
β

⎞

⎠ ∼=
∑

Oα+1

D(Wγ
β) =

∑

Oα+1

W
γ+1
β .

Assume that γ is a limit ordinal and that the required assertion holds for any ordinal δ < γ. In
view of Theorem 2.5, Proposition 3.4(iii), and the induction hypothesis, we have

Dγ(Z�) = lim−→δ<γ Dδ(Z�) ∼= lim−→δ<γ

∑

Oα+1

W
δ
β
∼=

∑

Oα+1

lim−→δ<γ W
δ
β =

∑

Oα+1

W
γ
β. �

By Assertion 1, it is true that W
α
β = Hd(Yβ) for β < α, and W

α
α = T. Moreover, if β < α, then

W
β
β = Dβ(Yβ) < Hd(Yβ) = W

α
β , and so Dβ(Z�) < Dα(Z�) for any β < α. Finally,

Dα+1(Z�) ∼= D(Dα(Z�)) ∼= D

⎛

⎝
∑

Oα+1

W
α
β

⎞

⎠ ∼=
∑

Oα+1

D(Wα
β)

∼=
∑

Oα+1

W
α
β
∼= Dα(Z�),

i.e., the d-rank of the space Z
� is equal to α. �

THEOREM 3.5. For any nonlimit ordinal α, there exists an α-special T0-space.
The proof is by induction on α. For α ∈ {0, 1}, the required statement follows from

Prop. 3.4(i), (ii). Suppose that α = γ + 1 and that the statement of the theorem is valid for
any nonlimit ordinal β � γ. There are two cases to consider:

Case 1. Let γ be a limit ordinal. In view of the induction hypothesis, there exists a (β+1)-special
space Yβ for any ordinal β < γ. By Proposition 3.4(v), the space

∑

Oγ

Yβ is (γ + 1)-special.

Case 2. Let γ not be a limit ordinal. In view of the induction hypothesis, there exists a γ-special
space Y. By Proposition 3.4(v), the space

∑

Oω

Yn, where Yn = Y for any n < ω, is (γ +1)-special. �

THEOREM 3.6. For any ordinal α, there exists an irreducible T0-space whose d-rank is equal
to α.
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Proof. If α is a nonlimit ordinal, then the statement of the theorem follows from Theorem 3.5. If
α is a limit ordinal, then the statement of the theorem follows from Theorem 3.5 and Prop. 3.4(v). �
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